Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 297(4): 101084, 2021 10.
Article in English | MEDLINE | ID: mdl-34411561

ABSTRACT

Among the extensive repertoire of carbohydrate-active enzymes, lytic polysaccharide monooxygenases (LPMOs) have a key role in recalcitrant biomass degradation. LPMOs are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides such as cellulose and chitin. Several LPMOs contain carbohydrate-binding modules (CBMs) that are known to promote LPMO efficiency. However, structural and functional properties of some CBMs remain unknown, and it is not clear why some LPMOs, like CjLPMO10A from the soil bacterium Cellvibrio japonicus, have multiple CBMs (CjCBM5 and CjCBM73). Here, we studied substrate binding by these two CBMs to shine light on their functional variation and determined the solution structures of both by NMR, which constitutes the first structure of a member of the CBM73 family. Chitin-binding experiments and molecular dynamics simulations showed that, while both CBMs bind crystalline chitin with Kd values in the micromolar range, CjCBM73 has higher affinity for chitin than CjCBM5. Furthermore, NMR titration experiments showed that CjCBM5 binds soluble chitohexaose, whereas no binding of CjCBM73 to this chitooligosaccharide was detected. These functional differences correlate with distinctly different arrangements of three conserved aromatic amino acids involved in substrate binding. In CjCBM5, these residues show a linear arrangement that seems compatible with the experimentally observed affinity for single chitin chains. On the other hand, the arrangement of these residues in CjCBM73 suggests a wider binding surface that may interact with several chitin chains. Taken together, these results provide insight into natural variation among related chitin-binding CBMs and the possible functional implications of such variation.


Subject(s)
Bacterial Proteins/chemistry , Cellvibrio/enzymology , Chitosan/chemistry , Mixed Function Oxygenases/chemistry , Oligosaccharides/chemistry , Protein Domains
2.
Biochem J ; 478(14): 2927-2944, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34240737

ABSTRACT

The release of glucose from lignocellulosic waste for subsequent fermentation into biofuels holds promise for securing humankind's future energy needs. The discovery of a set of copper-dependent enzymes known as lytic polysaccharide monooxygenases (LPMOs) has galvanised new research in this area. LPMOs act by oxidatively introducing chain breaks into cellulose and other polysaccharides, boosting the ability of cellulases to act on the substrate. Although several proteins have been implicated as electron sources in fungal LPMO biochemistry, no equivalent bacterial LPMO electron donors have been previously identified, although the proteins Cbp2D and E from Cellvibrio japonicus have been implicated as potential candidates. Here we analyse a small c-type cytochrome (CjX183) present in Cellvibrio japonicus Cbp2D, and show that it can initiate bacterial CuII/I LPMO reduction and also activate LPMO-catalyzed cellulose-degradation. In the absence of cellulose, CjX183-driven reduction of the LPMO results in less H2O2 production from O2, and correspondingly less oxidative damage to the enzyme than when ascorbate is used as the reducing agent. Significantly, using CjX183 as the activator maintained similar cellulase boosting levels relative to the use of an equivalent amount of ascorbate. Our results therefore add further evidence to the impact that the choice of electron source can have on LPMO action. Furthermore, the study of Cbp2D and other similar proteins may yet reveal new insight into the redox processes governing polysaccharide degradation in bacteria.


Subject(s)
Bacterial Proteins/metabolism , Cellvibrio/enzymology , Cytochrome c Group/metabolism , Mixed Function Oxygenases/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Cellulose/metabolism , Cellvibrio/genetics , Cytochrome c Group/chemistry , Cytochrome c Group/genetics , Hydrogen Peroxide/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Models, Molecular , Oligosaccharides/metabolism , Oxidation-Reduction , Oxygen/metabolism , Protein Domains , Spectrophotometry/methods , Substrate Specificity
3.
Appl Environ Microbiol ; 87(5): e0263420, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33355108

