Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65.598
Filter
1.
Biol Res ; 57(1): 21, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704600

ABSTRACT

BACKGROUND: Research on prostate cancer is mostly performed using cell lines derived from metastatic disease, not reflecting stages of tumor initiation or early progression. Establishment of cancer cell lines derived from the primary tumor site has not been described so far. By definition, cancer cells are able to be cultured indefinitely, whereas normal epithelial cells undergo senescence in vitro. Epithelial cells can be immortalized, accomplished by using viral integration of immortalization factors. Viral approaches, however, might be impaired by regulatory and safety issues as well as random integration into regulatory genetic elements, modifying precise gene expression. We intend to use surgical specimen of prostate cancer patients to (i) prove for establishment of cancer cell lines, and (ii) perform non-viral, Sleeping Beauty (SB) transposase-based immortalization of prostate epithelial cells. METHODS: Radical prostatectomy samples of prostate cancer patients (n = 4) were dissociated and cultured in vitro. Cells were cultivated either without or after non-viral, Sleeping-Beauty transposase-based stable transfection with immortalization factors SV40LT and hTERT. Established cell lines were analyzed in vitro and in vivo for characteristics of prostate (cancer) cells. RESULTS: Initial cell cultures without genetic manipulation underwent senescence within ≤ 15 passages, demonstrating inability to successfully derive primary prostate cancer cell lines. By using SB transposase-based integration of immortalization factors, we were able to establish primary prostate cell lines. Three out of four cell lines displayed epithelial characteristics, however without expression of prostate (cancer) characteristics, e.g., androgen receptor. In vivo, one cell line exhibited tumorigenic potential, yet characteristics of prostate adenocarcinoma were absent. CONCLUSION: Whereas no primary prostate cancer cell line could be established, we provide for the first-time immortalization of primary prostate cells using the SB transposase system, thereby preventing regulatory and molecular issues based on viral immortalization approaches. Although, none of the newly derived cell lines demonstrated prostate cancer characteristics, tumor formation was observed in one cell line. Given the non-prostate adenocarcinoma properties of the tumor, cells have presumably undergone oncogenic transformation rather than prostate cancer differentiation. Still, these cell lines might be used as a tool for research on prostate cancer initiation and early cancer progression.


Subject(s)
Epithelial Cells , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Cell Line, Tumor , Animals , Prostate/pathology , Carcinogenesis , Telomerase/genetics , Cell Transformation, Neoplastic
2.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38713636

ABSTRACT

Prolactin and its receptor (PRLr) in humans are significantly involved in breast cancer pathogenesis. The intermediate form of human PRLr (hPRLrI) is produced by alternative splicing and has a novel 13 amino acid tail ("I-tail") gain. hPRLrI induces significant proliferation and anchorage-independent growth of normal mammary epithelia in vitro when coexpressed with the long form hPRLr (hPRLrL). hPRLrL and hPRLrI coexpression is necessary to induce the transformation of mammary epithelia in vivo. The I-tail is associated with the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Treatment with the neural precursor cell expressed developmentally downregulated protein 8-activating enzyme inhibitor pevonedistat resulted in increased hPRLrL and the death of breast cancer cells. The goal of this study was to determine the function of the hPRLrI I-tail in hPRLrL/hPRLrI-mediated mammary transformation. hPRLrL/hPRLrI and hPRLrL/hPRLrIΔ13 (I-tail removal mutant) were delivered to MCF10AT cells. Cell proliferation was decreased when hPRLrI I-tail was removed. I-tail deletion decreased anchorage-independent growth and attenuated cell migration. The I-tail was involved in Ras/MAPK signaling but not PI3K/Akt signaling pathway as shown by western blot. I-tail removal resulted in decreased hPRLrI stability. RNA-sequencing data revealed that I-tail removal resulted in differential gene expression induced by prolactin. Ingenuity Pathway Analysis revealed that the activity of ERK was attenuated. Treatment of breast cancer cells with ERK1/2 inhibitor ulixertinib resulted in decreased colony-forming ability and less proliferation. These studies suggest that the hPRLrI I-tail contributed to breast oncogenesis and may be a promising target for the development of new breast cancer therapies.


