Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.492
Filter
1.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731545

ABSTRACT

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antiviral Agents , Copper , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Copper/chemistry , Copper/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Staphylococcus aureus/drug effects , Textiles , Microbial Sensitivity Tests , Klebsiella pneumoniae/drug effects , Lignin/chemistry , Lignin/pharmacology , Humans
2.
Int J Biol Macromol ; 270(Pt 2): 132419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759859

ABSTRACT

Bacterial infection is a serious challenge in the treatment of open bone defects, and reliance on antibiotic therapy may contribute to the emergence of drug-resistant bacteria. To solve this problem, this study developed a mineralized hydrogel (PVA-Ag-PHA) with excellent antibacterial properties and osteogenic capabilities. Silver nanoparticles (CNC/TA@AgNPs) were greenly synthesized using natural macromolecular cellulose nanocrystals (CNC) and plant polyphenolic tannins (TA) as stabilizers and reducing agents respectively, and then introduced into polyvinyl alcohol (PVA) and polydopamine-modified hydroxyapatite (PDA@HAP) hydrogel. The experimental results indicate that the PVA-Ag-PHA hydrogel, benefiting from the excellent antibacterial properties of CNC/TA@AgNPs, can not only eliminate Staphylococcus aureus and Escherichia coli, but also maintain a sustained sterile environment. At the same time, the HAP modified by PDA is uniformly dispersed within the hydrogel, thus releasing and maintaining stable concentrations of Ca2+ and PO43- ions in the local environment. The porous structure of the hydrogel with excellent biocompatibility creates a suitable bioactive environment that facilitates cell adhesion and bone regeneration. The experimental results in the rat critical-sized calvarial defect model indicate that the PVA-Ag-PHA hydrogel can effectively accelerate the bone healing process. Thus, this mussel-inspired hydrogel with antibacterial properties provides a feasible solution for the repair of open bone defects, demonstrating the considerable potential for diverse applications in bone repair.


Subject(s)
Bone Regeneration , Cellulose , Hydrogels , Metal Nanoparticles , Silver , Skull , Tannins , Silver/chemistry , Silver/pharmacology , Animals , Bone Regeneration/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Metal Nanoparticles/chemistry , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Skull/drug effects , Skull/injuries , Tannins/chemistry , Tannins/pharmacology , Bivalvia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Rats, Sprague-Dawley , Escherichia coli/drug effects
3.
Environ Res ; 252(Pt 3): 119068, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705452

ABSTRACT

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes. The influence of nanoparticles on the membrane structure and their antibacterial and antifouling properties were investigated. The results showed that incorporating Cu2O NPs imparted significant antibacterial properties against Staphylococcus aureus and fouling resistance under physiological conditions. The Cu2O NPs-modified membrane could pave the way for potential dialysis applications.


Subject(s)
Anti-Bacterial Agents , Biofouling , Cellulose , Copper , Membranes, Artificial , Staphylococcus aureus , Cellulose/analogs & derivatives , Cellulose/chemistry , Cellulose/pharmacology , Copper/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Biofouling/prevention & control , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Povidone/chemistry , Povidone/analogs & derivatives
4.
Int J Biol Macromol ; 269(Pt 2): 132266, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777689

ABSTRACT

Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface. Specifically, silanization was carried out in an aqueous medium using methyltrimethoxisilane (MTMS) as the silanizing agent, and aerogels were subsequently prepared by freeze-drying. The BC-MTMS aerogel obtained displayed a highly porous (99 %) and lightweight structure with an oil absorption capacity of up to 52 times its dry weight. The XRD pattern indicated that the characteristic crystallographic planes of the native BC were maintained after the silanization process. Thermal analysis showed that the thermal stability of the BC-MTMS aerogel increased, as compared to the pure BC aerogel (pBC). Moreover, the BC-MTMS aerogel was not cytotoxic to fibroblasts and keratinocytes. In the second step of the study, the incorporation of natural oils into the aerogel's matrix was found to endow antimicrobial and/or healing properties to BC-MTMS. Bourbon geranium (Pelargonium X ssp.) essential oil (GEO) was the only oil that exhibited antimicrobial activity against the tested microorganisms, whereas buriti (Mauritia flexuosa) vegetable oil (BVO) was non-cytotoxic to the cells. This study demonstrates that the characteristics of the BC structure can be modified, while preserving its intrinsic features, offering new possibilities for the development of BC-derived materials for specific applications in the biomedical field.


