Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.811
Filter
1.
Carbohydr Polym ; 339: 122243, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823912

ABSTRACT

Pilling is a form of textile mechanical damage, forming fibrous bobbles on the surface of garments, resulting in premature disposal of clothing by consumers. However, our understanding on how the structural properties of the cellulosic matrix compliment the three-dimensional shape of cotton pills remains limited. This knowledge gap has hindered the development of effective 'pillase' technologies over the past 20 years due to challenges in balancing depilling efficacy with fabric integrity preservation. Therefore, the main focus here was characterising the role of cellulose and the hemicellulose components in cotton textiles to elucidate subtle differences between the chemistry of pills and fibre regions involved in structural integrity. State-of-the-art bioimaging using carbohydrate binding modules, monoclonal antibodies, and Leica SP8 and a Nikon A1R confocal microscopes, revealed the biophysical structure of cotton pills for the first time. Identifying regions of increased crystalline cellulose in the base of anchor fibres and weaker amorphous cellulose at dislocations in their centres, enhancing our understanding of current enzyme specificity. Surprisingly, pills contained a 7-fold increase in the concentration of xyloglucan compared to the main textile. Therefore, xyloglucan offers a previously undescribed target for overcoming this benefit-to-risk paradigm, suggesting a role for xyloglucanase enzymes in future pillase systems.


Subject(s)
Cellulose , Cotton Fiber , Glucans , Xylans , Cellulose/chemistry , Cotton Fiber/analysis , Xylans/chemistry , Xylans/metabolism , Glucans/chemistry , Crystallization , Textiles , Polysaccharides/chemistry
2.
Carbohydr Polym ; 339: 122248, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823916

ABSTRACT

Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.


Subject(s)
Bifidobacterium longum , Cellulose , Endo-1,4-beta Xylanases , Glucuronates , Glycoside Hydrolases , Oligosaccharides , Saccharum , Xylans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Glucuronates/metabolism , Glucuronates/chemistry , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Xylans/metabolism , Xylans/chemistry , Saccharum/chemistry , Saccharum/metabolism , Cellulose/chemistry , Cellulose/metabolism , Bifidobacterium longum/enzymology , Bifidobacterium longum/metabolism , Hydrolysis , Substrate Specificity , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Disaccharides
3.
Carbohydr Polym ; 339: 122261, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823925

ABSTRACT

Understanding the distribution and accessibility of polymers within plant cell walls is crucial for addressing biomass recalcitrance in lignocellulosic materials. In this work, Imaging Fourier Transform Infrared (FTIR) and Raman spectroscopy, coupled with targeted chemical treatments, were employed to investigate cell wall polymer distribution in two bamboo species at both tissue and cell wall levels. Tissue-level Imaging FTIR revealed significant disparities in the distribution and chemical activity of cell wall polymers between the fibrous sheath and fibrous strand. At the cell wall level, Imaging Raman spectroscopy delineated a distinct difference between the secondary wall and intercellular layer, with the latter containing higher levels of lignin, hydroxycinnamic acid (HCA), and xylan, and lower cellulose. Mild acidified sodium chlorite treatment led to partial removal of lignin, HCA, and xylan from the intercellular layer, albeit to a lesser extent than alkaline treatment, indicating susceptibility of these polymers to chemical treatment. In contrast, lignin in the secondary wall exhibited limited reactivity to acidified sodium chlorite but was slightly removed by alkaline treatment, suggesting stable chemical properties with slight alkaline intolerance. These findings provide valuable insights into the inherent design mechanism of plant cells and their efficient utilization.


