Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.139
Filter
1.
JCO Precis Oncol ; 8: e2300721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848521

ABSTRACT

PURPOSE: Patients with metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC) are effectively treated with entrectinib, a multikinase inhibitor. Whether serial targeted gene panel sequencing of cell-free DNA (cfDNA) can identify response and progression along with mechanisms of acquired resistance to entrectinib is underexplored. METHODS: In patients with ROS1 fusion-positive NSCLC, coclinical trial plasma samples were collected before treatment, after two cycles, and after progression on entrectinib (global phase II clinical trial, ClinicalTrials.gov identifier: NCT02568267). Samples underwent cfDNA analysis using MSK-ACCESS. Variant allele frequencies of detectable alterations were correlated with objective response per RECIST v1.1 criteria. RESULTS: Twelve patients were included, with best response as partial response (n = 9, 75%), stable disease (n = 2, 17%), and progressive disease (PD; n = 1, 8%). A ROS1 fusion was variably detected in cfDNA; however, patients without a ROS1 fusion in cfDNA had no other somatic alterations detected, indicative of possible low cfDNA shedding. Clearance of the enrolling ROS1 fusion or concurrent non-ROS1 alterations (TP53, CDH1, NF1, or ARID1A mutations) was observed in response to entrectinib therapy. Radiologic PD was accompanied by redemonstration of a ROS1 fusion or non-ROS1 alterations. On-target resistance was rare; only one patient acquired ROS1 G2032R at the time of progression. Several patients acquired new off-target likely oncogenic alterations, including a truncating alteration in NF1. CONCLUSION: Serial cfDNA monitoring may complement radiographic assessments as determinants of response and resistance to entrectinib in ROS1 fusion-positive lung cancers in addition to detecting putative resistance mechanisms on progression.


Subject(s)
Benzamides , Carcinoma, Non-Small-Cell Lung , Indazoles , Lung Neoplasms , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Humans , Indazoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Proto-Oncogene Proteins/genetics , Female , Middle Aged , Benzamides/therapeutic use , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Adult , Oncogene Proteins, Fusion/genetics , Sequence Analysis, DNA/methods
2.
Methods Mol Biol ; 2804: 53-64, 2024.
Article in English | MEDLINE | ID: mdl-38753139

ABSTRACT

The µLAS technology enables in-line DNA concentration and separation in a microchannel. Here, we describe its operation to analyze the size profile of cell-free DNA (cfDNA) extracted from blood plasma. Operated on commercial systems for capillary electrophoresis, we provide the size distribution of healthy individuals or patients using an input of 10 µL.


Subject(s)
Cell-Free Nucleic Acids , Electrophoresis, Capillary , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/genetics , Humans , Electrophoresis, Capillary/methods
3.
Methods Mol Biol ; 2804: 65-75, 2024.
Article in English | MEDLINE | ID: mdl-38753140

ABSTRACT

In recent years, the analysis of circulating cell-free DNA (cfDNA) containing tumor-derived DNA has emerged as a noninvasive means for cancer monitoring and personalized medicine. However, the isolation of cfDNA from peripheral blood has remained a challenge due to the low abundance and high fragmentation of these molecules. Here, we present a dynamic Magnetic ExTRactiOn (METRO) protocol using microfluidic fluidized bed technology to isolate circulating cfDNA from raw biological materials such as undiluted serum. This protocol maximizes the surface area for DNA binding within the chip in order to capture short DNA fragments. It uses only a few µL of sample and reagents. The protocol can be automated, and it is fully compatible with sensitive DNA amplification methods such as droplet-based digital PCR (ddPCR).