Subject(s)
Cellulose , Oils, Volatile , Plant Oils , Cellulose/chemistry , Cellulose/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Gels/chemistry , Wound Healing/drug effects , Fabaceae/chemistry , Humans , Fibroblasts/drug effects , Pelargonium/chemistry , Silanes/chemistry
5.
Int J Biol Macromol ; 269(Pt 2): 131957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692544

ABSTRACT

In this study, graphene oxide (GO) was chemically modified utilizing concentrated nitric acid to produce a nitrated graphene oxide derivative (NGO) with enhanced oxidation level, improved dispersibility, and increased antibacterial activity. A double-layer composite hydrogel material (BC/PVA/NGO) with a core-shell structure was fabricated by utilizing bacterial cellulose (BC) and polyvinyl alcohol (PVA) binary composite hydrogel scaffold as the inner network template, and hydrophilic polymer (PVA) loaded with antibacterial material (NGO) as the outer network. The fabrication process involved physical crosslinking based on repeated freezing and thawing. The resulting BC/PVA/NGO hydrogel exhibited a porous structure, favorable mechanical properties, antibacterial efficacy, and biocompatibility. Subsequently, the performance of BC/PVA/NGO hydrogel in promoting wound healing was evaluated using a mouse skin injury model. The findings demonstrated that the BC/PVA/NGO hydrogel treatment group facilitated improved wound healing in the mouse skin injury model compared to the control group and the BC/PVA group. This enhanced wound healing capability was attributed primarily to the excellent antibacterial and tissue repair properties of the BC/PVA/NGO hydrogel.


Subject(s)
Anti-Bacterial Agents , Cellulose , Graphite , Hydrogels , Polyvinyl Alcohol , Wound Healing , Graphite/chemistry , Graphite/pharmacology , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Animals , Cellulose/chemistry , Cellulose/pharmacology , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/drug effects
6.
Int J Biol Macromol ; 269(Pt 1): 131824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697411

ABSTRACT

Maintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE). FTIR confirmed the successful grafting of BRPE into the BNC matrix. The S-g-BNC/BRPE showed superior mechanical properties (0.25 MPa), swelling rate (1251 % on average), and hydrophilic properties (contact angle 21.83°). The composite exhibited a notable color change as the pH changed between 4.0 and 9.0. It appeared purple-red when the pH ranged from 4.0 to 6.0, and appeared light pink at pH 7.0 and 7.4, and appeared ginger-yellow at pH 8.0 and 9.0. Subsequently, the antioxidant activity and cytotoxicity of the composite was evaluated, its DPPH·, ABTS+, ·OH scavenging rates were 32.33 %, 19.31 %, and 30.06 %, respectively, and the cytotoxicity test clearly demonstrated the safety of the dressing. The antioxidant hydrogel dressing, fabricated with a cost-effective and easy method, not only showed excellent biocompatibility and dressing performance but could also indicated the wound state based on pH changes.


Subject(s)
Antioxidants , Bandages , Beta vulgaris , Cellulose , Hydrogels , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Hydrogen-Ion Concentration , Antioxidants/pharmacology , Antioxidants/chemistry , Beta vulgaris/chemistry , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silanes/chemistry , Pigments, Biological/chemistry , Pigments, Biological/pharmacology
7.
Int J Biol Macromol ; 269(Pt 2): 132124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723802

ABSTRACT

Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.