ABSTRACT

Carbohydrate-binding modules (CBMs) are usually appended to carbohydrate-active enzymes (CAZymes) and serve to potentiate catalytic activity, for example, by increasing substrate affinity. The Gram-negative soil saprophyte Cellvibrio japonicus is a valuable source for CAZyme and CBM discovery and characterization due to its innate ability to degrade a wide array of plant polysaccharides. Bioinformatic analysis of the CJA_2959 gene product from C. japonicus revealed a modular architecture consisting of a fibronectin type III (Fn3) module, a cryptic module of unknown function (X181), and a glycoside hydrolase family 5 subfamily 4 (GH5_4) catalytic module. We previously demonstrated that the last of these, CjGH5F, is an efficient and specific endo-xyloglucanase (M. A. Attia, C. E. Nelson, W. A. Offen, N. Jain, et al., Biotechnol Biofuels 11:45, 2018, https://doi.org/10.1186/s13068-018-1039-6). In the present study, C-terminal fusion of superfolder green fluorescent protein in tandem with the Fn3-X181 modules enabled recombinant production and purification from Escherichia coli. Native affinity gel electrophoresis revealed binding specificity for the terminal galactose-containing plant polysaccharides galactoxyloglucan and galactomannan. Isothermal titration calorimetry further evidenced a preference for galactoxyloglucan polysaccharide over short oligosaccharides comprising the limit-digest products of CjGH5F. Thus, our results identify the X181 module as the defining member of a new CBM family, CBM88. In addition to directly revealing the function of this CBM in the context of xyloglucan metabolism by C. japonicus, this study will guide future bioinformatic and functional analyses across microbial (meta)genomes. IMPORTANCE This study reveals carbohydrate-binding module family 88 (CBM88) as a new family of galactose-binding protein modules, which are found in series with diverse microbial glycoside hydrolases, polysaccharide lyases, and carbohydrate esterases. The definition of CBM88 in the carbohydrate-active enzymes classification (http://www.cazy.org/CBM88.html) will significantly enable future microbial (meta)genome analysis and functional studies.


Subject(s)
Bacterial Proteins/genetics , Carrier Proteins , Cellvibrio/enzymology , Glycoside Hydrolases , Carbohydrates , Galactose/analogs & derivatives , Glucans , Glycoside Hydrolases/genetics , Mannans , Polysaccharides
4.
Appl Environ Microbiol ; 86(22)2020 10 28.
Article in English | MEDLINE | ID: mdl-32917758

ABSTRACT

The α-diglucoside trehalose has historically been known as a component of the bacterial stress response, though it more recently has been studied for its relevance in human gut health and biotechnology development. The utilization of trehalose as a nutrient source by bacteria relies on carbohydrate-active enzymes, specifically those of the glycoside hydrolase family 37 (GH37), to degrade the disaccharide into substituent glucose moieties for entry into metabolism. Environmental bacteria using oligosaccharides for nutrients often possess multiple carbohydrate-active enzymes predicted to have the same biochemical activity and therefore are thought to be functionally redundant. In this study, we characterized trehalose degradation by the biotechnologically important saprophytic bacterium Cellvibrio japonicus This bacterium possesses two predicted α-α-trehalase genes, tre37A and tre37B, and our investigation using mutational analysis found that only the former is essential for trehalose utilization by C. japonicus Heterologous expression experiments found that only the expression of the C. japonicus tre37A gene in an Escherichia colitreA mutant strain allowed for full utilization of trehalose. Biochemical characterization of C. japonicus GH37 activity determined that the tre37A gene product is solely responsible for cleaving trehalose and is an acidic α-α-trehalase. Bioinformatic and mutational analyses indicate that Tre37A directly cleaves trehalose to glucose in the periplasm, as C. japonicus does not possess a phosphotransferase system. This study facilitates the development of a comprehensive metabolic model for α-linked disaccharides in C. japonicus and more broadly expands our understanding of the strategies that saprophytic bacteria employ to capture diverse carbohydrates from the environment.IMPORTANCE The metabolism of trehalose is becoming increasingly important due to the inclusion of this α-diglucoside in a number of foods and its prevalence in the environment. Bacteria able to utilize trehalose in the human gut possess a competitive advantage, as do saprophytic microbes in terrestrial environments. While the biochemical mechanism of trehalose degradation is well understood, what is less clear is how bacteria acquire this metabolite from the environment. The significance of this report is that by using the model saprophyte Cellvibrio japonicus, we were able to functionally characterize the two predicted trehalase enzymes that the bacterium possesses and determined that the two enzymes are not equivalent and are not functionally redundant. The results and approaches used to understand the complex physiology of α-diglucoside metabolism from this study can be applied broadly to other polysaccharide-degrading bacteria.


