Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.897
Filter
1.
Front Immunol ; 15: 1382003, 2024.
Article in English | MEDLINE | ID: mdl-38803503

ABSTRACT

Introduction: Outcome-prediction in patients with sepsis is challenging and currently relies on the serial measurement of many parameters. Standard diagnostic tools, such as serum creatinine (SCr), lack sensitivity and specificity for acute kidney injury (AKI). Circulating cell-free DNA (cfDNA), which can be obtained from liquid biopsies, can potentially contribute to the quantification of tissue damage and the prediction of sepsis mortality and sepsis-associated AKI (SA-AKI). Methods: We investigated the clinical significance of cfDNA levels as a predictor of 28-day mortality, the occurrence of SA-AKI and the initiation of renal replacement therapy (RRT) in patients with sepsis. Furthermore, we investigated the long-term course of cfDNA levels in sepsis survivors at 6 and 12 months after sepsis onset. Specifically, we measured mitochondrial DNA (mitochondrially encoded NADH-ubiquinone oxidoreductase chain 1, mt-ND1, and mitochondrially encoded cytochrome C oxidase subunit III, mt-CO3) and nuclear DNA (nuclear ribosomal protein S18, n-Rps18) in 81 healthy controls and all available samples of 150 intensive care unit patients with sepsis obtained at 3 ± 1 days, 7 ± 1 days, 6 ± 2 months and 12 ± 2 months after sepsis onset. Results: Our analysis revealed that, at day 3, patients with sepsis had elevated levels of cfDNA (mt-ND1, and n-Rps18, all p<0.001) which decreased after the acute phase of sepsis. 28-day non-survivors of sepsis (16%) had higher levels of cfDNA (all p<0.05) compared with 28-day survivors (84%). Patients with SA-AKI had higher levels of cfDNA compared to patients without AKI (all p<0.05). Cell-free DNA was also significantly increased in patients requiring RRT (all p<0.05). All parameters improved the AUC for SCr in predicting RRT (AUC=0.88) as well as APACHE II in predicting mortality (AUC=0.86). Conclusion: In summary, cfDNA could potentially improve risk prediction models for mortality, SA-AKI and RRT in patients with sepsis. The predictive value of cfDNA, even with a single measurement at the onset of sepsis, could offer a significant advantage over conventional diagnostic methods that require repeated measurements or a baseline value for risk assessment. Considering that our data show that cfDNA levels decrease after the first insult, future studies could investigate cfDNA as a "memoryless" marker and thus bring further innovation to the complex field of SA-AKI diagnostics.


Subject(s)
Acute Kidney Injury , Biomarkers , Cell-Free Nucleic Acids , Sepsis , Humans , Sepsis/mortality , Sepsis/blood , Sepsis/complications , Cell-Free Nucleic Acids/blood , Male , Acute Kidney Injury/mortality , Acute Kidney Injury/blood , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Female , Middle Aged , Aged , Biomarkers/blood , Prognosis , DNA, Mitochondrial/blood , Renal Replacement Therapy
2.
J Chem Inf Model ; 64(10): 4002-4008, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38798191

ABSTRACT

Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.


Subject(s)
Cell-Free Nucleic Acids , Deep Learning , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/chemistry , Binding Sites , Humans , Cell-Free Nucleic Acids/metabolism , Cell-Free Nucleic Acids/chemistry , DNA/metabolism , DNA/chemistry
3.
FASEB J ; 38(10): e23672, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38775929

ABSTRACT

Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to predict in advance. Evidence indicates that the copy number of mitochondrial DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released into circulation may act as a mediator of inflammation, a recognized factor in the development of CVD, in the long distance. This pilot study aims to test if levels of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) are altered in CVD patients and if they can predict heart attack in advance. A group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) was selected from the LifeLines Biobank according to the incidence of new cardiovascular event monitored in 6 years (50 among controls had heart attack after the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA from plasma as well as in buffy coat. EVs have been characterized by their size, polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and healthy subjects. EVs carried higher mtDNAcn in subject with a previous history of CVD than controls, also adjusting the analysis for the EVs derived count rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for further investigations to determine its pathophysiological role in inflammation.