Subject(s)
Cellulose , Durapatite , Hydrogels , Osteogenesis , Platelet-Rich Plasma , Tissue Engineering , Tissue Scaffolds , Platelet-Rich Plasma/chemistry , Tissue Engineering/methods , Durapatite/chemistry , Durapatite/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Animals , Mice , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Osteogenesis/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Delayed-Action Preparations/pharmacology , Cell Differentiation/drug effects , Biomimetics/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line , Bone Regeneration/drug effects
8.
Int J Biol Macromol ; 270(Pt 1): 132176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750845

ABSTRACT

Cancer is a fatal disease, and unfortunately, the anticancer drugs harm normal cells. Plant's extracts are the golden key to solving this issue. In this research, fig latex - from Ficus carica- was encapsulated using cellulose acetate (CA) and poly (ethylene oxide) (PEO) polymers via electrospinning method (Fig@CA/PEO). Fig@CA/PEO nanofiber scaffold was characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The average fiber diameter was decreased with an increase in latex concentration from 715 nm to 583 nm. FT-IR spectroscopy indicated the presence of fig latex in Fig@CA/PEO nanofibers. Compared to 5-fluorouracil, Fig@CA/PEO nanofiber scaffold considered safe towards normal cells (WI-38). Moreover, the nanofiber scaffold was efficient against colon cancer cells (Caco) and liver cancer cells (HepG2) as it demonstrated IC50 values for cells by 23.97 µg/mL and 23.96 µg/mL, respectively. Besides, the nanofiber scaffold revealed mechanistic variations in apoptotic oncogenes; described by the upregulation of BCL2 and P21, combined by downregulation of p53 and TNF. Moreover, the nanofiber scaffold showed antioxidant activity counting 33.4, 36 and 41 % of DPPH scavenging as the fig latex concentration increased. The results demonstrate that the Fig@CA/PEO nanofiber scaffold is a promising substitute to traditional chemotherapy.


Subject(s)
Antineoplastic Agents , Antioxidants , Cellulose , Ficus , Latex , Nanofibers , Polyethylene Glycols , Nanofibers/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Cellulose/pharmacology , Humans , Ficus/chemistry , Polyethylene Glycols/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Latex/chemistry , Latex/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Hep G2 Cells , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor
9.
Int J Biol Macromol ; 270(Pt 1): 132221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729499

ABSTRACT

Cellulose acetate (CA) is a non-toxic, renewable, and biodegradable polymeric material that can be effectively electrospuned into bacterial filtration efficient nanofiber membrane for face mask application. However, its fragile and non-antibacterial nature influenced its scalability. In this context, natural antibacterial gum rosin (GR) additive can be explored. Therefore, the present study aimed to produce a CA/GR composite nanofibers membrane for the finest bacterial filtration, excellent antibacterial moiety, and improved tensile properties for facemask application. Hence, in this work, we have studied the effect of GR concentrations (0-15 g) on the needleless electrospinning behavior and fibers' morphology through rheology, electrical conductivity, and SEM analysis. These analyses revealed that GR significantly affects the fibers' spinning behavior, morphology, and diameter of the produced fibers. Later, ATR-FTIR spectroscopy mapped the functional changes in the produced nanofibers that affirmed the integration of GR with CA polymer. This modification resulted in a 3-fold rise in tensile strength and an 11-fold decline in elongation% in 15 g CA/GR composite nanofibers membrane than the control sample. Furthermore, it has shown 98.79 ± 0.10% bacterial filtration efficiency and âˆ¼ 93 % reduction in Staphylococcus Aureus and Klebsiella Pneumoniae bacterial growth, elucidating a high-efficiency level for potential facemask application.


Subject(s)
Anti-Bacterial Agents , Bacteria , Cellulose , Masks , Nanofibers , Resins, Plant , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Electric Conductivity , Filtration/methods , Filtration/standards , Masks/microbiology , Masks/standards , Nanofibers/chemistry , Nanofibers/microbiology , Nanofibers/ultrastructure , Resins, Plant/chemistry , Rheology , Cellulose/analogs & derivatives , Cellulose/chemistry , Cellulose/pharmacology
10.
Int J Biol Macromol ; 269(Pt 2): 132157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723804

