Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124.952
Filter
1.
Sci Rep ; 14(1): 12593, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824160

ABSTRACT

Coconut (Cocos nucifera) leaves, an unutilized resource, enriched with valuable bioactive compounds. Spectral analysis of purified pentane fraction of coconut leaves revealed the presence of a squalene analog named 4,4'-diapophytofluene or in short 4,4'-DPE (C30H46). Pure squalene standard (PSQ) showed cytotoxicity after 8 µg/ml concentration whereas 4,4'-DPE exhibited no cytotoxic effects up to 16 µg/ml concentration. On senescence-induced WI38 cells, 4,4'-DPE displayed better percentage of cell viability (164.5% at 24 h, 159.4% at 48 h and 148% at 72 h) compared to PSQ and BSQ (bio-source squalene) with same time duration. Similar trend of result was found in HaCaT cells. SA-ß-gal assay showed that number of ß-galactosidase positive cells were significantly decreased in senescent cells (WI38 and HaCaT) after treated with 4,4'-DPE than PSQ, BSQ. Percentage of ROS was increased to 60% in WI38 cells after olaparib treatment. When PSQ, BSQ and 4,4'-DPE were applied separately on these oxidative-stress-induced cells for 48 h, the overall percentage of ROS was decreased to 39.3%, 45.6% and 19.3% respectively. This 4,4'-DPE was found to be more effective in inhibiting senescence by removing ROS as compared to squalene. Therefore, this 4,4'-DPE would be new potent senotherapeutic agent for pharmaceuticals and dermatological products.


Subject(s)
Antioxidants , Cellular Senescence , Cocos , Fibroblasts , Keratinocytes , Plant Leaves , Squalene , Humans , Plant Leaves/chemistry , Squalene/pharmacology , Squalene/chemistry , Cellular Senescence/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Cocos/chemistry , Cell Survival/drug effects , Cell Line , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
2.
Pak J Pharm Sci ; 37(2(Special)): 443-450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822548

ABSTRACT

Gastric cancer remains a global health concern, driving the exploration of natural products with anticancer potential. This study investigated the antiproliferative activity and chemical composition of a 70% ethanolic extract from Melissa officinalis L. against human gastric cancer cells. The extract was prepared and evaluated for total phenolic content, antioxidant capacity and flavonoid content. The MTT test checked how well it stopped the growth of human gastric adenocarcinoma (AGS) and normal dermal fibroblast (HDF) cells. Data analysis (SPSS Statistics) determined viable cell percentages and performed regression analysis (p<0.05). The extract exhibited significant antiproliferative activity against AGS cells compared to normal cells (p<0.05), with decreasing IC50 values (564.3, 258.0 and 122.5 µg/ml) over 24, 48 and 72 hours. It also displayed antioxidant activity (IC50=16.8±1.41µg/ml) and contained substantial phenolics (225.76±4.1 mg GAE/g) and flavonoids (22.36±2.6 mg RUT/g). This study suggests the 70% ethanolic extract of M. officinalis effectively suppresses AGS cell growth and possesses promising antioxidant properties, highlighting its potential as a natural source of anticancer and antioxidant agents, deserving further investigation.


Subject(s)
Adenocarcinoma , Antineoplastic Agents, Phytogenic , Antioxidants , Cell Proliferation , Melissa , Phenols , Plant Extracts , Stomach Neoplasms , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Melissa/chemistry , Phenols/pharmacology , Phenols/analysis , Cell Line, Tumor , Antioxidants/pharmacology , Antioxidants/isolation & purification , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Flavonoids/pharmacology , Flavonoids/analysis , Cell Survival/drug effects
3.
Food Res Int ; 188: 114498, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823878

ABSTRACT

The emulsifying potential of a biocompatible ionic liquid (IL) to produce lipid-based nanosystems developed to enhance the bioaccessibility of cannabidiol (CBD) was investigated. The IL (cholinium oleate) was evaluated at concentrations of 1 % and 2 % to produce nanoemulsions (NE-IL) and nanostructured lipid carriers (NLC-IL) loaded with CBD. The IL concentration of 1 % demonstrated to be sufficient to produce both NE-IL and NLC-IL with excellent stability properties, entrapment efficiency superior to 99 %, and CBD retention rate of 100 % during the storage period evaluated (i.e. 28 days at 25 °C). The in vitro digestion evaluation demonstrated that the NLC-IL provided a higher stability to the CBD, while the NE-IL improved the CBD bioaccessibility, which was mainly related to the composition of the lipid matrices used to obtain each nanosystem. Finally, it was observed that the CBD cytotoxicity was reduced when the compound was entrapped into both nanosystems.


