Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.963
Filter
1.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822516

ABSTRACT

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Subject(s)
Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition/genetics , Diphtheria Toxin/genetics , Diphtheria Toxin/pharmacology , Promoter Regions, Genetic/genetics , A549 Cells , Cell Movement/genetics , Cell Movement/drug effects , Vimentin/genetics , Vimentin/metabolism , Genes, Transgenic, Suicide , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Gene Expression Regulation, Neoplastic
2.
J Toxicol Sci ; 49(6): 281-288, 2024.
Article in English | MEDLINE | ID: mdl-38825487

ABSTRACT

Nitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation. Therefore, excess or chronic NO exposure may cause disease by altering gene expression. However, the effects of chronic NO exposure on transcriptome are poorly understood. Here, we performed transcriptome analysis of A549, AGS, HEK293T, and SW48 cells exposed to NO (100 µM) for 48 hr. We showed that the differentially expressed genes were cell-specific. Gene ontology analysis showed that the functional signature of differentially expressed genes related to cell adhesion or migration was upregulated in several cell lines. Gene set enrichment analysis indicated that NO stimulated inflammation-related gene expression in various cell lines. This finding supports previous studies showing that NO is closely involved in inflammatory diseases. Overall, this study elucidates the pathogenesis of NO-associated inflammatory diseases by focusing on changes in gene expression.


Subject(s)
Gene Expression Profiling , Nitric Oxide , Transcriptome , Humans , Nitric Oxide/metabolism , Transcriptome/drug effects , Cell Adhesion/drug effects , Cell Adhesion/genetics , HEK293 Cells , Cell Movement/drug effects , Cell Movement/genetics , Inflammation/genetics , Inflammation/chemically induced , Signal Transduction/drug effects , Signal Transduction/genetics
3.
Oncol Res ; 32(6): 1047-1061, 2024.
Article in English | MEDLINE | ID: mdl-38827317

ABSTRACT

Background: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods: HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results: The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion: This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.


Subject(s)
Cell Movement , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Fluorouracil , Humans , Fluorouracil/pharmacology , Fluorouracil/administration & dosage , Epithelial-Mesenchymal Transition/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Movement/drug effects , Cell Line, Tumor , Antimetabolites, Antineoplastic/pharmacology , Drug Resistance, Neoplasm , Dose-Response Relationship, Drug , Methyltransferases/metabolism , Methyltransferases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics
4.
Folia Biol (Praha) ; 70(1): 53-61, 2024.
Article in English | MEDLINE | ID: mdl-38830123

ABSTRACT

Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.


Subject(s)
Apoptosis , Cell Cycle Proteins , Cell Movement , Cell Proliferation , Gallic Acid , Inflammation , Keratinocytes , Psoriasis , Transcription Factors , Humans , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/drug therapy , Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gallic Acid/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Apoptosis/drug effects , Inflammation/pathology , Cell Proliferation/drug effects , Cell Movement/drug effects , Interleukin-17/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , HaCaT Cells , Female , Gene Expression Regulation/drug effects , Cell Line , Bromodomain Containing Proteins
5.
Sci Rep ; 14(1): 12716, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830933

ABSTRACT

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Subject(s)
Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
6.
J Transl Med ; 22(1): 528, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824544

ABSTRACT

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.


Subject(s)
Amino Acids , Cell Proliferation , Fluorides , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Fluorides/pharmacology , Cell Line , Amino Acids/metabolism , Cell Proliferation/drug effects , Rats , Cell Movement/drug effects , Male , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Gene Regulatory Networks/drug effects
7.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832497

ABSTRACT

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diterpenes, Kaurane , Fibrosis , Rats, Sprague-Dawley , Wnt Signaling Pathway , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Wnt Signaling Pathway/drug effects , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Rats , Fibrosis/drug therapy , Humans , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line , beta Catenin/metabolism , Cell Movement/drug effects , Kidney/pathology , Kidney/drug effects , Cell Proliferation/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism
8.
J Cancer Res Clin Oncol ; 150(6): 287, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833016