Subject(s)
Cell-Free Nucleic Acids , Lab-On-A-Chip Devices , Humans , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Polymerase Chain Reaction/methods , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Magnetics/methods , Neoplasms/blood , Neoplasms/genetics , Neoplasms/diagnosis
4.
FASEB J ; 38(10): e23672, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38775929

ABSTRACT

Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to predict in advance. Evidence indicates that the copy number of mitochondrial DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released into circulation may act as a mediator of inflammation, a recognized factor in the development of CVD, in the long distance. This pilot study aims to test if levels of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) are altered in CVD patients and if they can predict heart attack in advance. A group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) was selected from the LifeLines Biobank according to the incidence of new cardiovascular event monitored in 6 years (50 among controls had heart attack after the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA from plasma as well as in buffy coat. EVs have been characterized by their size, polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and healthy subjects. EVs carried higher mtDNAcn in subject with a previous history of CVD than controls, also adjusting the analysis for the EVs derived count rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for further investigations to determine its pathophysiological role in inflammation.


Subject(s)
Cardiovascular Diseases , Cell-Free Nucleic Acids , DNA Copy Number Variations , DNA, Mitochondrial , Extracellular Vesicles , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Pilot Projects , Cardiovascular Diseases/genetics , Cardiovascular Diseases/blood , Middle Aged , Case-Control Studies , Aged , Prospective Studies
5.
Clin Chim Acta ; 559: 119716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38710402

ABSTRACT

OBJECTIVE: To integrate an enhanced molecular diagnostic technique to develop and validate a machine-learning model for diagnosing sepsis. METHODS: We prospectively enrolled patients suspected of sepsis from August 2021 to August 2023. Various feature selection algorithms and machine learning models were used to develop the model. The best classifier was selected using 5-fold cross validation set and then was applied to assess the performance of the model in the testing set. Additionally, we employed the Shapley Additive exPlanations (SHAP) method to illustrate the effects of the features. RESULTS: We established an optimized mNGS assay and proposed using the copies of microbe-specific cell-free DNA per milliliter of plasma (CPM) as the detection signal to evaluate the real burden, with strong precision and high accuracy. In total, 237 patients were eligible for participation, which were randomly assigned to either the training set (70 %, n = 165) or the testing set (30 %, n = 72). The random forest classifier achieved accuracy, AUC and F1 scores of 0.830, 0.918 and 0.856, respectively, outperforming other machine learning models in the training set. Our model demonstrated clinical interpretability and achieved good prediction performance in differentiating between bacterial sepsis and non-sepsis, with an AUC value of 0.85 and an average precision of 0.91 in the testing set. Based on the SHAP value, the top nine features of the model were PCT, CPM, CRP, ALB, SBPmin, RRmax, CREA, PLT and HRmax. CONCLUSION: We demonstrated the potential of machine-learning approaches for predicting bacterial sepsis based on optimized mcfDNA sequencing assay accurately.


Subject(s)
Cell-Free Nucleic Acids , Machine Learning , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Male , Female , Middle Aged , Cell-Free Nucleic Acids/blood , Aged , Sequence Analysis, DNA , Prospective Studies
6.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38718773

ABSTRACT

The Z-scan technique is a nonlinear optical method that has found applications in characterizing various materials, particularly those exhibiting nonlinear optical response (NLOR). This study applies the continuous wave (CW) Z-scan technique to examine the NLOR in terms of the nonlinear optical phase shifts(ΔΦ0) exhibited by the ccfDNA extracted from blood plasma samples collected from a group constituting 30 cancer-diagnosed patients and another group constituting 30 non-diagnosed individuals. The cancer group exhibited significantly higherΔΦ0versus incident power slopes compared to the non-cancer group (0.34 versus 0.12) providing a clear distinction between the two groups. The receiver operating characteristic (ROC) curve analysis of the results indicates a clear separation between cancer and non-cancer groups, along with a 94% accuracy rate of the data. The Z-scan results are corroborated by spectrophotometric analysis, revealing a consistent trend in the concentration values of ccfDNA samples extracted from both cancerous and non-cancerous samples, measuring 3.24 and 1.41 respectively. Additionally, more sensitive fluorometric analyses of the respective samples demonstrate significantly higher concentrations of ccfDNA in the cancer group, further affirming the correlation with the Z-scan results. The study suggests that the Z-scan technique holds promise as an effective method for cancer detection, potentially contributing to improved oncology diagnosis and prognosis in the future.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Neoplasms , ROC Curve , Humans , Biomarkers, Tumor/blood , Neoplasms/blood , Cell-Free Nucleic Acids/blood , Female , Male , Spectrophotometry/methods
7.
Clin Perinatol ; 51(2): 379-389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705647