Subject(s)
Cannabidiol , Emulsifying Agents , Ionic Liquids , Cannabidiol/chemistry , Ionic Liquids/chemistry , Ionic Liquids/toxicity , Emulsifying Agents/chemistry , Humans , Emulsions , Digestion , Nanostructures/chemistry , Cell Survival/drug effects , Biological Availability , Nanoparticles/chemistry , Drug Carriers/chemistry , Caco-2 Cells , Particle Size
4.
Carbohydr Polym ; 339: 122232, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823905

ABSTRACT

In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.


Subject(s)
Alginates , Bone Regeneration , Chitosan , Hydrogels , Polyvinyl Alcohol , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Alginates/chemistry , Alginates/pharmacology , Polyvinyl Alcohol/chemistry , Tissue Scaffolds/chemistry , Humans , Bone Regeneration/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering/methods , Nanotubes, Carbon/chemistry , Osteoblasts/drug effects , Osteoblasts/cytology , Graphite/chemistry , Graphite/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Survival/drug effects , Cell Line
5.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823918

ABSTRACT

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Subject(s)
Biocompatible Materials , Chondrocytes , Disulfides , Hyaluronic Acid , Hydrogels , Rheology , Tissue Engineering , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Disulfides/chemistry , Chondrocytes/drug effects , Chondrocytes/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration
6.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38808737

ABSTRACT

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Subject(s)
Plant Extracts , Rats, Wistar , Plant Extracts/toxicity , Plant Extracts/chemistry , Animals , Humans , Rats , Cell Line, Tumor , Male , Comet Assay , Micronucleus Tests , Female , Cell Survival/drug effects , Phytochemicals/toxicity , Phytochemicals/analysis , Mice , Plant Bark/chemistry , Mutagens/toxicity , Mutagenicity Tests , Ethanol/chemistry
7.
Sci Rep ; 14(1): 12064, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802441

ABSTRACT

Gaharu bouya oil obtained from distillation of the woods from Gonystylus genus has attracted essential oil industry interest. However, the information about gaharu bouya essential oil profile is limited. The presence of Gonystylus species is also critically endangered on the IUCN Red List. Therefore, exploring the -omics profiles of Gonystylus bancanus, a native plant from Borneo Island, is important for Indonesia to conserve the population. This research investigated the metabolite profiling of G. bancanus oil, especially the volatile components of its essential oils. Distillations were performed in two technical ways: hydrodistillation on a laboratory scale and steam distillation on an industrial scale. According to LC-MS and GC-MS profiles, both essential oils displayed similar chemical compositions. This article also discusses the similarity of the chemical contents of gaharu bouya oil and agarwood oil from the gaharu superior type (Aquilaria) to support the value of the oil. This research also investigated the cytotoxicity of gaharu bouya oil against three cell lines: HeLa, MCF-7, and HT-29.


Subject(s)
Oils, Volatile , Wood , Humans , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Borneo , Wood/chemistry , Thymelaeaceae/chemistry , Gas Chromatography-Mass Spectrometry , Plant Oils/chemistry , Plant Oils/pharmacology , HeLa Cells , Cell Line, Tumor , Indonesia , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Survival/drug effects
8.
Anticancer Res ; 44(6): 2359-2367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821601