Subject(s)
Breast Neoplasms , Receptors, Prolactin , Humans , Receptors, Prolactin/metabolism , Receptors, Prolactin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , MAP Kinase Signaling System/drug effects , Cell Proliferation/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , ras Proteins/metabolism , ras Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Signal Transduction/drug effects , Prolactin/metabolism , Prolactin/pharmacology
4.
Biomed Res Int ; 2024: 8544837, 2024.
Article in English | MEDLINE | ID: mdl-38803515

ABSTRACT

The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme. We found that with the loss of RAB25 and overexpression of mutant H-RAS61L, immortal HMECs transformed toward anchorage-independent growth and acquired an increased ability to migrate. Furthermore, cells express low CD24, high CD44, and low claudin levels, indicating stem-like properties upon transformation. Besides, loss of RAB25 and overexpression of H-RAS61L resulted in increased expression of transcription factors Snail and Slug that drive these cells to lose E-cadherin and undergo epithelial-mesenchymal transition (EMT). This study confirms that loss of RAB25 and overexpression of mutant H-RAS can drive HMECs toward a mesenchymal stem-like state. Our findings reveal that RAB25 functions as a tumor suppressor gene, and loss of RAB25 could serve as a novel biomarker of the claudin-low type of TNBC.


Subject(s)
Cell Transformation, Neoplastic , Claudins , Epithelial Cells , Epithelial-Mesenchymal Transition , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Claudins/genetics , Claudins/metabolism , Female , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Mutation/genetics
5.
BMJ Case Rep ; 17(5)2024 May 22.
Article in English | MEDLINE | ID: mdl-38782435

ABSTRACT

We present a novel case of a malignant transformation of an extremity soft tissue angioleiomyoma to leiomyosarcoma in a man in his late 70s who presented with a painful and increasing lump on his anterior tibia. Initial imaging and biopsy showed a benign angioleiomyoma which was excised for symptomatic reasons. An analysis of the resulting specimen revealed a 50×42×15 mm smooth muscle neoplasm consistent with angioleiomyoma with a 22×11 mm entirely intralesional nodular component in keeping with a grade 1 leiomyosarcoma. The malignant constituent of the lesion was entirely encased in benign angioleiomyoma negating the need for further surgery. Systemic staging investigation revealed no evidence of metastatic disease spread final staging as per the eighth edition of the American Joint Committee on Cancer (AJCC) Staging T1N0M0 R0 Stage 1 a.


Subject(s)
Angiomyoma , Leiomyosarcoma , Tibia , Humans , Male , Leiomyosarcoma/pathology , Leiomyosarcoma/surgery , Leiomyosarcoma/diagnostic imaging , Tibia/pathology , Tibia/diagnostic imaging , Angiomyoma/pathology , Angiomyoma/surgery , Angiomyoma/diagnostic imaging , Aged , Cell Transformation, Neoplastic/pathology , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/surgery , Soft Tissue Neoplasms/diagnostic imaging , Biopsy , Bone Neoplasms/pathology , Bone Neoplasms/surgery , Bone Neoplasms/diagnostic imaging
6.
Head Neck Pathol ; 18(1): 44, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775845

ABSTRACT

While acinic cell carcinoma (AciCC) can undergo high-grade transformation (HGT) to high-grade adenocarcinoma or poorly differentiated carcinoma, other morphologies such as spindle cell/sarcomatoid carcinoma are rare and not well-characterized. We herein report a novel case of AciCC with squamoglandular and chondrosarcomatous HGT mimicking a so-called 'carcinosarcoma ex-pleomorphic adenoma'. The patient is an 81-year-old male with a two-month history of neck swelling and referred otalgia who presented with a left parapharyngeal space mass extending into retropharyngeal space and pterygoid muscles. On resection, the tumor showed considerable morphologic diversity with high-grade serous and mucous acinar components as well as cribriform to solid apocrine-like components with comedonecrosis and squamous differentiation, all of which were embedded in a chondromyxoid background ranging from paucicellular and bland to a high-grade chondrosarcoma/pleomorphic sarcoma-like appearance. Only a minor conventional AciCC component was noted. Immunostains were negative for AR and only focally positive for GCDFP-15 arguing against a true apocrine phenotype, while PLAG1 and HMGA2 were negative arguing against an antecedent pleomorphic adenoma. On the other hand, SOX-10, DOG-1 and PAS after diastase highlighted serous acinar differentiation, and mucicarmine, and NKX3.1 highlighted mucous acinar differentiation. NR4A3 immunohistochemical staining and NR4A3 fluorescence in situ hybridization were positive in the carcinomatous and sarcomatoid components while sequencing analysis of both components revealed identical alterations involving TP53, PIK3CB, ARID1A, and STK11. This unique case warrants caution in designating all salivary sarcomatoid carcinomas with heterologous elements as part of the 'carcinoma ex-pleomorphic adenoma' family.