Subject(s)
Cardiovascular Diseases , Cell-Free Nucleic Acids , DNA Copy Number Variations , DNA, Mitochondrial , Extracellular Vesicles , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Pilot Projects , Cardiovascular Diseases/genetics , Cardiovascular Diseases/blood , Middle Aged , Case-Control Studies , Aged , Prospective Studies
4.
Sci Rep ; 14(1): 10872, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740837

ABSTRACT

Urine is a rich source of nucleic acid biomarkers including cell-free DNA (cfDNA) and RNA for monitoring the health of kidney allografts. In this study, we aimed to evaluate whether urine filtration can serve as an alternative to the commonly used method of centrifugation to collect urinary fluid and cell pellets for isolating cfDNA and cellular messenger RNA (mRNA). We collected urine specimens from kidney allograft recipients and obtained the urine supernatant and cell pellet from each specimen using both filtration and centrifugation for paired analyses. We performed DNA sequencing to characterize the origin and properties of cfDNA, as well as quantitative PCR of mRNAs extracted from cell fractions. Our results showed that the biophysical properties of cfDNA, the microbial DNA content, and the tissues of origin of cfDNA were comparable between samples processed using filtration and centrifugation method. Similarly, mRNA quality and quantity obtained using both methods met our criteria for downstream application and the Ct values for each mRNA were comparable between the two techniques.The Ct values demonstrated a high degree of correlation. These findings suggest that urine filtration is a viable alternative to urine centrifugation for isolation of nucleic acid biomarkers from urine specimens.


Subject(s)
Biomarkers , Cell-Free Nucleic Acids , Centrifugation , Filtration , Kidney Transplantation , Humans , Centrifugation/methods , Biomarkers/urine , Filtration/methods , Cell-Free Nucleic Acids/urine , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/analysis , RNA, Messenger/genetics , RNA, Messenger/urine , Male , Female , Middle Aged , Adult , Urine/chemistry
5.
Nat Commun ; 15(1): 3700, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697989

ABSTRACT

Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.


Subject(s)
Biomarkers, Tumor , DNA Copy Number Variations , DNA Methylation , Early Detection of Cancer , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/diagnosis , Precancerous Conditions/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Male , Early Detection of Cancer/methods , Female , Biomarkers, Tumor/genetics , Middle Aged , Aged , Epigenome , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Whole Genome Sequencing/methods , Tumor Microenvironment/genetics
6.
J Exp Clin Cancer Res ; 43(1): 145, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750539

ABSTRACT

BACKGROUND: Plasma cell-free DNA (cfDNA) fragmentomics has demonstrated significant differentiation power between cancer patients and healthy individuals, but little is known in pancreatic and biliary tract cancers. The aim of this study is to characterize the cfDNA fragmentomics in biliopancreatic cancers and develop an accurate method for cancer detection. METHODS: One hundred forty-seven patients with biliopancreatic cancers and 71 non-cancer volunteers were enrolled, including 55 patients with cholangiocarcinoma, 30 with gallbladder cancer, and 62 with pancreatic cancer. Low-coverage whole-genome sequencing (median coverage: 2.9 ×) was performed on plasma cfDNA. Three cfDNA fragmentomic features, including fragment size, end motif and nucleosome footprint, were subjected to construct a stacked machine learning model for cancer detection. Integration of carbohydrate antigen 19-9 (CA19-9) was explored to improve model performance. RESULTS: The stacked model presented robust performance for cancer detection (area under curve (AUC) of 0.978 in the training cohort, and AUC of 0.941 in the validation cohort), and remained consistent even when using extremely low-coverage sequencing depth of 0.5 × (AUC: 0.905). Besides, our method could also help differentiate biliopancreatic cancer subtypes. By integrating the stacked model and CA19-9 to generate the final detection model, a high accuracy in distinguishing biliopancreatic cancers from non-cancer samples with an AUC of 0.995 was achieved. CONCLUSIONS: Our model demonstrated ultrasensitivity of plasma cfDNA fragementomics in detecting biliopancreatic cancers, fulfilling the unmet accuracy of widely-used serum biomarker CA19-9, and provided an affordable way for accurate noninvasive biliopancreatic cancer screening in clinical practice.