ABSTRACT

BACKGROUND/AIM: The alkylating agent trabectedin, which binds the minor groove of DNA, is second-line therapy for soft-tissue sarcoma but has only moderate efficacy. The aim of the present study was to determine the synergistic efficacy of recombinant methioninase (rMETase) and trabectedin on fibrosarcoma cells in vitro, compared with normal fibroblasts. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and Hs27 normal human fibroblasts, were used. Each cell line was cultured in vitro and divided into four groups: no-treatment control; trabectedin treated; rMETase treated; and trabectedin plus rMETase treated. The dual-color HT1080 cells were used to quantitate nuclear fragmentation in each treatment group. RESULTS: The combination of rMETase and trabectedin was highly synergistic to decrease HT1080 cell viability. In contrast, there was no synergy on Hs27 cells. Moreover, nuclear fragmentation occurred synergistically with the combination of trabectedin and rMETase on dual-color HT1080 cells. CONCLUSION: The combination treatment of trabectedin plus rMETase was highly synergistic on fibrosarcoma cells in vitro suggesting that the combination can improve the outcome of trabectedin alone in future clinical studies. The lack of synergy of rMETase and trabectedin on normal fibroblasts suggests the combination is not toxic to normal cells. Synergy of the two drugs may be due to the high rate of nuclear fragmentation on treated HT1080 cells, and the late-S/G2 cell-cycle block of cancer cells by rMETase, which is a target for trabectedin. The results of the present study suggest the future clinical potential of the combination of rMETase and trabectedin for soft-tissue sarcoma.


Subject(s)
Carbon-Sulfur Lyases , Cell Survival , Dioxoles , Drug Synergism , Fibroblasts , Fibrosarcoma , Tetrahydroisoquinolines , Trabectedin , Humans , Fibrosarcoma/drug therapy , Fibrosarcoma/pathology , Fibrosarcoma/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Trabectedin/pharmacology , Carbon-Sulfur Lyases/pharmacology , Carbon-Sulfur Lyases/administration & dosage , Tetrahydroisoquinolines/pharmacology , Dioxoles/pharmacology , Cell Survival/drug effects , Recombinant Proteins/pharmacology , Cell Line, Tumor , Antineoplastic Agents, Alkylating/pharmacology , Cell Nucleus/metabolism , Cell Nucleus/drug effects
9.
Anticancer Res ; 44(6): 2407-2415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821617

ABSTRACT

BACKGROUND/AIM: Caffeic acid phenethyl ester (CAPE) exerts anticancer effects against several cancer types, including breast cancer. Pulsed electromagnetic field (PEMF) improves the efficiency of some chemotherapeutic drugs. In this study, we examined the effects of PEMF stimulation on the anticancer activity of CAPE in MCF-7 breast cancer cells and the underlying signal transduction pathways. MATERIALS AND METHODS: MCF-7 cells were seeded and incubated for 24 h. Each of the drugs (5-fluorouracil, paclitaxel, gefitinib, or CAPE) was added to the cells on day 0. Then, cells were immediately stimulated with a 60-min PEMF session thrice a day (with 4-h interval between sessions) for 1-3 days. Cell death and viability were assessed by flow cytometry and trypan blue dye exclusion assay. Molecular mechanisms involved in cell death were confirmed by western blot assay. RESULTS: Compared with treatment with CAPE alone, co-treatment with CAPE and PEMF more strongly reduced the viability of MCF-7 cells, further increased the percentage of the sub-G1 population, poly (ADP-ribose) polymerase (PARP) cleavage, activation of apoptotic caspases, up-regulation of pro-apoptotic proteins, such as Fas cell surface death receptor (FAS) and BCL2 associated X, apoptosis regulator (BAX), and reduced the expression of anti-apoptotic proteins, such as BCL-2 apoptosis regulator (BCL-2), MCL-1 apoptosis regulator, BCL-2 family member (MCL-1), and survivin. PEMF stimulation also increased CAPE-induced phosphorylation of p53, and inhibition of p53 partially restored the PEMF-reduced viability of CAPE-treated MCF-7 cells. CONCLUSION: PEMF stimulation enhanced CAPE-induced cell death by activating p53, which regulates the expression of apoptosis-related molecules, subsequently activating the caspase-dependent apoptotic pathway in MCF-7 cells, suggesting that PEMF can be utilized as an adjuvant to enhance the effect of CAPE on breast cancer cells.