ABSTRACT

BACKGROUND: Butyrate is a common short-chain fatty acids (SCFA), and it has been demonstrated to regulate the development of breast cancer (BC), while the underlying mechanism is still unreported. METHODS: Gas chromatography was used to measure the amounts of SCFA (acetate, propionate, and butyrate) in the feces. Cell viability was measured by the CCK-8 assay. The wound healing assay demonstrated cell migration, and the transwell assay demonstrated cell invasion. The levels of protein and gene were determined by western blot assay and RT-qPCR assay, respectively. RESULTS: The levels of SCFA were lower in the faecal samples from BC patients compared to control samples. In cellular experiments, butyrate significantly suppressed the cell viability, migration and invasion of T47D in a dose-dependent manner. In animal experiments, butyrate effectively impeded the growth of BC tumors. Toll like receptor 4 (TLR4) was highly expressed in the tumors from BC patients. Butyrate inhibited the expression of TLR4. In addition, butyrate promoted the expression of cuproptosis-related genes including PDXK (pyridoxal kinase) and SLC25A28 (solute carrier family 25 member 28), which was lowly expressed in BC tumors. Importantly, overexpression of TLR4 can reverses the promotion of butyrate to PDXK and SLC25A28 expression and the prevention of butyrate to the malignant biological behaviors of T47D cells. CONCLUSION: In summary, butyrate inhibits the development of BC by facilitating the expression of PDXK and SLC25A28 through inhibition of TLR4. Our investigation first identified a connection among butyrate, TLR4 and cuproptosis-related genes in BC progression. These findings may provide novel target for the treatment of BC.


Subject(s)
Breast Neoplasms , Butyrates , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Butyrates/pharmacology , Animals , Mice , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Cell Line, Tumor , Mice, Nude , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cell Survival/drug effects , Mice, Inbred BALB C
9.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article in English | MEDLINE | ID: mdl-38693863

ABSTRACT

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
10.
Mol Med ; 30(1): 57, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698308

ABSTRACT

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Subject(s)
Integrin alphaVbeta3 , Ossification of Posterior Longitudinal Ligament , Osteogenesis , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Humans , Osteogenesis/drug effects , Animals , Mice , Ossification of Posterior Longitudinal Ligament/metabolism , Ossification of Posterior Longitudinal Ligament/drug therapy , Male , Female , Middle Aged , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Disease Models, Animal , Oligopeptides/pharmacology , Oligopeptides/chemistry , Angiogenesis
11.
Front Immunol ; 15: 1388962, 2024.
Article in English | MEDLINE | ID: mdl-38720895

ABSTRACT

Introduction: Chronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells. Methods: Phytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels. Results: The tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity. Conclusion: Our results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.


Subject(s)
Anti-Inflammatory Agents , Cytokines , Flowers , Lymphocyte Activation , Matricaria , Plant Extracts , T-Lymphocytes , Humans , Plant Extracts/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Matricaria/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Flowers/chemistry , Lymphocyte Activation/drug effects , Plant Roots/chemistry , Cells, Cultured , Cell Proliferation/drug effects , Cell Movement/drug effects
12.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724836

ABSTRACT

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Apoptosis , Drug Carriers , Epithelial-Mesenchymal Transition , Nanoparticles , Prostatic Neoplasms , Pyrans , Rats, Wistar , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Pyrans/pharmacology , Pyrans/administration & dosage , Apoptosis/drug effects , Humans , Rats , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Movement/drug effects , PC-3 Cells , Drug Delivery Systems/methods , Polyether Polyketides
13.
Neurosurg Focus ; 56(5): E17, 2024 May.
Article in English | MEDLINE | ID: mdl-38691868