Subject(s)
Biliary Tract Neoplasms , Cell-Free Nucleic Acids , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/blood , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/diagnosis , Biliary Tract Neoplasms/blood , Male , Female , Middle Aged , Aged , Biomarkers, Tumor/blood , Adult
7.
HLA ; 103(5): e15518, 2024 May.
Article in English | MEDLINE | ID: mdl-38733247

ABSTRACT

Donor-derived cell-free DNA (dd-cfDNA) has been widely studied as biomarker for non-invasive allograft rejection monitoring. Earlier rejection detection enables more prompt diagnosis and intervention, ultimately improving patient treatment and outcomes. This multi-centre study aims to verify analytical performance of a next-generation sequencing-based dd-cfDNA assay at end-user environments. Three independent laboratories received the same experimental design and 16 blinded samples to perform cfDNA extraction and the dd-cfDNA assay workflow. dd-cfDNA results were compared between sites and against manufacturer validation to evaluate concordance, reproducibility, repeatability and verify analytical performance. A total of 247 sample libraries were generated across 18 runs, with completion time of <24 h. A 96.0% first pass rate highlighted minimal failures. Overall observed versus expected dd-cfDNA results demonstrated good concordance and a strong positive correlation with linear least squares regression r2 = 0.9989, and high repeatability and reproducibility within and between sites, respectively (p > 0.05). Manufacturer validation established limit of blank 0.18%, limit of detection 0.23% and limit of quantification 0.23%, and results from independent sites verified those limits. Parallel analyses illustrated no significant difference (p = 0.951) between dd-cfDNA results with or without recipient genotype. The dd-cfDNA assay evaluated here has been verified as a reliable method for efficient, reproducible dd-cfDNA quantification in plasma from solid organ transplant recipients without requiring genotyping. Implementation of onsite dd-cfDNA testing at clinical laboratories could facilitate earlier detection of allograft injury, bearing great potential for patient care.


Subject(s)
Cell-Free Nucleic Acids , Graft Rejection , High-Throughput Nucleotide Sequencing , Organ Transplantation , Tissue Donors , Transplant Recipients , Humans , Cell-Free Nucleic Acids/blood , High-Throughput Nucleotide Sequencing/methods , Reproducibility of Results , Graft Rejection/diagnosis , Graft Rejection/blood , Graft Rejection/genetics , Biomarkers/blood
8.
Rev Assoc Med Bras (1992) ; 70(4): e20231358, 2024.
Article in English | MEDLINE | ID: mdl-38716944

ABSTRACT

OBJECTIVE: This prospective study aimed to provide a comprehensive analysis of the methylation status of two pivotal genes, CDKN2A/p16INK4A (cyclin-dependent kinase inhibitor 2A) and RB1 (retinoblastoma transcriptional corepressor 1), in breast cancer patients. METHODS: Samples were obtained from 15 women diagnosed with breast cancer and who underwent a total mastectomy. DNA was extracted from the tumor, non-tumor tissue, and peripheral blood (circulating cell-free DNA). The methylation pattern of cell-free DNA extracted from blood collected on the day of mastectomy was compared with the methylation pattern of cell-free DNA from blood collected 1 year post-surgery. The methylation analysis was carried out by sodium bisulfite conversion and polymerase chain reaction, followed by electrophoresis. RESULTS: Methylation of CDKN2A/p16INK4A was identified in 13 tumor samples and 12 non-tumor tissue samples. Two patients exhibited CDKN2A/p16INK4A methylation in the cell-free DNA of the first blood collection, while another showed methylation only in the cell-free DNA of the subsequent blood collection. Regarding RB1, 11 tumors and 8 non-tumor tissue samples presented methylation of the gene. CONCLUSION: This study presents a novel approach for monitoring breast cancer patients through the analysis of cell-free DNA methylation. This analysis can detect changes in methylation patterns before any visible sign of cancer appears in breast tissue and could help predict the recurrence of malignant breast tumors.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase Inhibitor p16 , DNA Methylation , Retinoblastoma Binding Proteins , Adult , Aged , Female , Humans , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Breast Neoplasms/genetics , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/analysis , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation/genetics , Mastectomy , Polymerase Chain Reaction , Prospective Studies , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics
9.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38718773