Subject(s)
Apoptosis , Breast Neoplasms , Caffeic Acids , Electromagnetic Fields , Phenylethyl Alcohol , Humans , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Signal Transduction/drug effects
10.
Anticancer Res ; 44(6): 2307-2323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821627

ABSTRACT

BACKGROUND/AIM: Pancreatic cancer is an aggressive type of cancer, with a dismally low survival rate of <5%. FDA-approved drugs like gemcitabine have shown little therapeutic success, prolonging survival by a mere six months. Isoflavones, such as biochanin A and daidzein, are known to exhibit anti-cancer activity, whereas statins reportedly have anti-proliferative effects. This study investigated the effects of combination treatment of biochanin A and atorvastatin on pancreatic cancer cells. MATERIALS AND METHODS: Pancreatic cancer cells AsPC-1, PANC-1, and MIA PaCa-2 were procured from ATCC. The cell viability studies were carried out using MTT & cell count assays. Flow cytometry was used to study cell apoptosis whereas cell metabolism studies were carried out using the Seahorse Mito stress test and XF-PMP assay. The effects of treatment on cell signaling pathways & cell cycle associated proteins were investigated using western blot whereas invasiveness of cancer cells was evaluated using gelatin zymography. RESULTS: The combination treatment decreased the survival and enhanced pro-apoptotic responses compared to single treatments in the pancreatic cancer cells. In PANC-1 cells, the combination treatment decreased invasiveness, reduced expression of activated STAT3 and expression of critical mediators of cell cycle progression. Furthermore, the combination treatment induced a differential inhibition of respiratory complexes in the pancreatic cancer cells. CONCLUSION: The combination treatment of biochanin A and atorvastatin exerts enhanced anti-cancer effects, inducing apoptosis, down-regulating cell cycle associated proteins and invasiveness in pancreatic cancer cells and merits further investigation for new, improved treatments for pancreatic cancer.


Subject(s)
Apoptosis , Atorvastatin , Cell Cycle Checkpoints , Energy Metabolism , Genistein , Mitochondria , Pancreatic Neoplasms , Humans , Genistein/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Atorvastatin/pharmacology , Cell Line, Tumor , Mitochondria/drug effects , Mitochondria/metabolism , Cell Cycle Checkpoints/drug effects , Apoptosis/drug effects , Energy Metabolism/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Signal Transduction/drug effects
11.
Article in English | MEDLINE | ID: mdl-38821668

ABSTRACT

In this paper, we studied the potential genotoxic effects of human plasma from healthy volunteers, as well as patients with gastro-oesophageal reflux disease, Barrett's oesophagus (BO) and oesophageal adenocarcinoma (OAC) using the oesophageal adenocarcinoma cell line (OE33) and the lymphoblastoid cell line (TK6). Both TK6 and OE33 cells were treated with plasma (10 % volume, replacing foetal bovine serum (FBS) or horse serum (HS)) at different time points of 4 h (for the micronucleus (Mn) assay and the invasion assay) and 24 h (for the cell cycle studies). Plasma-induced effects on DNA damage levels, cell viability and the cell cycle were studied by the micronucleus assay, cytokinesis block proliferation index (CBPI) and flow cytometry respectively. The expression of IL-8 in supernatants of TK6 cells and IFN-ß in OE33 cells was also analysed by enzyme-linked immunosorbent assay (ELISA). Finally, we carried out an assessment of cellular invasion of OE33 cells following plasma treatment. The results of the micronucleus assay confirmed the genotoxicity of direct plasma treatment from some participants through the increase in DNA damage in TK6 cells. Conversely, some individual patient plasma samples reduced background levels of TK6 cell Mn frequency, in an anti-genotoxic fashion. In TK6 cells, (on average) plasma samples from patients with Barrett's oesophagus induced higher micronucleus levels than healthy volunteers (p= 0.0019). There was little difference in Mn induction when using plasma versus serum to treat the cells in vitro. Cell cycle results showed that direct plasma treatment had a marked impact on OE33 cells at 24 h (p=0.0182 for BO and p=0.0320 for OAC) by decreasing the proportion of cells in the S phase, while plasma exposure was less impactful on the cell cycle of TK6 cells. Invasion of OE33 cells was also seen to be non-significantly affected by plasma treatment of OE33 cells. The addition of N-acetyl cysteine NAC in a dose-dependent matter did not alter the formation of Mn in TK6 cells, suggesting that reactive oxygen species (ROS) are not the root cause of plasma's genotoxicity. The concentration of IL-8 in TK6 cells and IFN-ß in OE33 cells was significantly higher in cells treated with OAC-derived plasma than in the untreated negative control. Collectively, our results demonstrate that plasma-specific effects are detectable which helps us better understand some important aspects of the biology of blood-based biomarkers under development.