ABSTRACT

Spontaneous preterm birth (sPTB) is a complex and clinically heterogeneous condition that remains incompletely understood, leading to insufficient interventions to effectively prevent it from occurring. Cell-free ribonucleic acid signatures in the maternal circulation have the potential to identify biologically relevant subtypes of sPTB. These could one day be used to predict and prevent sPTB in asymptomatic individuals, and to aid in prognosis and management for individuals presenting with threatened preterm labor and preterm prelabor rupture of membranes.


Subject(s)
Cell-Free Nucleic Acids , Premature Birth , Humans , Female , Pregnancy , Cell-Free Nucleic Acids/blood , Premature Birth/prevention & control , Fetal Membranes, Premature Rupture , Infant, Newborn , Obstetric Labor, Premature/diagnosis , Prognosis , Biomarkers/blood
8.
HLA ; 103(5): e15518, 2024 May.
Article in English | MEDLINE | ID: mdl-38733247

ABSTRACT

Donor-derived cell-free DNA (dd-cfDNA) has been widely studied as biomarker for non-invasive allograft rejection monitoring. Earlier rejection detection enables more prompt diagnosis and intervention, ultimately improving patient treatment and outcomes. This multi-centre study aims to verify analytical performance of a next-generation sequencing-based dd-cfDNA assay at end-user environments. Three independent laboratories received the same experimental design and 16 blinded samples to perform cfDNA extraction and the dd-cfDNA assay workflow. dd-cfDNA results were compared between sites and against manufacturer validation to evaluate concordance, reproducibility, repeatability and verify analytical performance. A total of 247 sample libraries were generated across 18 runs, with completion time of <24 h. A 96.0% first pass rate highlighted minimal failures. Overall observed versus expected dd-cfDNA results demonstrated good concordance and a strong positive correlation with linear least squares regression r2 = 0.9989, and high repeatability and reproducibility within and between sites, respectively (p > 0.05). Manufacturer validation established limit of blank 0.18%, limit of detection 0.23% and limit of quantification 0.23%, and results from independent sites verified those limits. Parallel analyses illustrated no significant difference (p = 0.951) between dd-cfDNA results with or without recipient genotype. The dd-cfDNA assay evaluated here has been verified as a reliable method for efficient, reproducible dd-cfDNA quantification in plasma from solid organ transplant recipients without requiring genotyping. Implementation of onsite dd-cfDNA testing at clinical laboratories could facilitate earlier detection of allograft injury, bearing great potential for patient care.


Subject(s)
Cell-Free Nucleic Acids , Graft Rejection , High-Throughput Nucleotide Sequencing , Organ Transplantation , Tissue Donors , Transplant Recipients , Humans , Cell-Free Nucleic Acids/blood , High-Throughput Nucleotide Sequencing/methods , Reproducibility of Results , Graft Rejection/diagnosis , Graft Rejection/blood , Graft Rejection/genetics , Biomarkers/blood
9.
Rev Assoc Med Bras (1992) ; 70(4): e20231358, 2024.
Article in English | MEDLINE | ID: mdl-38716944