Subject(s)
Adenoma, Pleomorphic , Carcinoma, Acinar Cell , Salivary Gland Neoplasms , Humans , Male , Aged, 80 and over , Diagnosis, Differential , Carcinoma, Acinar Cell/pathology , Carcinoma, Acinar Cell/diagnosis , Adenoma, Pleomorphic/pathology , Adenoma, Pleomorphic/diagnosis , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/diagnosis , Carcinosarcoma/pathology , Cell Transformation, Neoplastic/pathology , Terminology as Topic , Chondrosarcoma/pathology , Chondrosarcoma/diagnosis
7.
Nat Commun ; 15(1): 4052, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744820

ABSTRACT

Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.


Subject(s)
Adaptor Proteins, Signal Transducing , Adipocytes , Diet, High-Fat , Mice, Knockout , Tumor Microenvironment , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Diet, High-Fat/adverse effects , Transcription Factors/metabolism , Transcription Factors/genetics , Obesity/metabolism , Obesity/pathology , Humans , Verteporfin/pharmacology , Signal Transduction , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Disease Progression , Male , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Lipodystrophy/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics
8.
Sci Adv ; 10(20): eadk9076, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748792

ABSTRACT

Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.


Subject(s)
Alcohol Oxidoreductases , DNA-Binding Proteins , Leukemia, Myeloid, Acute , MDS1 and EVI1 Complex Locus Protein , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/metabolism , MDS1 and EVI1 Complex Locus Protein/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Humans , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Protein Binding , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
9.
Nat Commun ; 15(1): 4108, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750011

ABSTRACT

MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.


Subject(s)
Carcinogenesis , Proto-Oncogene Proteins B-raf , T-Box Domain Proteins , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Mice , Cell Differentiation , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , MAP Kinase Signaling System/genetics , Gene Expression Regulation, Neoplastic , Mice, Knockout , Female , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
10.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731846

ABSTRACT

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins B-raf , Stromal Cells , Transforming Growth Factor beta , Tumor Microenvironment , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Microenvironment/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Mutation , Transcriptome , Signal Transduction , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Single-Cell Analysis , Gene Expression Profiling , Adenoma/genetics , Adenoma/pathology , Adenoma/metabolism
11.
J Neuropathol Exp Neurol ; 83(6): 416-424, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38699943

ABSTRACT

Ganglioglioma (GG) with anaplasia (anaplastic ganglioglioma) is a rare and controversial diagnosis. When present, anaplasia involves the glial component of the tumor, either at presentation or at recurrence. To date, most published cases lack molecular characterization. We describe the histologic and molecular features of 3 patients presenting with BRAF p. V600E-mutant GG (CNS WHO grade 1) with high-grade glial transformation at recurrence. The tumors occurred in pediatric patients (age 9-16 years) with time to recurrence from 20 months to 7 years. At presentation, each tumor was low-grade, with a BRAFV600E-positive ganglion cell component and a glial component resembling pleomorphic xanthoastrocytoma (PXA) or fibrillary astrocytoma. At recurrence, tumors resembled anaplastic PXA or high-grade astrocytomas without neuronal differentiation. CDKN2A homozygous deletion (HD) was absent in all primary tumors. At recurrence, 2 cases acquired CDKN2A HD; the third case showed loss of p16 and MTAP immunoexpression, but no CDKN2A/B HD or mutation was identified. By DNA methylation profiling, all primary and recurrent tumors either grouped or definitely matched to different methylation classes. Our findings indicate that malignant progression of the glial component can occur in GG and suggest that CDKN2A/B inactivation plays a significant role in this process.


Subject(s)
Brain Neoplasms , Ganglioglioma , Humans , Ganglioglioma/genetics , Ganglioglioma/pathology , Adolescent , Child , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Male , Female , Proto-Oncogene Proteins B-raf/genetics , Epigenesis, Genetic , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734320

ABSTRACT

Cells of multicellular organisms generate heterogeneity in a controlled and transient fashion during embryogenesis, which can be reactivated in pathologies such as cancer. Although genomic heterogeneity is an important part of tumorigenesis, continuous generation of phenotypic heterogeneity is central for the adaptation of cancer cells to the challenges of tumorigenesis and response to therapy. Here I discuss the capacity of generating heterogeneity, hereafter called cell hetness, in cancer cells both as the activation of hetness oncogenes and inactivation of hetness tumor suppressor genes, which increase the generation of heterogeneity, ultimately producing an increase in adaptability and cell fitness. Transcriptomic high hetness states in therapy-tolerant cell states denote its importance in cancer resistance to therapy. The definition of the concept of hetness will allow the understanding of its origins, its control during embryogenesis, its loss of control in tumorigenesis and cancer therapeutics and its active targeting.