ABSTRACT

OBJECTIVE: There is a lack of effective drugs to treat the progression and recurrence of chordoma, which is widely resistant to treatment in chemotherapy. The authors investigated the functional and therapeutic relevance of the E1A-binding protein p300 (EP300) in chordoma. METHODS: The expression of EP300 and vimentin was examined in specimens from 9 patients with primary and recurrent chordoma with immunohistochemistry. The biological functions of EP300 were evaluated with Cell Counting Kit-8, clonogenic assays, and transwell assays. The effects of EP300 inhibitors (C646 and SGC-CBP30) on chordoma cell motility were assessed with these assays. The effect of the combination of EP300 inhibitors and cisplatin on chordoma cells was evaluated with clonogenic assays. Reverse transcription quantitative polymerase chain reaction and Western blot techniques were used to explore the potential mechanism of EP300 through upregulation of the expression of vimentin to promote the progression of chordoma. RESULTS: Immunohistochemistry analysis revealed a positive correlation between elevated EP300 expression levels and recurrence. The upregulation of EP300 stimulated the growth of and increased the migratory and invasive capabilities of chordoma cells, along with upregulating vimentin expression and consequently impacting their invasive properties. Conversely, EP300 inhibitors decreased cell proliferation and downregulated vimentin. Furthermore, the combination of EP300 inhibition and cisplatin exhibited an enhanced anticancer effect on chordoma cells, indicating that EP300 may influence chordoma sensitivity to chemotherapy. CONCLUSIONS: These findings indicate that EP300 functions as an oncogene in chordoma. Targeting EP300 offers a novel approach to the development and clinical treatment of chordoma.


Subject(s)
Chordoma , Disease Progression , E1A-Associated p300 Protein , Up-Regulation , Vimentin , Humans , Chordoma/genetics , Chordoma/metabolism , Vimentin/metabolism , Vimentin/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Male , Up-Regulation/drug effects , Female , Middle Aged , Adult , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Movement/drug effects , Cell Line, Tumor , Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/genetics , Gene Expression Regulation, Neoplastic/drug effects
14.
Sci Rep ; 14(1): 10019, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693171

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a tumor that occurs in the nasopharynx. Although advances in detection and treatment have improved the prognosis of NPC the treatment of advanced NPC remains challenging. Here, we explored the effect of microRNA (miR)-122-5p on erastin-induced ferroptosis in NPC cells and the role of ferroptosis in the development of NPC. The effect of miR-122-5p silencing and overexpression and the effect of citrate synthase on erastin-induced lipid peroxidation in NPC cells was analyzed by measuring the amounts of malondialdehyde, Fe2+, glutathione, and reactive oxygen species and the morphological alterations of mitochondria. The malignant biological behavior of NPC cells was examined by cell counting kit-8, EDU, colony formation, Transwell, and wound healing assays. The effects of miR-122-5p on cell proliferation and migration associated with ferroptosis were examined in vivo in a mouse model of NPC generated by subcutaneous injection of NPC cells. We found that erastin induced ferroptosis in NPC cells. miR-122-5p overexpression inhibited CS, thereby promoting erastin-induced ferroptosis in NPC cells and decreasing NPC cell proliferation, migration, and invasion.


Subject(s)
Cell Movement , Cell Proliferation , Ferroptosis , MicroRNAs , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Piperazines , Ferroptosis/drug effects , Ferroptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Humans , Animals , Cell Line, Tumor , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Reactive Oxygen Species/metabolism , Mice, Nude
15.
Drug Dev Res ; 85(3): e22195, 2024 May.
Article in English | MEDLINE | ID: mdl-38704831

ABSTRACT

We investigated the angiogenesis-modulating ability of noscapine in vitro using osteosarcoma cell line (MG-63) and in vivo using a zebrafish model. MTT assay and the scratch wound healing assay were performed on the osteosarcoma cell line (MG-63) to analyze the cytotoxic effect and antimigrative ability of noscapine, respectively. We also observed the antiangiogenic ability of noscapine on zebrafish embryos by analyzing the blood vessels namely the dorsal aorta, and intersegmental vessels development at 24, 48, and 72 h postfertilization. Real-time polymerase chain reaction was used to analyze the hypoxia signaling molecules' gene expression in MG-63 cells and zebrafish embryos. The findings from the scratch wound healing demonstrated that noscapine stopped MG-63 cancer cells from migrating under both hypoxia and normoxia. Blood vessel development and the heart rate in zebrafish embryos were significantly reduced by noscapine under both hypoxia and normoxia which showed the hemodynamics impact of noscapine. Noscapine also downregulated the cobalt chloride (CoCl2) induced hypoxic signaling molecules' gene expression in MG-63 cells and zebrafish embryos. Therefore, noscapine may prevent MG-63 cancer cells from proliferating and migrating, as well as decrease the formation of new vessels and the production of growth factors linked to angiogenesis in vivo under both normoxic and hypoxic conditions.