ABSTRACT

OBJECTIVE: This prospective study aimed to provide a comprehensive analysis of the methylation status of two pivotal genes, CDKN2A/p16INK4A (cyclin-dependent kinase inhibitor 2A) and RB1 (retinoblastoma transcriptional corepressor 1), in breast cancer patients. METHODS: Samples were obtained from 15 women diagnosed with breast cancer and who underwent a total mastectomy. DNA was extracted from the tumor, non-tumor tissue, and peripheral blood (circulating cell-free DNA). The methylation pattern of cell-free DNA extracted from blood collected on the day of mastectomy was compared with the methylation pattern of cell-free DNA from blood collected 1 year post-surgery. The methylation analysis was carried out by sodium bisulfite conversion and polymerase chain reaction, followed by electrophoresis. RESULTS: Methylation of CDKN2A/p16INK4A was identified in 13 tumor samples and 12 non-tumor tissue samples. Two patients exhibited CDKN2A/p16INK4A methylation in the cell-free DNA of the first blood collection, while another showed methylation only in the cell-free DNA of the subsequent blood collection. Regarding RB1, 11 tumors and 8 non-tumor tissue samples presented methylation of the gene. CONCLUSION: This study presents a novel approach for monitoring breast cancer patients through the analysis of cell-free DNA methylation. This analysis can detect changes in methylation patterns before any visible sign of cancer appears in breast tissue and could help predict the recurrence of malignant breast tumors.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase Inhibitor p16 , DNA Methylation , Retinoblastoma Binding Proteins , Adult , Aged , Female , Humans , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Breast Neoplasms/genetics , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/analysis , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation/genetics , Mastectomy , Polymerase Chain Reaction , Prospective Studies , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics
11.
Transpl Immunol ; 84: 102055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744349

ABSTRACT

Respiratory complications following allogeneic HSCT can lead to severe morbidity and mortality. Lung transplantation (LT) is a potential treatment for select patients with late-onset non-infectious pulmonary complications post-HSCT. Donor-derived cell-free DNA (dd-cfDNA) is a noninvasive biomarker for monitoring the health of allografts following LT. However, its utility in a multi-genome setting of LT after HSCT has not yet been clinically validated. Here we describe a case of a 75-year-old, male patient who underwent single-lung transplantation for BOS related to chronic GVHD and presented with persistently elevated dd-cfDNA levels. In a surveillance biopsy, the patient was diagnosed with mild acute cellular rejection at three months. The patient's lung function remained stable, and the reported dd-cfDNA levels decreased after the rejection episode but remained elevated above levels that would be considered quiescent for LT alone. In this unique setting, as 3 different genomes contributed to the dd-cfDNA% reported value, valuable insight was obtained by performing further analysis to separate the specific SNPs to identify the contribution of recipient, lung-donor, and HSCT-donor cfDNA. This study highlights the potential utility of dd-cfDNA in the multi-genome setting of lung transplant post-HSCT, nuances that need to be considered while interpreting the results, and its value in monitoring lung rejection.


Subject(s)
Cell-Free Nucleic Acids , Hematopoietic Stem Cell Transplantation , Lung Transplantation , Tissue Donors , Humans , Male , Cell-Free Nucleic Acids/blood , Aged , Graft Rejection/diagnosis , Graft vs Host Disease/diagnosis , Transplantation, Homologous , Biomarkers/blood , Bronchiolitis Obliterans/diagnosis , Bronchiolitis Obliterans/etiology , Polymorphism, Single Nucleotide
12.
Nat Commun ; 15(1): 3700, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697989

ABSTRACT

Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.


Subject(s)
Biomarkers, Tumor , DNA Copy Number Variations , DNA Methylation , Early Detection of Cancer , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/diagnosis , Precancerous Conditions/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Male , Early Detection of Cancer/methods , Female , Biomarkers, Tumor/genetics , Middle Aged , Aged , Epigenome , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Whole Genome Sequencing/methods , Tumor Microenvironment/genetics
13.
BMC Pregnancy Childbirth ; 24(1): 341, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702618