Subject(s)
Bacterial Proteins/genetics , Cellvibrio/metabolism , Trehalase/genetics , Trehalose/metabolism , Bacterial Proteins/metabolism , Cellvibrio/enzymology , Gene Expression , Trehalase/metabolism
5.
Biotechnol Bioeng ; 117(12): 3876-3890, 2020 12.
Article in English | MEDLINE | ID: mdl-32833226

ABSTRACT

Understanding the complex growth and metabolic dynamics in microorganisms requires advanced kinetic models containing both metabolic reactions and enzymatic regulation to predict phenotypic behaviors under different conditions and perturbations. Most current kinetic models lack gene expression dynamics and are separately calibrated to distinct media, which consequently makes them unable to account for genetic perturbations or multiple substrates. This challenge limits our ability to gain a comprehensive understanding of microbial processes towards advanced metabolic optimizations that are desired for many biotechnology applications. Here, we present an integrated computational and experimental approach for the development and optimization of mechanistic kinetic models for microbial growth and metabolic and enzymatic dynamics. Our approach integrates growth dynamics, gene expression, protein secretion, and gene-deletion phenotypes. We applied this methodology to build a dynamic model of the growth kinetics in batch culture of the bacterium Cellvibrio japonicus grown using either cellobiose or glucose media. The model parameters were inferred from an experimental data set using an evolutionary computation method. The resulting model was able to explain the growth dynamics of C. japonicus using either cellobiose or glucose media and was also able to accurately predict the metabolite concentrations in the wild-type strain as well as in ß-glucosidase gene deletion mutant strains. We validated the model by correctly predicting the non-diauxic growth and metabolite consumptions of the wild-type strain in a mixed medium containing both cellobiose and glucose, made further predictions of mutant strains growth phenotypes when using cellobiose and glucose media, and demonstrated the utility of the model for designing industrially-useful strains. Importantly, the model is able to explain the role of the different ß-glucosidases and their behavior under genetic perturbations. This integrated approach can be extended to other metabolic pathways to produce mechanistic models for the comprehensive understanding of enzymatic functions in multiple substrates.


Subject(s)
Bacterial Proteins , Cellvibrio , Gene Deletion , Models, Biological , beta-Glucosidase , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellobiose/metabolism , Cellvibrio/enzymology , Cellvibrio/genetics , Kinetics , beta-Glucosidase/biosynthesis , beta-Glucosidase/genetics
6.
J Biol Chem ; 293(10): 3849-3859, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29367339

ABSTRACT

Understanding the strategies used by bacteria to degrade polysaccharides constitutes an invaluable tool for biotechnological applications. Bacteria are major mediators of polysaccharide degradation in nature; however, the complex mechanisms used to detect, degrade, and consume these substrates are not well-understood, especially for recalcitrant polysaccharides such as chitin. It has been previously shown that the model bacterial saprophyte Cellvibrio japonicus is able to catabolize chitin, but little is known about the enzymatic machinery underlying this capability. Previous analyses of the C. japonicus genome and proteome indicated the presence of four glycoside hydrolase family 18 (GH18) enzymes, and studies of the proteome indicated that all are involved in chitin utilization. Using a combination of in vitro and in vivo approaches, we have studied the roles of these four chitinases in chitin bioconversion. Genetic analyses showed that only the chi18D gene product is essential for the degradation of chitin substrates. Biochemical characterization of the four enzymes showed functional differences and synergistic effects during chitin degradation, indicating non-redundant roles in the cell. Transcriptomic studies revealed complex regulation of the chitin degradation machinery of C. japonicus and confirmed the importance of CjChi18D and CjLPMO10A, a previously characterized chitin-active enzyme. With this systems biology approach, we deciphered the physiological relevance of the glycoside hydrolase family 18 enzymes for chitin degradation in C. japonicus, and the combination of in vitro and in vivo approaches provided a comprehensive understanding of the initial stages of chitin degradation by this bacterium.