ABSTRACT

Hydrogel-based wound dressings are becoming increasingly important for wound healing. Bacterial cellulose (BC) has been commonly used as wound dressings due to its good in vitro and in vivo biocompatibility. However, pure BC does not possess antibacterial properties. In this regard, polycation gel was grafted onto the BC using a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with subsequent quaternization for antibacterial wound dressing. Dimethylethyl methacrylate (DMAEMA) was successfully polymerized on the BC surface which was confirmed by Fourier transform infrared spectroscopy and elemental analysis. The morphology structure, specific surface area, pore size, and mechanical properties were also characterized. The quaternized PDMAEMA grafted on the BC endowed it with excellent antibacterial activity against E. coli (Gram-negative) and S. aureus (Gram-positive) with a killing rate of 89.2 % and 93.4 %, respectively. The number of cells was significantly reduced on QPD/BC hydrogel, demonstrating its good anti-adhesion ability. In vitro cellular evaluation revealed that the antibacterial wound dressing exhibited good biocompatibility. Overall, this study provides a feasible method to develop antibacterial and anti-cell adhesive hydrogel, which has a promising potential for wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Cellulose , Escherichia coli , Polyelectrolytes , Staphylococcus aureus , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Wound Healing/drug effects , Polyamines/chemistry , Polyamines/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Methacrylates/chemistry , Mice , Microbial Sensitivity Tests , Humans , Nylons
11.
J Mater Chem B ; 12(22): 5496-5512, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38742807

ABSTRACT

Bacterial infections in wounds significantly impair the healing process. The use of natural antibacterial products over synthetic antibiotics has emerged as a new trend to address antimicrobial resistance. An ideal tissue engineering scaffold to treat infected wounds should possess antibacterial properties, while simultaneously promoting tissue regrowth. Synthesis of hydrogel scaffolds with antibacterial properties using hemp shive (HT1/HT2) lignin, sugarcane bagasse (SCB) lignin and cellulose was carried out. All lignin samples had low molecular weights and were constituted of G-type ß-5 dimers, linked by ß-O-4 bonds, as determined by MALDI-TOF-MS. Hemp lignin was more cytotoxic to mouse fibroblasts (L929) compared to SCB lignin. All lignin samples demonstrated antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis, with greater efficiency against Gram-negative strains. 3D hydrogels were engineered by crosslinking SCB lignin with SCB cellulose in varying weight ratios in the presence of epichlorohydrin. The stiffness of the hydrogels could be tailored by varying the lignin concentration. All hydrogels were biocompatible; however, better fibroblast adhesion was observed on the blended hydrogels compared to the 100% cellulose hydrogel, with the cellulose : lignin 70 : 30 hydrogel showing the highest L929 proliferation and best antibacterial properties with a 24-hour bacterial growth reduction ranging from 30.8 to 57.3%.


Subject(s)
Anti-Bacterial Agents , Cellulose , Lignin , Tissue Engineering , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Lignin/chemistry , Lignin/pharmacology , Animals , Mice , Tissue Scaffolds/chemistry , Microbial Sensitivity Tests , Fibroblasts/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Wound Healing/drug effects
12.
Int J Biol Macromol ; 268(Pt 1): 131655, 2024 May.
Article in English | MEDLINE | ID: mdl-38636763

ABSTRACT

This research aims to develop guided tissue regeneration (GTR) membranes from bacterial cellulose (BC), a natural polysaccharide-based biopolymer. A double-layered BC composite membrane was prepared by coating the BC membrane with mixed carboxymethyl cellulose/poly(ethylene oxide) (CMC/PEO) fibers via electrospinning. The CMC/PEO-BC membranes were then characterized for their chemical and physical characteristics. The 8 % (wt/v) CMC/PEO (1:1) aqueous solution yielded well-defined electrospun CMC/PEO nanofibers (125 ± 10 nm) without beads. The CMC/PEO-BC membranes exhibited good mechanical and swelling properties as well as good cytocompatibility against human periodontal ligament cells (hPDLs). Its functionalizability via carboxyl entities in CMC was tested using the calcium-binding domain of plant-derived recombinant human osteopontin (p-rhOPN-C122). As evaluated by enzyme-linked immunosorbent assay, a 98-99 % immobilization efficiency was achieved in a concentration-dependent manner over an applied p-rhOPN-C122 concentration range of 7.5-30 ng/mL. The biological function of the membrane was assessed by determining the expression levels of osteogenic-related gene transcripts using quantitative real-time reverse-transcriptase polymerase chain reaction. Mineralization assay indicated that the p-rhOPN-C122 immobilized CMC/PEO-BC membrane promoted hPDLs osteogenic differentiation. These results suggested that the developed membrane could serve as a promising GTR membrane for application in bone tissue regeneration.