Subject(s)
Hemodynamics , Neovascularization, Pathologic , Noscapine , Zebrafish , Animals , Humans , Noscapine/pharmacology , Cell Line, Tumor , Hemodynamics/drug effects , Neovascularization, Pathologic/drug therapy , Angiogenesis Inhibitors/pharmacology , Hypoxia , Cell Movement/drug effects , Embryo, Nonmammalian/drug effects , Osteosarcoma/drug therapy , Angiogenesis
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708505

ABSTRACT

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Subject(s)
Cell Movement , Cell Proliferation , Dexamethasone , Femur Head Necrosis , Glucocorticoids , Human Umbilical Vein Endothelial Cells , Mice, Inbred BALB C , Animals , Mice , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Glucocorticoids/adverse effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Cell Survival/drug effects , Femur Head/pathology , Femur Head/blood supply , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Angiogenesis
17.
J Cancer Res Clin Oncol ; 150(5): 244, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717526

ABSTRACT

PURPOSE: Cystatin SA (CST2) belongs to the superfamily of cysteine protease inhibitors. Emerging research indicates that CST2 is often dysregulated across various cancers. Its role and molecular mechanisms in gastric cancer remain underexplored. This study aims to explore the expression and function of CST2 in gastric cancer. METHODS: CST2 expression was analyzed and validated through Western blot. CST2 overexpression was induced by lentivirus in GC cells, and the correlation between CST2 expression levels and downstream signaling pathways was assessed. In addition, multiple assays, including cell proliferation, colony formation, wound-healing, and transwell migration/invasion, were considered to ascertain the influence of CST2 overexpression on gastric cancer. The cell cycle and apoptosis were detected by flow cytometry. RESULTS: CST2 expression at the protein level was decreased to be reduced in both gastric cancer tissues and cell lines, and CST2 expression attenuate gastric cancer growth, an effect restricted to gastric cancer cells and absent in gastric epithelial GES-1 cells. Furthermore, CST2 was demonstrated to improve chemosensitivity to Oxaliplatin in gastric cancer cells through the PI3K/AKT signaling pathway. CONCLUSION: These findings indicate that CST2 is downregulated at the protein level in gastric cancer tissues and cell lines. Additionally, CST2 was found to attenuate the growth of gastric cancer cells and to enhance sensitivity to Oxaliplatin through the PI3K/AKT signaling pathway, specific to gastric cancer cell lines. CST2 may serve as a tumor suppressor gene increasing sensitivity to Oxaliplatin in gastric cancer.


Subject(s)
Cell Proliferation , Oxaliplatin , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Oxaliplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Salivary Cystatins/metabolism , Salivary Cystatins/genetics , Apoptosis/drug effects , Drug Resistance, Neoplasm , Cell Movement/drug effects
18.
Integr Cancer Ther ; 23: 15347354241253846, 2024.
Article in English | MEDLINE | ID: mdl-38721848

ABSTRACT

Vikil 20 is an herbal formula produced in Ghana and is widely marketed as a product to boost immunity as well as for general well-being. However, the pharmacological effect of this herbal preparation has not been proven scientifically. Therefore, this study was aimed at investigating the antioxidative as well as the anti-prostate cancer effects of the product. To assess the antioxidative effect of Vikil 20, the DPPH and ABTS activities were investigated. The total phenolic content was investigated using the Folin-Ciocalteu method. The cytotoxic effect of Vikil 20 against prostate cancer (PC-3) cells as well as normal (RAW 264.7) cells was investigated using the MTT assay whereas its anti-metastatic effect was analyzed using the cell migration assay. The effect of Vikil 20 on cell adhesion was analyzed via the cell adhesion assay whereas its effect on TNF-α secretion was investigated using a TNF-α detection kit. Vikil 20 demonstrated significant antioxidant effects by suppressing 57.61% and 92.88% respectively of DPPH and ABTS radicals at 1000 µg/mL with total phenolic contents of 140.45 mg GAE/g. Vikil 20 suppressed the proliferation of PC-3 cells by reducing the number of viable cells to 49.5% while sparing the RAW, 264.7 cells. Further, Vikil 20 significantly suppressed both cellular migration and adhesion of prostate cancer cells. Finally, suppression of cellular migration and adhesion is associated with a reduction in TNF-α secretion by PC-3 cells. Taken together, Vikil 20 was found to possess significant antioxidant and anti-prostate cancer effects in vitro.