Subject(s)
Bacterial Proteins/metabolism , Cellvibrio/enzymology , Chitin/metabolism , Chitinases/metabolism , Gene Expression Regulation, Bacterial , Glycoside Hydrolases/metabolism , Models, Biological , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalytic Domain , Cellvibrio/growth & development , Cellvibrio/metabolism , Chitinases/chemistry , Chitinases/genetics , Computational Biology , Gene Deletion , Glucans/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hydrolysis , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Multigene Family , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Systems Analysis
7.
Mol Microbiol ; 107(5): 610-622, 2018 03.
Article in English | MEDLINE | ID: mdl-29266479

ABSTRACT

Lignocellulose degradation by microbes plays a central role in global carbon cycling, human gut metabolism and renewable energy technologies. While considerable effort has been put into understanding the biochemical aspects of lignocellulose degradation, much less work has been done to understand how these enzymes work in an in vivo context. Here, we report a systems level study of xylan degradation in the saprophytic bacterium Cellvibrio japonicus. Transcriptome analysis indicated seven genes that encode carbohydrate active enzymes were up-regulated during growth with xylan containing media. In-frame deletion analysis of these genes found that only gly43F is critical for utilization of xylo-oligosaccharides, xylan, and arabinoxylan. Heterologous expression of gly43F was sufficient for the utilization of xylo-oligosaccharides in Escherichia coli. Additional analysis found that the xyn11A, xyn11B, abf43L, abf43K, and abf51A gene products were critical for utilization of arabinoxylan. Furthermore, a predicted transporter (CJA_1315) was required for effective utilization of xylan substrates, and we propose this unannotated gene be called xntA (xylan transporter A). Our major findings are (i) C. japonicus employs both secreted and surface associated enzymes for xylan degradation, which differs from the strategy used for cellulose degradation, and (ii) a single cytoplasmic ß-xylosidase is essential for the utilization of xylo-oligosaccharides.


Subject(s)
Bacterial Proteins/metabolism , Cellvibrio/enzymology , Cytoplasm/metabolism , Xylans/metabolism , Xylosidases/metabolism , Bacterial Proteins/genetics , Cellvibrio/genetics , Computer Simulation , Escherichia coli/enzymology , Escherichia coli/genetics , Fermentation , Gene Deletion , Gene Expression Profiling , Genes, Bacterial , Sequence Analysis, RNA , Xylosidases/genetics
8.
Environ Microbiol ; 19(12): 5025-5039, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29052930

ABSTRACT

Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), ß(1→3)/ß(1→4) mixed-linkage glucan (MLG) and ß(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse ß-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these ß-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports ß(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives ß(1→3) glucan utilization. Finally, Bgl3D is the crucial ß-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.


Subject(s)
Carbohydrate Metabolism/physiology , Cellvibrio/enzymology , Glycoside Hydrolases/metabolism , beta-Glucans/metabolism , beta-Glucosidase/metabolism , Amino Acid Sequence , Biomass , Cellvibrio/metabolism , Glucans/metabolism , Lignin/metabolism , Xylans/metabolism
9.
Biomed Res Int ; 2017: 6304248, 2017.
Article in English | MEDLINE | ID: mdl-28798934

ABSTRACT

Cellvibrio sp. PR1 is a xylanolytic and agarolytic bacterium isolated from the Pearl River. Strain PR1 is closely related to Cellvibrio fibrivorans and C. ostraviensis (identity > 98%). The xylanase and agarase contents of strain PR1 reach up to 15.4 and 25.9 U/mL, respectively. The major cellular fatty acids consisted of C16:0 (36.7%), C18:0 (8.8%), C20:0 (6.8%), C15:0 iso 2-OH or/and C16:1ω7c (17.4%), and C18:1ω7c or/and C18:1ω6c (6.7%). A total of 251 CAZyme modules (63 CBMs, 20 CEs, 128 GHs, 38 GTs, and 2 PLs) were identified from 3,730 predicted proteins. Genomic analysis suggested that strain PR1 has a complete xylan-hydrolyzing (5 ß-xylanases, 16 ß-xylosidases, 17 α-arabinofuranosidases, 9 acetyl xylan esterases, 4 α-glucuronidases, and 2 ferulic acid esterases) and agar-hydrolyzing enzyme system (2 ß-agarases and 2 α-neoagarooligosaccharide hydrolases). In addition, the main metabolic pathways of xylose, arabinose, and galactose are established in the genome-wide analysis. This study shows that strain PR1 contains a large number of glycoside hydrolases.