Subject(s)
Cell Wall , Cellulose , Coumaric Acids , Lignin , Cell Wall/chemistry , Lignin/chemistry , Coumaric Acids/chemistry , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Xylans/chemistry , Spectrum Analysis, Raman/methods , Sasa/chemistry , Chlorides/chemistry , Polymers/chemistry
4.
Carbohydr Polym ; 339: 122257, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823923

ABSTRACT

Traditional solid phase extraction (SPE) suffers from a lack of specific adsorption. To overcome this problem, a combination of adsorption method and molecular imprinting technology by polydopamine modification was proposed to realize specific recognition of target compounds in SPE, which is of great significance to improve the separation efficiency of SPE. Cellulose hydrogel beads were prepared by dual cross-linking curing method and modified with polydopamine to make them hydrophilic and biocompatible. Subsequently, cellulose hydrogel-based molecularly imprinted beads (MIBs) were synthesized by surface molecular imprinting technology and used as novel column fillers in SPE to achieve efficient adsorption (34.16 mg·g-1) with specific selectivity towards camptothecin (CPT) in 120 min. The simulation and NMR analysis revealed that recognition mechanism of MIBs involved hydrogen bond interactions and Van der Waals effect. The MIBs were successful used in separating CPT from Camptotheca acuminata fruits, exhibiting impressive adsorption capacity (1.19 mg·g-1) and efficient recovery of CPT (81.54 %). Thus, an environmentally friendly column filler for SPE was developed, offering a promising avenue for utilizing cellulose-based materials in the selective separation of natural products.


Subject(s)
Camptothecin , Cellulose , Hydrogels , Molecular Imprinting , Solid Phase Extraction , Camptothecin/chemistry , Camptothecin/isolation & purification , Cellulose/chemistry , Adsorption , Molecular Imprinting/methods , Hydrogels/chemistry , Solid Phase Extraction/methods , Camptotheca/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Fruit/chemistry
5.
Sci Rep ; 14(1): 11613, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773229

ABSTRACT

Natural polymers have found increased use in a wider range of applications due to their less harmful effects. Notably, bacterial cellulose has gained significant consideration due to its exceptional physical and chemical properties and its substantial biocompatibility, which makes it an attractive candidate for several biomedical applications. This study attempts to thoroughly unravel the microstructure of bacterial cellulose precursors, known as bioflocculants, which to date have been poorly characterised, by employing both electron and optical microscopy techniques. Here, starting from bioflocculants from Symbiotic Culture of Bacteria and Yeast (SCOBY), we proved that their microstructural features, such as porosity percentage, cellulose assembly degree, fibres' density and fraction, change in a spatio-temporal manner during their rising toward the liquid-air interface. Furthermore, our research identified a correlation between electron and optical microscopy parameters, enabling the assessment of bioflocculants' microstructure without necessitating offline sample preparation procedures. The ultimate goal was to determine their potential suitability as a novel cellulose-based building block material with tuneable structural properties. Our investigations substantiate the capability of SCOBY bioflocculants, characterized by distinct microstructures, to successfully assemble within a microfluidic device, thereby generating a cellulose sheet endowed with specific and purposefully designed structural features.


Subject(s)
Cellulose , Cellulose/chemistry , Bacteria/metabolism , Porosity
6.
Int J Biol Macromol ; 268(Pt 1): 131619, 2024 May.
Article in English | MEDLINE | ID: mdl-38692998

ABSTRACT

The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: ß-O-4, ß-ß, and ß-5. Furthermore, the C-O bond (ß-O-4) signals of lignin decreased while the C-C bonds (ß-ß and ß-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.


Subject(s)
Cell Wall , Cellulose , Lignin , Pinus , Polysaccharides , Lignin/chemistry , Pinus/chemistry , Cell Wall/chemistry , Polysaccharides/chemistry , Cellulose/chemistry , Molecular Weight , Trees/chemistry , Magnetic Resonance Spectroscopy/methods , Wood/chemistry
7.
J Mol Model ; 30(5): 156, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693294

ABSTRACT

CONTEXT: Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS: MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.