Subject(s)
Cellulose , Membranes, Artificial , Periodontal Ligament , Humans , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Guided Tissue Regeneration/methods , Osteogenesis/drug effects , Osteopontin/metabolism , Osteopontin/genetics , Polyethylene Glycols/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Nanofibers/chemistry , Carboxymethylcellulose Sodium/chemistry
13.
Int J Biol Macromol ; 266(Pt 2): 131146, 2024 May.
Article in English | MEDLINE | ID: mdl-38561116

ABSTRACT

Diseases caused by pathogens severely hampered the development of aquaculture, especially largemouth bass virus (LMBV) has caused massive mortality and severe economic losses to the culture of largemouth bass (Micropterus salmoides). Considering the environmental hazards and human health, effective and environmentally friendly therapy strategy against LMBV is of vital importance and in pressing need. In the present study, a novel nanobody (NbE4) specific for LMBV was selected from a phage display nanobody library. Immunofluorescence and indirect ELISA showed that NbE4 could recognize LMBV virions and had strong binding capacity, but RT-qPCR evidenced that NBE4 did not render the virus uninfectious. Besides, antiviral drug ribavirin was used to construct a targeted drug system delivered by bacterial nanocellulose (BNC). RT-qPCR revealed that NbE4 could significantly enhance the antiviral activity of ribavirin in vitro and in vivo. The targeted drug delivery system (BNC-Ribavirin-NbE4, BRN) reduced the inflammatory response caused by LMBV infection and improved survival rate (BRN-L, 33.3 %; BRN-M, 46.7 %; BRN-H, 56.7 %)compared with control group (13.3 %), ribavirin group (RBV, 26.7 %) and BNC-ribavirin (BNC-R, 40.0 %), respectively. This research provided an effective antiviral strategy that improved the drug therapeutic effect and thus reduced the dosage.


Subject(s)
Antiviral Agents , Bass , Cellulose , Fish Diseases , Single-Domain Antibodies , Animals , Bass/virology , Bass/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Fish Diseases/virology , Fish Diseases/drug therapy , Fish Diseases/immunology , Ribavirin/pharmacology , Ribavirin/administration & dosage , Ranavirus/drug effects , Drug Delivery Systems/methods , Bacteria/drug effects
14.
Int J Biol Macromol ; 266(Pt 2): 131329, 2024 May.
Article in English | MEDLINE | ID: mdl-38574906

ABSTRACT

The bacterial nanocellulose (BnC) membranes were produced extracellularly by a novel aerobic acetic acid bacterium Komagataeibacter melomenusus. The BnC was modified in situ by adding carboxymethyl cellulose (CMC) into the culture media, obtaining a BnC-CMC product with denser fibril arrangement, improved rehydration ratio and elasticity in comparison to BnC. The proteolytic enzyme bromelain (Br) and antimicrobial peptide nisin (N) were immobilized to BnC matrix by ex situ covalent binding and/or adsorption. The optimal Br immobilization conditions towards the maximized specific proteolytic activity were investigated by response surface methodology as factor variables. At optimal conditions, i.e., 8.8 mg/mL CMC and 10 mg/mL Br, hyperactivation of the enzyme was achieved, leading to the specific proteolytic activity of 2.3 U/mg and immobilization efficiency of 39.1 %. The antimicrobial activity was observed against Gram-positive bacteria (S. epidermidis, S. aureus and E. faecalis) for membranes with immobilized N and was superior when in situ modified BnC membranes were used. N immobilized on the BnC or BnC-CMC membranes was cytocompatible and did not cause changes in normal human dermal fibroblast cell morphology. BnC membranes perform as an efficient carrier for Br or N immobilization, holding promise in wound debridement and providing antimicrobial action against Gram-positive bacteria, respectively.