Subject(s)
Carcinogenesis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Genetic Heterogeneity , Oncogenes/genetics , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Genes, Tumor Suppressor , Gene Expression Regulation, Neoplastic
13.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791215

ABSTRACT

The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Animals , Neoplasms/pathology , Neoplasms/metabolism , Carcinogenesis , Neoplastic Stem Cells/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics
14.
BMC Oral Health ; 24(1): 588, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773401

ABSTRACT

BACKGROUND: White Sponge Nevus (WSN) is traditionally considered a benign genetic disorder affecting the oral mucosa, primarily caused by pathogenic mutations in keratin 4 (KRT4) or keratin 13 (KRT13). Despite its benign nature, recent evidence has begun to question the malignant potential of WSN. CASE PRESENTATION: We report a case involving a 70-year-old man who presented with a white lesion on the right floor of his mouth. Initial diagnostic evaluations confirmed the lesion as WSN. Over a one-year follow-up, the lesion underwent malignant transformation, evolving into local epithelial moderate-to-severe dysplasia. Exome sequencing identified a novel insertion mutation in exon 1 of the KRT4 gene, resulting in a deletion-insertion amino acid mutation involving glycine. Single-cell RNA sequencing further revealed altered epithelial proliferation and differentiation dynamics within the lesion. CONCLUSIONS: This case not only expands the known genetic spectrum of KRT4 mutations associated with WSN but also provides preliminary evidence suggesting the malignant potential of WSN. The novel pathogenic mutation in KRT4 is postulated to alter epithelial proliferation and differentiation, thereby raising concerns about the malignant transformation of WSN. Further studies are warranted to confirm these findings.


Subject(s)
Cell Transformation, Neoplastic , Keratin-4 , Leukokeratosis, Hereditary Mucosal , Humans , Male , Aged , Keratin-4/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Leukokeratosis, Hereditary Mucosal/genetics , Leukokeratosis, Hereditary Mucosal/pathology , Mutation , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Mucosa/pathology
15.
Nat Commun ; 15(1): 3844, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714690

ABSTRACT

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Subject(s)
Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Signal Transduction/genetics , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B/genetics , Mutagenesis, Insertional , DNA Copy Number Variations/genetics , Genomics/methods , Translocation, Genetic
16.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627785

ABSTRACT

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Subject(s)
Mammary Neoplasms, Animal , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Mice , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , DNA Damage , DNA Repair , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
17.
Eur J Pharmacol ; 973: 176511, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38604545

ABSTRACT

Lung cancer is one of the most lethal cancers with high incidence worldwide. The prevention of lung cancer is of great significance to reducing the social harm caused by this disease. An in-depth understanding of the molecular changes underlying precancerous lesions is essential for the targeted chemoprevention against lung cancer. Here, we discovered an increased NQO1 level over time within pulmonary premalignant lesions in both the KrasG12D-driven and nicotine-derived nitrosamine ketone (NNK)-induced mouse models of lung cancer, as well as in KrasG12D-driven and NNK-induced malignant transformed human bronchial epithelial cells (BEAS-2B and 16HBE). This suggests a potential correlation between the NQO1 expression and lung carcinogenesis. Based on this finding, we utilized ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, to suppress lung tumorigenesis. In this study, the efficacy and safety of low-dose ß-Lap were demonstrated in preventing lung tumorigenesis in vivo. In conclusion, our study suggests that long-term consumption of low-dose ß-Lap could potentially be an effective therapeutic strategy for the prevention of lung premalignant lesions. However, further studies and clinical trials are necessary to validate our findings, determine the safety of long-term ß-Lap usage in humans, and promote the use of ß-Lap in high-risk populations.


Subject(s)
Lung Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Naphthoquinones , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , NAD(P)H Dehydrogenase (Quinone)/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Humans , Mice , Carcinogenesis/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Female , Cell Line
18.
J Cancer Res Clin Oncol ; 150(4): 179, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584230