Subject(s)
Bacterial Proteins/genetics , Cellvibrio/genetics , Genome, Bacterial , Glycoside Hydrolases/genetics , Rivers/microbiology , Water Microbiology , Bacterial Proteins/biosynthesis , Cellvibrio/enzymology , Cellvibrio/isolation & purification , Glycoside Hydrolases/biosynthesis
10.
Chemistry ; 23(13): 3197-3205, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28092124

ABSTRACT

Xylan-degrading enzymes are crucial for the deconstruction of hemicellulosic biomass, making the hydrolysis products available for various industrial applications such as the production of biofuel. To determine the substrate specificities of these enzymes, we prepared a collection of complex xylan oligosaccharides by automated glycan assembly. Seven differentially protected building blocks provided the basis for the modular assembly of 2-substituted, 3-substituted, and 2-/3-substituted arabino- and glucuronoxylan oligosaccharides. Elongation of the xylan backbone relied on iterative additions of C4-fluorenylmethoxylcarbonyl (Fmoc) protected xylose building blocks to a linker-functionalized resin. Arabinofuranose and glucuronic acid residues have been selectively attached to the backbone using fully orthogonal 2-(methyl)naphthyl (Nap) and 2-(azidomethyl)benzoyl (Azmb) protecting groups at the C2 and C3 hydroxyls of the xylose building blocks. The arabinoxylan oligosaccharides are excellent tools to map the active site of glycosyl hydrolases involved in xylan deconstruction. The substrate specificities of several xylanases and arabinofuranosidases were determined by analyzing the digestion products after incubation of the oligosaccharides with glycosyl hydrolases.


Subject(s)
Bacteroides/enzymology , Catalytic Domain , Cellvibrio/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Bacteroides/chemistry , Bacteroides/metabolism , Cellvibrio/chemistry , Cellvibrio/metabolism , Hydrolysis , Oligosaccharides/chemical synthesis , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Solid-Phase Synthesis Techniques , Substrate Specificity , Xylans/chemical synthesis , Xylans/chemistry , Xylans/metabolism , Xylosidases/chemistry , Xylosidases/metabolism
11.
World J Microbiol Biotechnol ; 32(7): 121, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27263016

ABSTRACT

Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.


Subject(s)
Cellvibrio/metabolism , Polysaccharides/metabolism , Carbohydrate Metabolism , Cellvibrio/enzymology , Cellvibrio/genetics , Humans
12.
Proteomics ; 16(13): 1904-14, 2016 07.
Article in English | MEDLINE | ID: mdl-27169553

ABSTRACT

Studies of the secretomes of microbes grown on insoluble substrates are important for the discovery of novel proteins involved in biomass conversion. However, data in literature and this study indicate that secretome samples tend to be contaminated with cytoplasmic proteins. We have examined the secretome of the Gram-negative soil bacterium Cellvibrio japonicus using a simple plate-based culturing technique that yields samples with high fractions (60-75%) of proteins that are predicted to be secreted. By combining this approach with label-free quantification using the MaxLFQ algorithm, we have mapped and quantified proteins secreted by C. japonicus during growth on α- and ß-chitin. Hierarchical clustering of the detected protein quantities revealed groups of up-regulated proteins that include all five putative C. japonicus chitinases as well as a chitin-specific lytic polysaccharide monooxygenase (CjLPMO10A). A small set of secreted proteins were co-regulated with known chitin-specific enzymes, including several with unknown catalytic functions. These proteins provide interesting targets for further studies aimed at unraveling the enzymatic machineries used by C. japonicus for recalcitrant polysaccharide degradation. Studies of chitin degradation indicated that C. japonicus indeed produces an efficient chitinolytic enzyme cocktail. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD002843 (http://proteomecentral.proteomexchange.org/dataset/PXD002843).