ABSTRACT

INTRODUCTION: Epidural analgesia has been associated with intrapartum maternal fever development. Epidural-related maternal fever (ERMF) is believed to be based on a non-infectious inflammatory reaction. Circulating cell-free mitochondrial deoxyribonucleic acid (mtDNA) is one of the possible triggers of sterile inflammatory processes; however, a connection has not been investigated so far. Therefore, this study aimed to investigate cell-free mtDNA alterations in women in labour with ERMF in comparison with non-febrile women. MATERIAL AND METHODS: A total of 60 women in labour were assessed for maternal temperature every 4 h and blood samples were obtained at the beginning and after delivery. Depending on the analgesia and the development of fever (axillary temperature ≥ 37.5 °C), the women were allocated either to the group of no epidural analgesia (n = 17), to epidural analgesia no fever (n = 34) or to ERMF (n = 9). Circulating cell-free mtDNA was analysed in the maternal plasma for the primary outcome whereas secondary outcomes include the evaluation of inflammatory cytokine release, as well as placental inflammatory signs. RESULTS: Of the women with epidural analgesia, 20% (n = 9) developed ERMF and demonstrated a decrease of circulating mtDNA levels during labour (p = 0.04), but a trend towards higher free nuclear DNA. Furthermore, women with maternal pyrexia showed a 1.5 fold increased level of Interleukin-6 during labour. A correlation was found between premature rupture of membranes and ERMF. CONCLUSIONS: The pilot trial revealed an evident obstetric anaesthesia phenomenon of maternal fever due to epidural analgesia in 20% of women in labour, demonstrating counterregulated free mtDNA and nDNA. Further work is urgently required to understand the connections between the ERMF occurrence and circulating cell-free mtDNA as a potential source of sterile inflammation. TRIAL REGISTRATION: NCT0405223 on clinicaltrials.gov (registered on 25/07/2019).


Subject(s)
Analgesia, Epidural , DNA, Mitochondrial , Fever , Humans , Female , DNA, Mitochondrial/blood , Pilot Projects , Pregnancy , Adult , Fever/blood , Analgesia, Obstetrical , Labor, Obstetric/blood , Cell-Free Nucleic Acids/blood
14.
Genes (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790182

ABSTRACT

INTRODUCTION: Cell-free nucleic acids (cf-NAs) represent a promising biomarker of various pathological and physiological conditions. Since its discovery in 1948, cf-NAs gained prognostic value in oncology, immunology, and other relevant fields. In peritoneal dialysis (PD), blood purification is performed by exposing the peritoneal membrane. Relevant sections: Complications of PD such as acute peritonitis and peritoneal membrane aging are often critical in PD patient management. In this review, we focused on bacterial DNA, cell-free DNA, mitochondrial DNA (mtDNA), microRNA (miRNA), and their potential uses as biomarkers for monitoring PD and its complications. For instance, the isolation of bacterial DNA in early acute peritonitis allows bacterial identification and subsequent therapy implementation. Cell-free DNA in peritoneal dialysis effluent (PDE) represents a marker of stress of the peritoneal membrane in both acute and chronic PD complications. Moreover, miRNA are promising hallmarks of peritoneal membrane remodeling and aging, even before its manifestation. In this scenario, with multiple cytokines involved, mtDNA could be considered equally meaningful to determine tissue inflammation. CONCLUSIONS: This review explores the relevance of cf-NAs in PD, demonstrating its promising role for both diagnosis and treatment. Further studies are necessary to implement the use of cf-NAs in PD clinical practice.


Subject(s)
Cell-Free Nucleic Acids , DNA, Mitochondrial , Peritoneal Dialysis , Humans , Peritoneal Dialysis/adverse effects , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , DNA, Mitochondrial/genetics , Biomarkers , MicroRNAs/genetics , DNA, Bacterial/genetics , Peritonitis/genetics , Peritoneum/metabolism , Peritoneum/pathology
15.
Genes (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790198

ABSTRACT

Genome-wide prenatal cell-free DNA (cfDNA) screening can be used to screen for a wide range of fetal chromosomal anomalies in pregnant patients. In this study, we describe our clinical experience with a genome-wide cfDNA assay in screening for common trisomies, sex chromosomal aneuploidies (SCAs), rare autosomal aneuploidies (RAAs), and copy-number variations (CNVs) in about 6000 patients over a three-year period at our hospital's Prenatal Diagnostic Unit in Spain. Overall, 204 (3.3%) patients had a high-risk call, which included 76 trisomy 21, 21 trisomy 18, 7 trisomy 13, 29 SCAs, 31 RAAs, 31 CNVs, and 9 cases with multiple anomalies. The diagnostic outcomes were obtained for the high-risk cases when available, allowing for the calculation of positive predictive values (PPVs). Calculated PPVs were 95.9% for trisomy 21, 77.8% for trisomy 18, 66.7% for trisomy 13, 10.7% for RAAs, and 10.7% for CNVs. Pregnancy and birth outcomes were also collected for the majority of RAA and CNV cases. Adverse perinatal outcomes for some of these cases included preeclampsia, fetal growth restriction, preterm birth, reduced birth weight, and major congenital structural abnormalities. In conclusion, our study showed strong performance for genome-wide cfDNA screening in a large cohort of pregnancy patients in Spain.