ABSTRACT

PURPOSE: The present study aims to determine the molecular mechanism mediated by RAD51 antisense RNA 1 (RAD51-AS1) in ovarian cancer (OvCA). METHODS: The data associated with RAD51-AS1 in OvCA were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Relative expression of RAD51-AS1 was detected. Determination of cell proliferation, metastasis, and invasion was performed by cell counting, colony formation, would-healing, and transwell invasion assays. Protein levels were detected by western blotting. The molecular mechanism mediated by RAD51-AS1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Subcutaneous tumorigenesis models were used to confirm the function of RAD51-AS1 in vivo. RESULTS: Data from TCGA and GEO showed that RAD51-AS1 was associated with poor prognosis in OvCA patients and DNA repair, cell cycle, focal adhesion, and apoptosis in SKOV3.ip cells. High levels of RAD51-AS1 were detected in OvCA cells. Overexpressing RAD51-AS1 enhanced the proliferative, invading, and migratory capabilities of OvCA cells in vitro while silencing RAD51-AS1 exhibited the opposite effects. Mechanically, RAD51-AS1 elevated eukaryotic initiation factor 5A2 (EIF5A2) expression as a sponge for microRNA (miR)-140-3p. Finally, the role of RAD51-AS1 was verified by subcutaneous tumorigenesis models. CONCLUSION: RAD51-AS1 promoted OvCA progression by the regulation of the miR-140-3p/EIF5A2 axis, which illustrated the potential therapeutic target for OvCA.


Subject(s)
MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Female , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/genetics , Rad51 Recombinase/genetics , RNA, Long Noncoding/genetics
19.
J Cancer Res Ther ; 20(2): 706-711, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687943

ABSTRACT

BACKGROUND: Oral submucous fibrosis (OSF) is a precancerous lesion, with oral squamous cell carcinoma (OSCC) being the most prevalent malignancy affecting the oral mucosa. The malignant transformation of OSF into OSCC is estimated to occur in 7-13% of cases. Myofibroblasts (MFs) play pivotal roles in both physiological and pathological processes, such as wound healing and tumorigenesis, respectively. This study aimed to explore the involvement of MFs in the progression of OSF and its malignant transformation. MATERIALS AND METHODS: In total, 94 formalin-fixed paraffin-embedded tissue blocks were collected, including normal oral mucosa (NOM; n = 10), early-moderate OSF (EMOSF; n = 29), advanced OSF (AOSF; n = 29), paracancerous OSF (POSF; n = 21), and OSCC (n = 5) samples. Alpha-smooth muscle actin was used for the immunohistochemical identification of MFs. RESULTS: NOM exhibited infrequent expression of MFs. A higher staining index of MFs was found in AOSF, followed by EMOSF and NOM. Additionally, a significant increase in the staining index of MFs was found from EMOSF to POSF and OSCC. The staining index of MFs in NOM, EMOSF, AOSF, POSF, and OSCC was 0.14 ± 0.2, 1.69 ± 1.4, 2.47 ± 1.2, 3.57 ± 2.6, and 8.86 ± 1.4, respectively. All results were statistically significant (P < 0.05). CONCLUSIONS: The expression of MFs exhibited a gradual increase as the disease progressed from mild to malignant transformation, indicating the contributory role of MFs in the fibrogenesis and potential tumorigenesis associated with OSF.


Subject(s)
Cell Transformation, Neoplastic , Immunohistochemistry , Mouth Neoplasms , Myofibroblasts , Oral Submucous Fibrosis , Humans , Oral Submucous Fibrosis/pathology , Oral Submucous Fibrosis/metabolism , Myofibroblasts/pathology , Myofibroblasts/metabolism , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Male , Female , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Precancerous Conditions/pathology , Precancerous Conditions/metabolism , Middle Aged , Adult , Actins/metabolism , Disease Progression
20.
J Exp Clin Cancer Res ; 43(1): 108, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600610

ABSTRACT

Ferroptosis is a newly identified iron-dependent form of death that is becoming increasingly recognized as a promising avenue for cancer therapy. N6-methyladenosine (m6A) is the most abundant reversible methylation modification in mRNA contributing to tumorigenesis. However, the crucial role of m6A modification in regulating ferroptosis during colorectal cancer (CRC) tumorigenesis remains elusive. Herein, we find that m6A modification is increased during ferroptotic cell death and correlates with the decreased m6A demethylase fat mass and obesity-associated protein (FTO) expression. Functionally, we demonstrate that suppressing FTO significantly induces CRC ferroptotic cell death, as well as enhancing CRC cell sensitivity to ferroptosis inducer (Erastin and RSL3) treatment. Mechanistically, high FTO expression increased solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4) expressions in an m6A-YTHDF2 dependent manner, thereby counteracting ferroptotic cell death stress. In addition, we identify Mupirocin as a novel inhibitor of FTO, and Mupirocin induces CRC ferroptosis and inhibits tumor growth. Clinically, the levels of FTO, SLC7A11, and GPX4, are highly correlated expression in CRC tissues. Our findings reveal that FTO protects CRC from ferroptotic cell death in promoting CRC tumorigenesis through triggering SLC7A11/GPX4 expression.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Colorectal Neoplasms , Mupirocin , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Amino Acid Transport System y+ , Carcinogenesis , Cell Death , Cell Transformation, Neoplastic , Colorectal Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...