ABSTRACT

The Z-scan technique is a nonlinear optical method that has found applications in characterizing various materials, particularly those exhibiting nonlinear optical response (NLOR). This study applies the continuous wave (CW) Z-scan technique to examine the NLOR in terms of the nonlinear optical phase shifts(ΔΦ0) exhibited by the ccfDNA extracted from blood plasma samples collected from a group constituting 30 cancer-diagnosed patients and another group constituting 30 non-diagnosed individuals. The cancer group exhibited significantly higherΔΦ0versus incident power slopes compared to the non-cancer group (0.34 versus 0.12) providing a clear distinction between the two groups. The receiver operating characteristic (ROC) curve analysis of the results indicates a clear separation between cancer and non-cancer groups, along with a 94% accuracy rate of the data. The Z-scan results are corroborated by spectrophotometric analysis, revealing a consistent trend in the concentration values of ccfDNA samples extracted from both cancerous and non-cancerous samples, measuring 3.24 and 1.41 respectively. Additionally, more sensitive fluorometric analyses of the respective samples demonstrate significantly higher concentrations of ccfDNA in the cancer group, further affirming the correlation with the Z-scan results. The study suggests that the Z-scan technique holds promise as an effective method for cancer detection, potentially contributing to improved oncology diagnosis and prognosis in the future.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Neoplasms , ROC Curve , Humans , Biomarkers, Tumor/blood , Neoplasms/blood , Cell-Free Nucleic Acids/blood , Female , Male , Spectrophotometry/methods
10.
Cancer Control ; 31: 10732748241255548, 2024.
Article in English | MEDLINE | ID: mdl-38764160

ABSTRACT

Background: Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. The advancement of molecular biology is essential for accurate diagnosis and treatment of ovarian cancer. Methods: A review of several randomized clinical trials, focusing on the ovarian cancer, was undertaken. The advancement of molecular biology and diagnostic methods related to accurate diagnosis and treatment of ovarian cancer were examined. Results: Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. It holds promise as a biomarker, enabling early screening, recurrence monitoring, and prognostic evaluation of cancer. Conclusions: This review evaluates recent advancements and challenges associated with cell-free DNA methylation analysis for the diagnosis, prognosis monitoring, and assessment of therapeutic responses in the management of ovarian cancers, aiming to offer guidance for precise diagnosis and treatment of this disease.


Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. Nearly 80% of advanced stages have a poor prognosis or recurrence within five years. Ovarian cancer is linked to a grim long-term prognosis attributable to its elevated mortality and recurrence rates. The advancement of molecular biology and diagnostic methods is essential for accurate diagnosis and treatment of ovarian cancer. Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation represents a prevalent epigenetic modification. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. This review assesses recent progress and obstacles linked to cell-free DNA methylation analysis for diagnosing, prognostic monitoring, and evaluating therapeutic responses in managing ovarian cancers.


Subject(s)
Biomarkers, Tumor , DNA Methylation , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Liquid Biopsy/methods
11.
BMC Pregnancy Childbirth ; 24(1): 341, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702618