Subject(s)
Cellulose , Hydrogen Bonding , Molecular Dynamics Simulation , Silk , Spiders , Cellulose/chemistry , Spiders/chemistry , Animals , Silk/chemistry , Adsorption , Protein Binding , Fibroins/chemistry
8.
Sci Rep ; 14(1): 12041, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802478

ABSTRACT

Since the ingestion of both natural and anthropogenic microfibers produces a deleterious effect on aquatic organisms, it is crucial to explore the emission of these pollutants by WWTPs into the receiving water bodies, such as rivers. Cellulose- and petroleum-based microfibers, as well as microplastic particles, were collected from the effluent of a municipal WWTP operating with activated sludge technology in Budapest, Hungary. During two sampling campaigns organized in February and April of 2023 on different working days and at different times of the day, 123-145 L of effluent was sieved and filtered. The organic matter was removed by hydrogen-peroxide treatment. All fibers and particles larger than 10 µm were counted, and using a fluorescence microscope, the fibers were geometrically characterized in terms of length and diameter. Each fiber was individually identified by transflection-FT-IR method. The fiber concentration varied in the range of 1.88-2.84 and 4.25-6.79 items/L during the 7th and the 16th week of 2023, respectively. In February and April, the proportion of microfibers in the solid particles was 78.3 and 94.7%, respectively. In the effluent the cellulose-based microfibers were dominant (53-91%), while among the petroleum-based microfibers, polyester occurred most often. The median length of cellulose-based fibers was considerably higher in April than in February (650 vs. 1250 µm), and simultaneously the median diameter also increased from 21 to 29 µm. This behaviour was also seen, albeit to a lesser extent, in connection to microfibers derived from petroleum. The treated wastewater's daily microfiber transport to the Danube River varied between 0.44 - 0.69 and 0.94-1.53 billion in February and April 2023, respectively.


Subject(s)
Wastewater , Hungary , Wastewater/chemistry , Cellulose/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Water Purification/methods , Microplastics/analysis , Waste Disposal, Fluid/methods , Petroleum/analysis , Sewage/analysis
9.
Int J Biol Macromol ; 269(Pt 2): 132124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723802

ABSTRACT

Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.


Subject(s)
Cellulose , Durapatite , Hydrogels , Osteogenesis , Platelet-Rich Plasma , Tissue Engineering , Tissue Scaffolds , Platelet-Rich Plasma/chemistry , Tissue Engineering/methods , Durapatite/chemistry , Durapatite/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Animals , Mice , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Osteogenesis/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Delayed-Action Preparations/pharmacology , Cell Differentiation/drug effects , Biomimetics/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line , Bone Regeneration/drug effects
10.
Int J Biol Macromol ; 269(Pt 2): 132157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723804

ABSTRACT

Hydrogel-based wound dressings are becoming increasingly important for wound healing. Bacterial cellulose (BC) has been commonly used as wound dressings due to its good in vitro and in vivo biocompatibility. However, pure BC does not possess antibacterial properties. In this regard, polycation gel was grafted onto the BC using a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with subsequent quaternization for antibacterial wound dressing. Dimethylethyl methacrylate (DMAEMA) was successfully polymerized on the BC surface which was confirmed by Fourier transform infrared spectroscopy and elemental analysis. The morphology structure, specific surface area, pore size, and mechanical properties were also characterized. The quaternized PDMAEMA grafted on the BC endowed it with excellent antibacterial activity against E. coli (Gram-negative) and S. aureus (Gram-positive) with a killing rate of 89.2 % and 93.4 %, respectively. The number of cells was significantly reduced on QPD/BC hydrogel, demonstrating its good anti-adhesion ability. In vitro cellular evaluation revealed that the antibacterial wound dressing exhibited good biocompatibility. Overall, this study provides a feasible method to develop antibacterial and anti-cell adhesive hydrogel, which has a promising potential for wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Cellulose , Escherichia coli , Polyelectrolytes , Staphylococcus aureus , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Wound Healing/drug effects , Polyamines/chemistry , Polyamines/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Methacrylates/chemistry , Mice , Microbial Sensitivity Tests , Humans , Nylons
11.
Int J Biol Macromol ; 269(Pt 2): 132152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723811