Subject(s)
Adenocarcinoma , Barrett Esophagus , DNA Damage , Esophageal Neoplasms , Micronucleus Tests , Humans , Barrett Esophagus/pathology , Barrett Esophagus/genetics , Adenocarcinoma/pathology , Adenocarcinoma/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Plasma/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , Cell Line, Tumor , Cell Cycle/drug effects , Male , Middle Aged , Adult , Cell Survival/drug effects , Female , Micronuclei, Chromosome-Defective , Interferon-beta , Aged
12.
Int J Med Sci ; 21(7): 1204-1212, 2024.
Article in English | MEDLINE | ID: mdl-38818479

ABSTRACT

The mitochondrial unfolded protein response (UPRmt) is a pivotal cellular mechanism that ensures mitochondrial homeostasis and cellular survival under stress conditions. This study investigates the role of UPRmt in modulating the response of nasopharyngeal carcinoma cells to cisplatin-induced stress. We report that the inhibition of UPRmt via AEB5F exacerbates cisplatin cytotoxicity, as evidenced by increased lactate dehydrogenase (LDH) release and apoptosis, characterized by a surge in TUNEL-positive cells. Conversely, the activation of UPRmt with oligomycin attenuates these effects, preserving cell viability and reducing apoptotic markers. Immunofluorescence assays reveal that UPRmt activation maintains mitochondrial membrane potential and ATP production in the presence of cisplatin, countering the rise in reactive oxygen species (ROS) and inhibiting caspase-9 activation. These findings suggest that UPRmt serves as a cytoprotective mechanism in cancer cells, mitigating cisplatin-induced mitochondrial dysfunction and apoptosis. The data underscore the therapeutic potential of modulating UPRmt to improve the efficacy and reduce the side effects of cisplatin chemotherapy. This study provides a foundation for future research on the exploitation of UPRmt in cancer treatment, with the aim of enhancing patient outcomes by leveraging the cellular stress response pathways.


Subject(s)
Apoptosis , Cisplatin , Mitochondria , Reactive Oxygen Species , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cisplatin/pharmacology , Cisplatin/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Antineoplastic Agents/pharmacology , Cell Survival/drug effects
13.
PLoS One ; 19(5): e0304072, 2024.
Article in English | MEDLINE | ID: mdl-38820323

ABSTRACT

Achillea fragrantissima is a shrub plant that belongs to the Asteraceae family in Arabia and Egypt. It is used as folk medicine and is a good source of phenolic acids, flavonoids, and some active compounds. To investigate the anti-cancer effect of A.fragrantissima on breast cancer MCF-7 cells and find the critical mechanism involved in apoptosis. The toxicity and pharmacokinetic studies of ethanolic extract of A.fragrantissima was examined for anti-breast cancer properties. In turn, cytotoxicity and cell viability were achieved by the MTT method. Furthermore, the trypan blue exclusion and microscopy examination proved the presence of apoptotic cells. Again, fluorescent staining such as AO/EtBr, DCFH-DA, Rho-123, and Hoechst-33342 reveals the cellular cytoplasmic disciplines upon A. fragrantissima effect. Moreover, cellular functioning tests like wound healing, colony formation, and Transwell invasion assay were demonstrated. In addition, the qRT-PCR technique authenticates the A. fragrantissima -induced apoptotic network genes (Caspase-3, Caspase-8, Caspase-9, Cytochrome c, BCL-2, BID, BAX, PARP, PTEN, PI3K, and Akt) expression were evaluated. Mainly, the Immunoblot technique proved the expressed level of apoptotic proteins such as cleaved PARP, CYCS, and FADD. This study confirmed that the A. fragrantissima exerts cytotoxicity at 20 µg/mL for 24 hrs in MCF-7 cells. Also, decreases cellular viability, producing apoptotic cells and damaged cellular surfaces with dead matter. Consequently, it creates ROS species accumulation, loss of mitochondrial membrane potential, and fragmentation of DNA in MCF-7 cells. Furthermore, it arrests cell migration, induces colony-forming ability loss, and suppresses cell invasion. In addition, A. fragrantissima significantly upregulates genes such as caspase-3, 9, cytochrome c, BID, BAX, and PTEN while downregulating the Pi3K/ Akt signaling. Nonetheless, A.fragrantissima induced cleaved PARP, CYCS, and FADD proteins in MCF-7 cells to avail apoptosis.