ABSTRACT

INTRODUCTION: Epidural analgesia has been associated with intrapartum maternal fever development. Epidural-related maternal fever (ERMF) is believed to be based on a non-infectious inflammatory reaction. Circulating cell-free mitochondrial deoxyribonucleic acid (mtDNA) is one of the possible triggers of sterile inflammatory processes; however, a connection has not been investigated so far. Therefore, this study aimed to investigate cell-free mtDNA alterations in women in labour with ERMF in comparison with non-febrile women. MATERIAL AND METHODS: A total of 60 women in labour were assessed for maternal temperature every 4 h and blood samples were obtained at the beginning and after delivery. Depending on the analgesia and the development of fever (axillary temperature ≥ 37.5 °C), the women were allocated either to the group of no epidural analgesia (n = 17), to epidural analgesia no fever (n = 34) or to ERMF (n = 9). Circulating cell-free mtDNA was analysed in the maternal plasma for the primary outcome whereas secondary outcomes include the evaluation of inflammatory cytokine release, as well as placental inflammatory signs. RESULTS: Of the women with epidural analgesia, 20% (n = 9) developed ERMF and demonstrated a decrease of circulating mtDNA levels during labour (p = 0.04), but a trend towards higher free nuclear DNA. Furthermore, women with maternal pyrexia showed a 1.5 fold increased level of Interleukin-6 during labour. A correlation was found between premature rupture of membranes and ERMF. CONCLUSIONS: The pilot trial revealed an evident obstetric anaesthesia phenomenon of maternal fever due to epidural analgesia in 20% of women in labour, demonstrating counterregulated free mtDNA and nDNA. Further work is urgently required to understand the connections between the ERMF occurrence and circulating cell-free mtDNA as a potential source of sterile inflammation. TRIAL REGISTRATION: NCT0405223 on clinicaltrials.gov (registered on 25/07/2019).


Subject(s)
Analgesia, Epidural , DNA, Mitochondrial , Fever , Humans , Female , DNA, Mitochondrial/blood , Pilot Projects , Pregnancy , Adult , Fever/blood , Analgesia, Obstetrical , Labor, Obstetric/blood , Cell-Free Nucleic Acids/blood
12.
Clin Chim Acta ; 559: 119716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38710402

ABSTRACT

OBJECTIVE: To integrate an enhanced molecular diagnostic technique to develop and validate a machine-learning model for diagnosing sepsis. METHODS: We prospectively enrolled patients suspected of sepsis from August 2021 to August 2023. Various feature selection algorithms and machine learning models were used to develop the model. The best classifier was selected using 5-fold cross validation set and then was applied to assess the performance of the model in the testing set. Additionally, we employed the Shapley Additive exPlanations (SHAP) method to illustrate the effects of the features. RESULTS: We established an optimized mNGS assay and proposed using the copies of microbe-specific cell-free DNA per milliliter of plasma (CPM) as the detection signal to evaluate the real burden, with strong precision and high accuracy. In total, 237 patients were eligible for participation, which were randomly assigned to either the training set (70 %, n = 165) or the testing set (30 %, n = 72). The random forest classifier achieved accuracy, AUC and F1 scores of 0.830, 0.918 and 0.856, respectively, outperforming other machine learning models in the training set. Our model demonstrated clinical interpretability and achieved good prediction performance in differentiating between bacterial sepsis and non-sepsis, with an AUC value of 0.85 and an average precision of 0.91 in the testing set. Based on the SHAP value, the top nine features of the model were PCT, CPM, CRP, ALB, SBPmin, RRmax, CREA, PLT and HRmax. CONCLUSION: We demonstrated the potential of machine-learning approaches for predicting bacterial sepsis based on optimized mcfDNA sequencing assay accurately.


Subject(s)
Cell-Free Nucleic Acids , Machine Learning , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Male , Female , Middle Aged , Cell-Free Nucleic Acids/blood , Aged , Sequence Analysis, DNA , Prospective Studies
13.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791569

ABSTRACT

Early detection of neurological conditions is critical for timely diagnosis and treatment. Identifying cellular-level changes is essential for implementing therapeutic interventions prior to symptomatic disease onset. However, monitoring brain tissue directly through biopsies is invasive and poses a high risk. Bodily fluids such as blood or cerebrospinal fluid contain information in many forms, including proteins and nucleic acids. In particular, cell-free DNA (cfDNA) has potential as a versatile neurological biomarker. Yet, our knowledge of cfDNA released by brain tissue and how cfDNA changes in response to deleterious events within the brain is incomplete. Mapping changes in cfDNA to specific cellular events is difficult in vivo, wherein many tissues contribute to circulating cfDNA. Organoids are tractable systems for examining specific changes consistently in a human background. However, few studies have investigated cfDNA released from organoids. Here, we examined cfDNA isolated from cerebral organoids. We found that cerebral organoids release quantities of cfDNA sufficient for downstream analysis with droplet-digital PCR and whole-genome sequencing. Further, gene ontology analysis of genes aligning with sequenced cfDNA fragments revealed associations with terms related to neurodevelopment and autism spectrum disorder. We conclude that cerebral organoids hold promise as tools for the discovery of cfDNA biomarkers related to neurodevelopmental and neurological disorders.