ABSTRACT

Carbon nanofibers (CNFs) are very promising materials with application in many fields, such as sensors, filtration systems, and energy storage devices. This study aims to explore the use of eco-friendly biopolymers for CNF production, finding novel, suitable and sustainable precursors and thus prioritising environmentally conscious processes and ecological compatibility. Polymeric nanofibers (PNFs) using cellulose acetate, polylactic acid, and chitosan as precursors were successfully prepared via electrospinning. Rheological testing was performed to determine suitable solution concentrations for the production of PNFs with controlled diameter and appropriate morphology. Their dimensions and structure were found to be significantly influenced by the solution concentration and electrospinning flow rate. Subsequently, the electrospun green nanofibers were subject to stabilisation and carbonisation to convert them into CNFs. Thermal behaviour and chemical/structural changes of the nanofibers during stabilisation were investigated by means of thermogravimetric analysis and Fourier-transform infrared spectroscopy, while the final morphology of the fibers after stabilisation and carbonisation was examined through scanning electron microscopy to determine the optimal stabilisation parameters. The optimal fabrication parameters for cellulose and chitosan-based CNFs with excellent morphology and thermal stability were successfully established, providing valuable insight and methods for the sustainable and environmentally friendly synthesis of these promising materials.


Subject(s)
Carbon , Cellulose , Chitosan , Nanofibers , Polyesters , Nanofibers/chemistry , Nanofibers/ultrastructure , Chitosan/chemistry , Cellulose/chemistry , Polyesters/chemistry , Carbon/chemistry , Green Chemistry Technology/methods , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
12.
Int J Biol Macromol ; 269(Pt 2): 132046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723813

ABSTRACT

Materials from biological origin composed by renewable carbon facilitate the transition from linear carbon-intensive economy to a sustainable circular economy. Accordingly, we use solution blow spinning to develop fully biobased cellulose acetate films and nanofiber mats reinforced with fungal chitin nanofibrils (ChNFs), an emerging bio-colloid with lower carbon footprint compared to crustacean-derived nanochitin. This study incorporates fungal ChNFs into spinning processes for the first time. ChNF addition reduces film surface roughness, modifies film water affinity, and tailors the nanofiber diameter of the mats. The covalently bonded ß-D-glucans of ChNFs act as a binder to improve the interfacial properties and consequently load transference to enhance the mechanical properties. Accordingly, the Young's modulus of the films increases from 200 ± 18 MPa to 359 ± 99 MPa with 1.5 wt% ChNFs, while the elongation at break increases by ~45 %. Life cycle assessment (LCA) is applied to quantify the environmental impacts of solution blow spinning for the first time, providing global warming potential values of 69.7-347.4 kg·CO2-equiv.·kg-1. Additionally, this work highlights the suitability of ChNFs as reinforcing fillers during spinning and proves the reinforcing effect of mushroom-derived chitin in bio-based films, opening alternatives for sustainable materials development beyond nanocelluloses in the near future.


Subject(s)
Cellulose , Chitin , Nanofibers , Chitin/chemistry , Nanofibers/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Fungi , Solutions
13.
Int J Biol Macromol ; 269(Pt 2): 132162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723825

ABSTRACT

Polylactic acid (PLA) attains much attention because of its biodegradability, biocompatibility, and high strength, but its further application was remarkably hindered by its brittleness. In order to improve the toughness of PLA, a biodegradable composite was prepared by blending ductile polycaprolactone (PCL), stiff microcrystalline cellulose (MCC), and green plasticizer tributyl citrate (TBC) with PLA by melting extrusion. The physicochemical properties and microstructure of PLA composites were thoroughly investigated using FTIR, TGA, DSC, XRD, melting rheology, optical transmittance, 3d printing, tensile tests, and SEM. The tensile tests results show that introduction of TBC exhibited a remarkable improvement effect in the elongation at break of PLA/PCL/MCC (PPM) composite, increasing from 2.9 % of PPM to up to 30 % of PPM/6TBC and PPM/8TBC. Noticeably, the strength of PPM/TBC composites (at least 33.1 MPa) was enhanced compared with that of PPM (28.2 MPa). The plasticization of TBC, enhancing the compatibility of composites, and reinforcing effect of MCC were identified as pivotal factors in toughening and reinforcing PLA. Furthermore, it is observed that the incorporation of TBC contributed to enhanced thermal stability, crystallinity, and rheology property of composites. This research supplies a novel approach to bolstering the toughness of PLA and broaden its potential applications.