Subject(s)
Achillea , Apoptosis , Breast Neoplasms , Fas-Associated Death Domain Protein , Plant Extracts , Reactive Oxygen Species , Humans , Apoptosis/drug effects , MCF-7 Cells , Achillea/chemistry , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Female , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Cell Survival/drug effects , Signal Transduction/drug effects , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects
14.
J Colloid Interface Sci ; 670: 73-85, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38759270

ABSTRACT

HYPOTHESIS: Multicore flower-like iron oxide nanoparticles (IONPs) are among the best candidates for magnetic hyperthermia applications against cancers. However, they are rarely investigated in physiological environments and their efficacy against cancer cells has been even less studied. The combination of magnetic hyperthermia, using multicore IONPs, with selected bioactive molecules should lead to an enhanced activity against cancer cells. EXPERIMENTS: Multicore IONPs were synthesized by a seeded-growth thermal decomposition approach. Then, the cytotoxicity, cell uptake, and efficacy of the magnetic hyperthermia approach were studied with six cancer cell lines: PANC1 (pancreatic carcinoma), Mel202 (uveal melanoma), MCF7 (breast adenocarcinoma), MB231 (triple-negative breast cancer line), A549 (lung cancer), and HCT116 (colon cancer). Finally, IONPs were modified with a chemotherapeutic drug (SN38) and tumor suppressor microRNAs (miR-34a, miR-182, let-7b, and miR-137), to study their activity against cancer cells with and without combination with magnetic hyperthermia. FINDINGS: Two types of multicore IONPs with very good heating abilities under magnetic stimulation have been prepared. Their concentration-dependent cytotoxicity and internalization have been established, showing a strong dependence on the cell line and the nanoparticle type. Magnetic hyperthermia causes significant cell death that is dramatically enhanced in combination with the bioactive molecules.


Subject(s)
Hyperthermia, Induced , Magnetic Iron Oxide Nanoparticles , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Cell Line, Tumor , Particle Size , Drug Screening Assays, Antitumor , Combined Modality Therapy , Surface Properties , Cell Proliferation/drug effects
15.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Article in English | MEDLINE | ID: mdl-38774761

ABSTRACT

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.


Subject(s)
Cell Movement , Cell Survival , Lung Neoplasms , Membrane Potential, Mitochondrial , Particulate Matter , Reactive Oxygen Species , Humans , Particulate Matter/adverse effects , Reactive Oxygen Species/metabolism , A549 Cells , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Cell Movement/drug effects , Membrane Potential, Mitochondrial/drug effects , Cell Survival/drug effects , Lab-On-A-Chip Devices , Mitochondria/metabolism , Mitochondria/drug effects , Neoplasm Invasiveness/genetics , Gene Expression Regulation, Neoplastic/drug effects , Microfluidics/methods
16.
World J Microbiol Biotechnol ; 40(7): 211, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777956