Subject(s)
Antioxidants , Cell Movement , Cell Proliferation , Plant Extracts , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Proliferation/drug effects , PC-3 Cells , Antioxidants/pharmacology , Cell Movement/drug effects , Mice , Animals , RAW 264.7 Cells , Free Radicals/metabolism , Plant Extracts/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Tumor Necrosis Factor-alpha/metabolism , Phenols/pharmacology
19.
Med Oncol ; 41(6): 144, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717574

ABSTRACT

Peganum harmala has been extensively employed in Algerian traditional medicine practices. This study aimed to explore the impact of n-butanol (n-BuOH) extract sourced from Peganum harmala seeds on cell proliferation, cell migration, and angiogenesis inhibition. Cytotoxic potential of n-BuOH extract was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay against human breast adenocarcinoma MCF-7 cells, cell migration was determined using scratch assay, and anti-angiogenic effect was evaluated through macroscopic and histological examinations conducted on chick embryo chorioallantoic membrane. Additionally, this research estimated the phytochemical profile of n-BuOH extract. Fifteen phenolic compounds were identified using Ultra-performance liquid chromatography UPLC-ESI-MS-MS analysis. In addition, the n-BuOH extract of P. harmala exhibited potent antioxidant and free radical scavenging properties. The n-BuOH extract showed potent cytotoxicity against MCF-7 cell with an IC50 value of 8.68 ± 1.58 µg/mL. Furthermore, n-BuOH extract significantly reduced migration. A strong anti-angiogenic activity was observed in the groups treated with n-BuOH extract in comparison to the negative control. Histological analysis confirmed the anti-angiogenic effect of the n-BuOH extract. This activity is probably a result of the synergistic effects produced by different polyphenolic classes.


Subject(s)
Angiogenesis Inhibitors , Cell Movement , Peganum , Phenols , Plant Extracts , Humans , Cell Movement/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Peganum/chemistry , Chick Embryo , Phenols/pharmacology , Phenols/analysis , Angiogenesis Inhibitors/pharmacology , MCF-7 Cells , Animals , Cell Proliferation/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply
20.
Lab Chip ; 24(11): 2999-3014, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742451

ABSTRACT

The rapid emergence of anisotropic collagen fibers in the tissue microenvironment is a critical transition point in late-stage breast cancer. Specifically, the fiber orientation facilitates the likelihood of high-speed tumor cell invasion and metastasis, which pose lethal threats to patients. Thus, based on this transition point, one key issue is how to determine and evaluate efficient combination chemotherapy treatments in late-stage cancer. In this study, we designed a collagen microarray chip containing 241 high-throughput microchambers with embedded metastatic breast cancer cell MDA-MB-231-RFP. By utilizing collagen's unique structure and hydromechanical properties, the chip constructed three-dimensional isotropic and anisotropic collagen fiber structures to emulate the tumor cell microenvironment at early and late stages. We injected different chemotherapeutic drugs into its four channels and obtained composite biochemical concentration profiles. Our results demonstrate that anisotropic collagen fibers promote cell proliferation and migration more than isotropic collagen fibers, suggesting that the geometric arrangement of fibers plays an important role in regulating cell behavior. Moreover, the presence of anisotropic collagen fibers may be a potential factor leading to the poor efficacy of combined chemotherapy in late-stage breast cancer. We investigated the efficacy of various chemotherapy drugs using cell proliferation inhibitors paclitaxel and gemcitabine and tumor cell migration inhibitors 7rh and PP2. To ensure the validity of our findings, we followed a systematic approach that involved testing the inhibitory effects of these drugs. According to our results, the drug combinations' effectiveness could be ordered as follows: paclitaxel + gemcitabine > gemcitabine + 7rh > PP2 + paclitaxel > 7rh + PP2. This study shows that the biomimetic chip system not only facilitates the creation of a realistic in vitro model for examining the cell migration mechanism in late-stage breast cancer but also has the potential to function as an effective tool for future chemotherapy assessment and personalized medicine.


Subject(s)
Cell Movement , Cell Proliferation , Collagen , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Cell Line, Tumor , Collagen/chemistry , Collagen/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Anisotropy , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...