Subject(s)
Plasticizers , Polyesters , Printing, Three-Dimensional , Polyesters/chemistry , Plasticizers/chemistry , Cellulose/chemistry , Tensile Strength , Rheology
14.
Int J Biol Macromol ; 270(Pt 1): 131831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702246

ABSTRACT

Lately, emulsions with low-fat and natural stabilizers are predominant. This study extracted the nano cellulose crystals (NCs) from Camellia Oleifera shells, and their gallic acid (GA) conjugates were synthesized by free-radical grafting. Pickering emulsions were prepared using NCs 1 %, 1.5 %, 2.5 %, and gallic acid conjugates NC-GA1, NC-GA2, and NC-GA3 as stabilizers. The obtained nano cellulose crystals exhibited 18-25 nm, -40.01 ±â€¯2.45 size, and zeta potential, respectively. The contact angle of 83.4° was exhibited by NC-GA3 conjugates. The rheological, interfacial, and microstructural properties and stability of the Pickering emulsion were explored. NC-GA3 displayed the highest absorption content of 79.12 %. Interfacial tension was drastically reduced with increasing GA concentration in NC-GA conjugates. Rheological properties suggested that the low-fat NC-GA emulsions showed a viscoelastic behavior, increased viscosity, gel-like structure, and increased antioxidant properties. Moreover, NC-GA3 displayed reduced droplet size and improved emulsion temperature and storage stability (28 days) against phase separation. POV and TBARS values were reduced with the NC-GA3 (P < 0.05). This work confirmed that grafting phenolic compounds on NCs could enhance bioactive properties, which can be used in developing low-fat functional foods. NC-GA conjugates can potentially fulfill the increasing demand for sustainable, healthy, and low-fat foods.


Subject(s)
Antioxidants , Camellia , Cellulose , Emulsions , Gallic Acid , Rheology , Camellia/chemistry , Gallic Acid/chemistry , Cellulose/chemistry , Antioxidants/chemistry , Viscosity , Nanoparticles/chemistry , Crystallization
15.
Int J Biol Macromol ; 270(Pt 1): 131968, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704059

ABSTRACT

Enzymatic degradation of lignocellulosic biomass provides an eco-friendly approach to produce value-added macromolecules, e.g., bioactive polysaccharides. A novel acidophilic GH5 ß-1,4-endoglucanase (termed TaCel5) from Trichoderma asperellum ND-1 was efficiently expressed in Komagataella phaffii (∼1.5-fold increase, 38.42 U/mL). TaCel5 displayed both endoglucanase (486.3 U/mg) and alginate lyase (359.5 U/mg) enzyme activities. It had optimal pH 3.0 and strong pH stability (exceed 86 % activity retained over pH range 3.0-5.0). 80 % activity (both endoglucanase and alginate lyase) was retained in the presence of 15 % ethanol or 3.42 M NaCl. Analysis of action mode revealed that hydrolytic activity of TaCel5 required at least three glucose (cellotriose) residues, yielding mainly cellobiose. Glu241 and Glu352 are essential catalytic residues, while Asp106, Asp277 and Asp317 play auxiliary roles in cellulose degradation. TaCel5 displayed high hydrolysis efficiency for glucan and alginate substrates. ESI-MS analysis indicated that the enzymatic hydrolysates of alginate mainly contained disaccharides and heptasaccharides. This is the first detailed report of a bifunctional GH5 endoglucanase/alginate lyase enzyme from T. asperellum. Thus TaCel5 has strong potential in food and feed industries as a catalyst for bioconversion of cellulose- and alginate-containing waste materials into value-added products oligosaccharides, which was of great benefit both for the economy and environment.