ABSTRACT

Human nutrition and health rely on edible oils. Global demand for edible oils is expanding, necessitating the discovery of new natural oil sources subjected to adequate quality and safety evaluation. However, in contrast to other agricultural products, India's edible oil supply is surprisingly dependent on imports. The microbial oil is generated by fermentation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 MTCC 25056 using biodiesel plant byproduct crude glycerol as a fermentable carbon source. Enriched with monounsaturated fatty acid, nutritional indices mapping based on the fatty acid composition of the yeast SCO, suggested its plausible use as an edible oil blend. In the present study, acute toxicity evaluation of the yeast SCO in C57BL/6 mice has been performed by randomly dividing the animals into 5 groups with 50, 300, 2000, and 5000 mg/Kg yeast SCO dosage, respectively, and predicted the median lethal dose (LD50). Detailed blood biochemistry and kidney and liver histopathology analyses were also reported. The functions of the liver enzymes were also evaluated to check and confirm the anticipated toxicity. To determine cell viability and in vitro biocompatibility, the 3T3-L1 cell line and haemolysis tests were performed. The results suggested the plausible use of yeast SCO as an edible oil blend due to its non-toxic nature in mice models.


Subject(s)
Liver , Mice, Inbred C57BL , Rhodotorula , Animals , Mice , Liver/metabolism , Liver/drug effects , Rhodotorula/metabolism , Fermentation , Lethal Dose 50 , Cell Survival/drug effects , Plant Oils/toxicity , Plant Oils/metabolism , Fatty Acids/metabolism , Glycerol/metabolism , Biofuels , Kidney/drug effects , Toxicity Tests, Acute , Male , Administration, Oral , India
17.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724835

ABSTRACT

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Subject(s)
Docetaxel , Metal Nanoparticles , Prostatic Neoplasms , Radiation-Sensitizing Agents , Silver , Humans , Docetaxel/pharmacology , Male , Silver/pharmacology , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Caspase 3/metabolism , Caspase 3/genetics , Antineoplastic Agents/pharmacology , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Cadherins/metabolism , Cadherins/genetics
18.
Chem Biol Drug Des ; 103(5): e14536, 2024 May.
Article in English | MEDLINE | ID: mdl-38725079

ABSTRACT

This research was designed to prospect the mechanism and impact of glycyrrhizic acid (GA) on DNA damage repair and cisplatin (CP)-induced apoptosis of melanoma cells. First, human melanoma cell SK-MEL-28 was stimulated using GA for 24, 48, and 72 h. Then, the optimal treatment time and dosage were selected. After that, cell counting kit-8 (CCK-8) was employed for testing the cell viability, flow cytometry for the apoptosis, comet assay for the DNA damage of cells, and western blot for the cleaved-Caspase3, Caspase3, Bcl-2, and γH2AX protein expression levels. The experimental outcomes exhibited that as the GA concentration climbed up, the SK-MEL-28 cell viability dropped largely, while the apoptosis level raised significantly, especially at the concentration of 100 µm. In addition, compared with GA or CPtreatment only, CP combined with GA notably suppressed the viability of melanoma cells and promoted cell apoptosis at the cytological level. At the protein level, the combined treatment notably downregulated the Bcl-2 and Caspase3 expression levels, while significantly upregulated the cleaved-Caspase3 and γH2AX expression levels. Besides, CP + GA treatment promoted DNA damage at the DNA molecular level. Collectively, both GA and CP can inhibit DNA damage repair and enhance the apoptosis of SK-MEL-28 cells, and the synergistic treatment of both exhibits better efficacy.


Subject(s)
Apoptosis , Cisplatin , DNA Damage , DNA Repair , Glycyrrhizic Acid , Melanoma , Cisplatin/pharmacology , Humans , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Drug Synergism , Proto-Oncogene Proteins c-bcl-2/metabolism
19.
Mikrochim Acta ; 191(6): 302, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709346

ABSTRACT

A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.


Subject(s)
Fluorescent Dyes , Uranium , Uranium/analysis , Uranium/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Humans , Limit of Detection , Biocompatible Materials/chemistry , HeLa Cells , Cell Survival/drug effects , Optical Imaging , Aniline Compounds/chemistry , Aniline Compounds/toxicity , Pyridines/chemistry
20.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710561

ABSTRACT

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Subject(s)
Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...