Subject(s)
Acetobacteraceae , Bromelains , Cellulose , Nisin , Nisin/pharmacology , Nisin/chemistry , Bromelains/chemistry , Bromelains/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Acetobacteraceae/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/pharmacology , Nanostructures/chemistry , Microbial Sensitivity Tests
15.
Int J Biol Macromol ; 266(Pt 2): 131199, 2024 May.
Article in English | MEDLINE | ID: mdl-38574917

ABSTRACT

The objective of this study was to prepare biocomposites through the solution casting method followed by compression moulding in which bacterial cellulose (BC) deposited flax fabric (FF) produced through fermentation is coated with minimal amount of polylactic acid (PLA) and polyhydroxybutyrate (PHB). Biocomposites incorporated with 60 % of PLA or PHB (% w/w) show enhanced tensile strength. Cross-sectional morphology showed good superficial interaction of these biopolymers with fibres of FF thereby filling up the gaps present between the fibres. The tensile strength of biocomposites at 60 % PLA and 60 % PHB improved from 37.97 MPa (i.e., BC deposited FF produced in presence of honey) to 67.17 MPa and 56.26 MPa, respectively. Further, 0.25 % of nalidixic acid (NA) (% w/w) and 6 % of oleic acid (OA) (% w/w) incorporation into the biocomposites imparted prolonged antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The in vitro cytotoxicity of biocomposites was determined using L929 mouse fibroblast cells. The 3-(4,5-cime- thylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide cytotoxicity tests showed that the PHB derived biocomposites along with antibacterial compounds in it were non-toxic. In vitro degradation of biocomposites was measured for up to 8 weeks in the mimicked physiological environment that showed a gradual rate of degradation over the period.


Subject(s)
Anti-Bacterial Agents , Cellulose , Flax , Hydroxybutyrates , Polyesters , Polyesters/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Animals , Hydroxybutyrates/chemistry , Hydroxybutyrates/pharmacology , Flax/chemistry , Tensile Strength , Textiles , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Escherichia coli/drug effects , Cell Line
16.
Int J Biol Macromol ; 267(Pt 1): 131214, 2024 May.
Article in English | MEDLINE | ID: mdl-38580029

ABSTRACT

This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 µm and 97.350 µm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.


Subject(s)
Cellulose , Colitis , Dietary Fiber , Edible Seaweeds , Gastrointestinal Microbiome , Laminaria , Cellulose/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Mice , Dietary Fiber/pharmacology , Colitis/metabolism , Colitis/chemically induced , Fatty Acids, Volatile/metabolism , Male , Solubility , Inflammation/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Disease Models, Animal
17.
Int J Biol Macromol ; 267(Pt 1): 131291, 2024 May.
Article in English | MEDLINE | ID: mdl-38583839

ABSTRACT

Bacterial cellulose (BC) hydrogels are promising medical biomaterials that have been widely used for tissue repair, wound healing and cartilage engineering. However, the high water content of BC hydrogels increases the difficulty of storage and transportation. Moreover, they will lose their original hydrogel structure after dehydration, which severely limits their practical applications. Introducing the bio-based polyelectrolytes is expected to solve this problem. Here, we modified BC and combined it with quaternized chitosan (QCS) via a chemical reaction to obtain a dehydrated dialdehyde bacterial cellulose/quaternized chitosan (DBC/QCS) hydrogel with repeated swelling behavior and good antibacterial properties. The hydrogel can recover the initial state on the macro scale with a swelling ratio over 1000 % and possesses excellent antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with a killing rate of 80.8 % and 81.3 %, respectively. In addition, the hydrogel has excellent biocompatibility, which is conducive to the stretching of L929 cells. After 14 d of in vivo wound modeling in rats, it was found that the hydrogel loaded with pirfenidone (PFD) could promote collagen deposition and accelerate wound healing with scar prevention. This rehydratable hydrogel can be stored and transported under dry conditions, which is promising for practical applications.