Subject(s)
Alginates , Cellulase , Cellulose , Oligosaccharides , Alginates/metabolism , Alginates/chemistry , Cellulase/metabolism , Cellulase/chemistry , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Hydrolysis , Cellulose/metabolism , Hydrogen-Ion Concentration , Hypocreales/enzymology , Substrate Specificity , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics
16.
Int J Biol Macromol ; 270(Pt 2): 132492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763245

ABSTRACT

Embarking on a pioneering investigation, this study unravels the extraordinary qualities of Tecoma stans Fibers (TSFs), freshly harvested from the rachis, establishing them as prospective reinforcements for biocomposites. Delving into their intricate characteristics, TSFs exhibit a unique fusion of physical resilience, with a density of 1.81 ± 0.39 g/cc and a diameter of 234.12 ± 7.63 µm. Complementing their physical prowess, their chemical composition boasts a harmonious blend of cellulose (70.1 ± 9.06 wt%), hemicellulose (13.56 ± 4.29 wt%), lignin (7.62 ± 2.39 wt%), moisture (4.21 ± 1.56 wt%), wax (2.37 ± 0.63 wt%), and ash (1.25 ± 0.36 wt%). In the realm of mechanical strength, TSFs showcase an impressive tensile strength of 639 ± 18.47 MPa, coupled with a robust strain at failure of 1.75 ± 0.13 % and a Young Modulus of 36.51 ± 1.96 GPa. Unveiling their crystalline intricacies, these fibers reveal a microfibril angle of 14.66 ± 0.15°, a crystalline index (CI) of 63.83 %, and a crystallite size (CS) of 9.27 nm. Beyond their mechanical marvels, TSFs exhibit unwavering thermal stability, enduring temperatures up to 297.36 °C, with a Tmax reaching an impressive 392.09 °C.


Subject(s)
Cellulose , Tensile Strength , Cellulose/chemistry , Plant Bark/chemistry , Lignin/chemistry , Polymers/chemistry , Polysaccharides/chemistry
17.
Sci Rep ; 14(1): 10012, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693138

ABSTRACT

Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, ß-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a ß-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the ß-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the ß-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied ß-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.


Subject(s)
Biomass , Lakes , beta-Glucosidase , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Lakes/microbiology , Metagenomics/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Metagenome , Cloning, Molecular , Enzyme Stability , Hydrolysis , Hydrogen-Ion Concentration , Cellulose/metabolism , Temperature , Glucose/metabolism
18.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709299

ABSTRACT

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Subject(s)
Bacteria , Sewage , Wastewater , Biopolymers/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Sewage/microbiology , Wastewater/microbiology , Lignin/metabolism , Microscopy, Electron, Scanning , Cellulose/metabolism , Biofilms/growth & development , Chitin/metabolism , Nitrification , Water Purification/methods
19.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710545

ABSTRACT

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Subject(s)
Cellulose , Food Packaging , Lignin , Lignin/analogs & derivatives , Nanocomposites , Nanofibers , Tensile Strength , Wood , Xylans , Food Packaging/methods , Lignin/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Wood/chemistry , Nanofibers/chemistry , Xylans/chemistry , Antioxidants/chemistry , Fruit/chemistry
20.
Mol Biol Rep ; 51(1): 658, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748314

ABSTRACT

BACKGROUND: The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS: The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-ß (TGF-ß) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-ß IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION: The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-ß increased significantly in SIS/CA/Ag group.


Subject(s)
Cellulose , Intestinal Mucosa , Intestine, Small , Metal Nanoparticles , Nanofibers , Rats, Wistar , Silver , Tissue Scaffolds , Wound Healing , Animals , Silver/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Wound Healing/drug effects , Metal Nanoparticles/chemistry , Rats , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Intestinal Mucosa/metabolism , Male , Intestine, Small/metabolism , Cattle , Transforming Growth Factor beta/metabolism , Tissue Engineering/methods , Collagen
SELECTION OF CITATIONS
SEARCH DETAIL
...