Subject(s)
Cell-Free Nucleic Acids , DNA Copy Number Variations , Humans , Female , Pregnancy , Spain , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Adult , Prenatal Diagnosis/methods , Trisomy/genetics , Trisomy/diagnosis , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Aneuploidy , Noninvasive Prenatal Testing/methods
16.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791501

ABSTRACT

Sepsis is a life-threatening syndrome triggered by infection and accompanied by high mortality, with antimicrobial resistances (AMRs) further escalating clinical challenges. The rapid and reliable detection of causative pathogens and AMRs are key factors for fast and appropriate treatment, in order to improve outcomes in septic patients. However, current sepsis diagnostics based on blood culture is limited by low sensitivity and specificity while current molecular approaches fail to enter clinical routine. Therefore, we developed a suppression PCR-based selective enrichment sequencing approach (SUPSETS), providing a molecular method combining multiplex suppression PCR with Nanopore sequencing to identify most common sepsis-causative pathogens and AMRs using plasma cell-free DNA. Applying only 1 mL of plasma, we targeted eight pathogens across three kingdoms and ten AMRs in a proof-of-concept study. SUPSETS was successfully tested in an experimental research study on the first ten clinical samples and revealed comparable results to clinical metagenomics while clearly outperforming blood culture. Several clinically relevant AMRs could be additionally detected. Furthermore, SUPSETS provided first pathogen and AMR-specific sequencing reads within minutes of starting sequencing, thereby potentially decreasing time-to-results to 11-13 h and suggesting diagnostic potential in sepsis.


Subject(s)
Cell-Free Nucleic Acids , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Sepsis/blood , Cell-Free Nucleic Acids/blood , Drug Resistance, Bacterial/genetics , Blood Culture/methods , DNA, Bacterial/genetics , Multiplex Polymerase Chain Reaction/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Bacteria/isolation & purification , Polymerase Chain Reaction/methods , Nanopore Sequencing/methods
17.
J Neurooncol ; 168(2): 215-224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38755519

ABSTRACT

PURPOSE: Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for "liquid biopsy" in pediatric brain tumors. METHODS: CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated. RESULTS: Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected. CONCLUSIONS: Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Circulating Tumor DNA , High-Throughput Nucleotide Sequencing , Humans , Child , Brain Neoplasms/genetics , Brain Neoplasms/cerebrospinal fluid , Brain Neoplasms/diagnosis , Male , Female , Child, Preschool , Adolescent , Infant , Circulating Tumor DNA/cerebrospinal fluid , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/cerebrospinal fluid , Cell-Free Nucleic Acids/cerebrospinal fluid , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Liquid Biopsy/methods , Mutation
18.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791569

ABSTRACT

Early detection of neurological conditions is critical for timely diagnosis and treatment. Identifying cellular-level changes is essential for implementing therapeutic interventions prior to symptomatic disease onset. However, monitoring brain tissue directly through biopsies is invasive and poses a high risk. Bodily fluids such as blood or cerebrospinal fluid contain information in many forms, including proteins and nucleic acids. In particular, cell-free DNA (cfDNA) has potential as a versatile neurological biomarker. Yet, our knowledge of cfDNA released by brain tissue and how cfDNA changes in response to deleterious events within the brain is incomplete. Mapping changes in cfDNA to specific cellular events is difficult in vivo, wherein many tissues contribute to circulating cfDNA. Organoids are tractable systems for examining specific changes consistently in a human background. However, few studies have investigated cfDNA released from organoids. Here, we examined cfDNA isolated from cerebral organoids. We found that cerebral organoids release quantities of cfDNA sufficient for downstream analysis with droplet-digital PCR and whole-genome sequencing. Further, gene ontology analysis of genes aligning with sequenced cfDNA fragments revealed associations with terms related to neurodevelopment and autism spectrum disorder. We conclude that cerebral organoids hold promise as tools for the discovery of cfDNA biomarkers related to neurodevelopmental and neurological disorders.