Subject(s)
Anti-Bacterial Agents , Cellulose , Escherichia coli , Hydrogels , Staphylococcus aureus , Wound Healing , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Staphylococcus aureus/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Escherichia coli/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Mice , Cell Line , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
18.
Int J Biol Macromol ; 268(Pt 2): 131737, 2024 May.
Article in English | MEDLINE | ID: mdl-38657940

ABSTRACT

Recently, there has been a surge in curiosity regarding the application of biopolymer-derived nanomaterials, primarily attributable to their extensive array of potential applications. In this study, nanocellulose was extracted from algae, biomolecule substances synthesized selenium nanoparticles, and a simple nanocomposite of nanocellulose and nanoselenium was elaborated using nanocellulose as a reducing agent under hydrothermal conditions. These nanocomposite materials have markedly improved properties at low concentrations. Our obtained polymers were characterized using techniques including Fourier-transform infrared spectroscopy, X-ray powder diffraction, Thermo gravimetric analysis (TGA), Scanning electron microscopic (SEM), Energy Dispersive X-ray analysis (EDX), Transmission electron microscopic (TEM), Zeta Potential and Dynamic Light Scattering (DLS). The size of nanocellulose, nanoselenium, and nanocomposite ranged from 35 to 85 nm. Antimicrobial investigation of the prepared nanopolymers was tested against Gram-negative bacteria such as Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538, Gram-positive bacteria such as Escherichia coli ATCC8739 and Pseudomonas aeruginosa ATCC 90274 and fungi such as Candida albicans ATCC 10221 besides Aspergillus fumigatus. In antibacterial action tests, nanoselenium showed significant efficacy against Bacillus subtilis with a 12 mm zone of inhibition, while the nanocomposite eclipsed all microorganisms. Nanocellulose and the nanocomposite were potent against Staphylococcus aureus (14 mm and 16 mm zones of inhibition, respectively). The nanocomposite showed potential against Escherichia coli and Pseudomonas aeruginosa (17 mm and 15 mm zones of inhibition, respectively). All polymers effectively inhibited Candida albicans growth (18 mm for the nanocomposite). The minimum inhibitory concentrations (MIC) for three polymers have also been established. While nanocellulose displayed a MIC of 62.5 µg/ml in contradiction to Staphylococcus aureus, nanoselenium demonstrated a significant MIC of 3.95 µg/ml against Bacillus subtilis. These findings highlight the potential of the nanocomposite (nanocellulose-nanoselenium) as a broad-spectrum antimicrobial polymer.


Subject(s)
Anti-Infective Agents , Cellulose , Microbial Sensitivity Tests , Nanocomposites , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Selenium/chemistry , Selenium/pharmacology , Drug Synergism , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Spectroscopy, Fourier Transform Infrared
19.
Food Chem ; 451: 139417, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678651

ABSTRACT

In this study, an antibacterial material (CNF@CoMn-NS) with oxidase-like activity was created using ultrathin cobalt­manganese nanosheets (CoMn-NS) with a larger specific surface area grown onto pineapple peel cellulose nanofibrils (CNF). The results showed that the CoMn-NS grew well on the CNF, and the obtained CNF@CoMn-NS exhibited good oxidase-like activity. The imidazole salt framework of the CNF@CoMn-NS contained cobalt and manganese in multiple oxidation states, enabling an active redox cycle and generating active oxygen species (ROS) such as singlet molecular oxygen atoms (1O2) and superoxide radical (·O2-), resulting in the significant inactivation of Staphylococcus aureus (74.14%) and Escherichia coli (54.87%). Importantly, the CNF@CoMn-NS did not exhibit cytotoxicity. The CNF@CoMn-NS further self-assembled into a CNF@CoMn-NS paper with flexibility, stability, and antibacterial properties, which can effectively protect the wound of two varieties of pears from decay caused by microorganisms. This study demonstrated the potential of using renewable and degradable CNF as substrate combined with artificial enzymes as a promising approach to creating antibacterial materials for food preservation and even extending to textiles and biomedical applications.


Subject(s)
Ananas , Anti-Bacterial Agents , Cellulose , Escherichia coli , Food Preservation , Fruit , Nanofibers , Staphylococcus aureus , Ananas/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Fruit/chemistry , Fruit/microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Nanofibers/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidoreductases/genetics , Microbial Sensitivity Tests
20.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663278

ABSTRACT

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Subject(s)
Glycerol , Magnesium , Wound Healing , Wound Healing/drug effects , Animals , Glycerol/chemistry , Glycerol/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Mice , Silk/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Bandages , Humans , Rats , Nanofibers/chemistry , Cell Proliferation/drug effects , Neovascularization, Physiologic/drug effects , Male , Human Umbilical Vein Endothelial Cells , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...