Subject(s)
Brain , Cell-Free Nucleic Acids , Organoids , Organoids/metabolism , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Humans , Brain/metabolism , Biomarkers , Whole Genome Sequencing/methods
14.
Genes (Basel) ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38790164

ABSTRACT

Cell-free DNA (cfDNA) has recently emerged as a promising minimally invasive diagnostic biomarker for various cancers. In this study, our aim was to identify cfDNA biomarkers by investigating genes that displayed significant differences between glioma patients and their corresponding controls. To accomplish this, we utilized publicly available data from the Gene Expression Omnibus, focusing on 5-hydroxymethylcytosine (5hmC) profiles in both cfDNA and genomic DNA (gDNA) from glioma patients and healthy individuals. The intersection of gene lists derived from these comparative analyses unveiled LRIG1 and ZNF703 as the two genes with elevated 5hmC levels in both the cfDNA of glioma patients and gDNA of glioma tissue compared to their respective controls. The gene expression data revealed both genes were upregulated in glioma tissue compared to normal brain tissue. Integration of 5hmC data revealed a strong positive correlation in the glioma tissue group between 5hmC and the gene expression of the LRIG1 gene. Furthermore, exploration using the AmiCa web tool indicated that LRIG1 gene expression was elevated compared to 17 other cancers included in the database, emphasizing its potential as a distinctive biomarker across multiple cancer types.


Subject(s)
5-Methylcytosine , Biomarkers, Tumor , Brain Neoplasms , Cell-Free Nucleic Acids , Glioma , Membrane Glycoproteins , Humans , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Gene Expression Regulation, Neoplastic , DNA Methylation
15.
Genes (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790182

ABSTRACT

INTRODUCTION: Cell-free nucleic acids (cf-NAs) represent a promising biomarker of various pathological and physiological conditions. Since its discovery in 1948, cf-NAs gained prognostic value in oncology, immunology, and other relevant fields. In peritoneal dialysis (PD), blood purification is performed by exposing the peritoneal membrane. Relevant sections: Complications of PD such as acute peritonitis and peritoneal membrane aging are often critical in PD patient management. In this review, we focused on bacterial DNA, cell-free DNA, mitochondrial DNA (mtDNA), microRNA (miRNA), and their potential uses as biomarkers for monitoring PD and its complications. For instance, the isolation of bacterial DNA in early acute peritonitis allows bacterial identification and subsequent therapy implementation. Cell-free DNA in peritoneal dialysis effluent (PDE) represents a marker of stress of the peritoneal membrane in both acute and chronic PD complications. Moreover, miRNA are promising hallmarks of peritoneal membrane remodeling and aging, even before its manifestation. In this scenario, with multiple cytokines involved, mtDNA could be considered equally meaningful to determine tissue inflammation. CONCLUSIONS: This review explores the relevance of cf-NAs in PD, demonstrating its promising role for both diagnosis and treatment. Further studies are necessary to implement the use of cf-NAs in PD clinical practice.