Subject(s)
Brain , Cell-Free Nucleic Acids , Organoids , Organoids/metabolism , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Humans , Brain/metabolism , Biomarkers , Whole Genome Sequencing/methods
19.
Front Immunol ; 15: 1382003, 2024.
Article in English | MEDLINE | ID: mdl-38803503

ABSTRACT

Introduction: Outcome-prediction in patients with sepsis is challenging and currently relies on the serial measurement of many parameters. Standard diagnostic tools, such as serum creatinine (SCr), lack sensitivity and specificity for acute kidney injury (AKI). Circulating cell-free DNA (cfDNA), which can be obtained from liquid biopsies, can potentially contribute to the quantification of tissue damage and the prediction of sepsis mortality and sepsis-associated AKI (SA-AKI). Methods: We investigated the clinical significance of cfDNA levels as a predictor of 28-day mortality, the occurrence of SA-AKI and the initiation of renal replacement therapy (RRT) in patients with sepsis. Furthermore, we investigated the long-term course of cfDNA levels in sepsis survivors at 6 and 12 months after sepsis onset. Specifically, we measured mitochondrial DNA (mitochondrially encoded NADH-ubiquinone oxidoreductase chain 1, mt-ND1, and mitochondrially encoded cytochrome C oxidase subunit III, mt-CO3) and nuclear DNA (nuclear ribosomal protein S18, n-Rps18) in 81 healthy controls and all available samples of 150 intensive care unit patients with sepsis obtained at 3 ± 1 days, 7 ± 1 days, 6 ± 2 months and 12 ± 2 months after sepsis onset. Results: Our analysis revealed that, at day 3, patients with sepsis had elevated levels of cfDNA (mt-ND1, and n-Rps18, all p<0.001) which decreased after the acute phase of sepsis. 28-day non-survivors of sepsis (16%) had higher levels of cfDNA (all p<0.05) compared with 28-day survivors (84%). Patients with SA-AKI had higher levels of cfDNA compared to patients without AKI (all p<0.05). Cell-free DNA was also significantly increased in patients requiring RRT (all p<0.05). All parameters improved the AUC for SCr in predicting RRT (AUC=0.88) as well as APACHE II in predicting mortality (AUC=0.86). Conclusion: In summary, cfDNA could potentially improve risk prediction models for mortality, SA-AKI and RRT in patients with sepsis. The predictive value of cfDNA, even with a single measurement at the onset of sepsis, could offer a significant advantage over conventional diagnostic methods that require repeated measurements or a baseline value for risk assessment. Considering that our data show that cfDNA levels decrease after the first insult, future studies could investigate cfDNA as a "memoryless" marker and thus bring further innovation to the complex field of SA-AKI diagnostics.


Subject(s)
Acute Kidney Injury , Biomarkers , Cell-Free Nucleic Acids , Sepsis , Humans , Sepsis/mortality , Sepsis/blood , Sepsis/complications , Cell-Free Nucleic Acids/blood , Male , Acute Kidney Injury/mortality , Acute Kidney Injury/blood , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Female , Middle Aged , Aged , Biomarkers/blood , Prognosis , DNA, Mitochondrial/blood , Renal Replacement Therapy
20.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667328

ABSTRACT

Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03-0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02-0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8-94.5%) versus 0.0% (95% CI, 0.0-60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4-97.5%) versus 0.0% (95% CI, 0.0-36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.


Subject(s)
5-Methylcytosine , 5-Methylcytosine/analogs & derivatives , Cell-Free Nucleic Acids , Immunotherapy , Lung Neoplasms , Humans , 5-Methylcytosine/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Male , Female , Immunotherapy/methods , Aged , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Immune Checkpoint Inhibitors/therapeutic use , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...