Subject(s)
Cell-Free Nucleic Acids , DNA, Mitochondrial , Peritoneal Dialysis , Humans , Peritoneal Dialysis/adverse effects , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , DNA, Mitochondrial/genetics , Biomarkers , MicroRNAs/genetics , DNA, Bacterial/genetics , Peritonitis/genetics , Peritoneum/metabolism , Peritoneum/pathology
16.
Genes (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790198

ABSTRACT

Genome-wide prenatal cell-free DNA (cfDNA) screening can be used to screen for a wide range of fetal chromosomal anomalies in pregnant patients. In this study, we describe our clinical experience with a genome-wide cfDNA assay in screening for common trisomies, sex chromosomal aneuploidies (SCAs), rare autosomal aneuploidies (RAAs), and copy-number variations (CNVs) in about 6000 patients over a three-year period at our hospital's Prenatal Diagnostic Unit in Spain. Overall, 204 (3.3%) patients had a high-risk call, which included 76 trisomy 21, 21 trisomy 18, 7 trisomy 13, 29 SCAs, 31 RAAs, 31 CNVs, and 9 cases with multiple anomalies. The diagnostic outcomes were obtained for the high-risk cases when available, allowing for the calculation of positive predictive values (PPVs). Calculated PPVs were 95.9% for trisomy 21, 77.8% for trisomy 18, 66.7% for trisomy 13, 10.7% for RAAs, and 10.7% for CNVs. Pregnancy and birth outcomes were also collected for the majority of RAA and CNV cases. Adverse perinatal outcomes for some of these cases included preeclampsia, fetal growth restriction, preterm birth, reduced birth weight, and major congenital structural abnormalities. In conclusion, our study showed strong performance for genome-wide cfDNA screening in a large cohort of pregnancy patients in Spain.


Subject(s)
Cell-Free Nucleic Acids , DNA Copy Number Variations , Humans , Female , Pregnancy , Spain , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Adult , Prenatal Diagnosis/methods , Trisomy/genetics , Trisomy/diagnosis , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Aneuploidy , Noninvasive Prenatal Testing/methods
17.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791247

ABSTRACT

Over the last decades, the survival of multiple myeloma (MM) patients has considerably improved. However, despite the availability of new treatments, most patients still relapse and become therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM patients' outcome, while typically evolving over time. Because of the patchy bone marrow (BM) infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation without the discomfort of repeated BM aspirations. In this review, we compare the application potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.


Subject(s)
Multiple Myeloma , Mutation , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/diagnosis , Humans , Liquid Biopsy/methods , Circulating Tumor DNA/genetics , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/genetics , DNA Mutational Analysis/methods , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
18.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791341

ABSTRACT

It is widely postulated that the majority of pathologically elevated extracellular or cell-free DNA (cfDNA) in cancer originates from tumor cells; however, evidence has emerged regarding the significant contributions of other cells from the tumor microenvironment. Here, the effect of cfDNA originating from murine B16 melanoma cells and L929 fibroblasts on B16 cells was investigated. It was found that cfDNAL929 increased the viability and migration properties of B16 cells in vitro and their invasiveness in vivo. In contrast, cfDNAB16 exhibited a negative effect on B16 cells, reducing their viability and migration in vitro, which in vivo led to decreased tumor size and metastasis number. It was shown that cell treatment with both cfDNAs resulted in an increase in the expression of genes encoding DNases and the oncogenes Braf, Kras, and Myc. cfDNAL929-treated cells were shown to experience oxidative stress. Gene expression changes in the case of cfDNAB16 treatment are well correlated with the observed decrease in proliferation and migration of B16 cells. The obtained data may indicate the possible involvement of fibroblast DNA in the tumor microenvironment in tumor progression and, potentially, in the formation of new tumor foci due to the transformation of normal cells.


Subject(s)
Cell Movement , Cell-Free Nucleic Acids , Fibroblasts , Melanoma, Experimental , Tumor Microenvironment , Animals , Mice , Fibroblasts/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/genetics , Tumor Microenvironment/genetics , Cell-Free Nucleic Acids/genetics , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , DNA, Neoplasm/metabolism , DNA, Neoplasm/genetics , Cell Survival/drug effects , Oxidative Stress
19.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791199

ABSTRACT

Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy.


Subject(s)
Extraembryonic Membranes , HMGB1 Protein , Inflammation , Humans , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Female , Pregnancy , Inflammation/metabolism , Inflammation/pathology , Extraembryonic Membranes/metabolism , Cell-Free Nucleic Acids/metabolism , Male , Amnion/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Cells, Cultured , Alarmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...