Subject(s)
Bacterial Proteins/metabolism , Cellvibrio/enzymology , Cellvibrio/growth & development , Chitin/metabolism , Chitinases/metabolism , Carbohydrate Metabolism , Cellvibrio/metabolism , Proteomics/methods
13.
Biosci Biotechnol Biochem ; 80(7): 1294-305, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27031293

ABSTRACT

Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of ß-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. ß-Mannoside hydrolase and 4-O-ß-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in ß-mannan metabolism, where it epimerizes ß-d-mannopyranosyl-(1→4)-d-mannose to ß-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other ß-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Bacteroides fragilis/enzymology , Carbohydrate Epimerases/metabolism , Cellvibrio/enzymology , Gene Expression Regulation, Bacterial , Protons , Aldose-Ketose Isomerases/genetics , Amino Acid Sequence , Bacteroides fragilis/genetics , Carbohydrate Epimerases/genetics , Carbohydrate Metabolism , Catalytic Domain , Cellobiose/chemistry , Cellobiose/metabolism , Cellvibrio/genetics , Disaccharides/chemistry , Disaccharides/metabolism , Glucose/chemistry , Glucose/metabolism , Mannose/chemistry , Mannose/metabolism , Models, Molecular , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Substrate Specificity , beta-Mannosidase/genetics , beta-Mannosidase/metabolism
14.
FEBS J ; 283(9): 1701-19, 2016 05.
Article in English | MEDLINE | ID: mdl-26929175

ABSTRACT

UNLABELLED: The heteropolysaccharide xyloglucan (XyG) comprises up to one-quarter of the total carbohydrate content of terrestrial plant cell walls and, as such, represents a significant reservoir in the global carbon cycle. The complex composition of XyG requires a consortium of backbone-cleaving endo-xyloglucanases and side-chain cleaving exo-glycosidases for complete saccharification. The biochemical basis for XyG utilization by the model Gram-negative soil saprophytic bacterium Cellvibrio japonicus is incompletely understood, despite the recent characterization of associated side-chain cleaving exo-glycosidases. We present a detailed functional and structural characterization of a multimodular enzyme encoded by gene locus CJA_2477. The CJA_2477 gene product comprises an N-terminal glycoside hydrolase family 74 (GH74) endo-xyloglucanase module in train with two carbohydrate-binding modules (CBMs) from families 10 and 2 (CBM10 and CBM2). The GH74 catalytic domain generates Glc4 -based xylogluco-oligosaccharide (XyGO) substrates for downstream enzymes through an endo-dissociative mode of action. X-ray crystallography of the GH74 module, alone and in complex with XyGO products spanning the entire active site, revealed a broad substrate-binding cleft specifically adapted to XyG recognition, which is composed of two seven-bladed propeller domains characteristic of the GH74 family. The appended CBM10 and CBM2 members notably did not bind XyG, nor other soluble polysaccharides, and instead were specific cellulose-binding modules. Taken together, these data shed light on the first step of xyloglucan utilization by C. japonicus and expand the repertoire of GHs and CBMs for selective biomass analysis and utilization. DATABASE: Structural data have been deposited in the RCSB protein database under the Protein Data Bank codes: 5FKR, 5FKS, 5FKT and 5FKQ.


Subject(s)
Bacterial Proteins/chemistry , Cellvibrio/chemistry , Glucans/chemistry , Glycoside Hydrolases/chemistry , Proline/chemistry , Soil Microbiology , Xylans/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cellvibrio/enzymology , Cloning, Molecular , Computational Biology , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Food Chain , Gene Expression , Glucans/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Kinetics , Models, Molecular , Proline/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Xylans/metabolism
15.
Enzyme Microb Technol ; 85: 82-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26920485

ABSTRACT

An α-neoagarooligosaccharide hydrolase, AgaNash, was purified from Cellvibrio sp. OA-2007, which utilizes agarose as a substrate. The agaNash gene, which encodes AgaNash, was obtained by comparing the N-terminal amino acid sequence of AgaNash with that deduced from the nucleotide sequence of the full-length OA-2007 genome. The agaNash gene combined with the Saccharomyces cerevisiae signal peptide α-mating factor was transformed into the YPH499 strain of S. cerevisiae to generate YPH499/pTEF-MF-agaNash, and the recombinant yeast was confirmed to produce AgaNash, though it was mainly retained within the recombinant cell. To enhance AgaNash secretion from the cell, the signal peptide was replaced with a combination of the signal peptide and a threonine- and serine-rich tract (T-S region) of the S. diastaticus STA1 gene. The new recombinant yeast, YPH499/pTEF-STA1SP-agaNash, was demonstrated to secrete AgaNash and hydrolyze neoagarobiose with an efficiency of as high as 84%, thereby producing galactose, which is a fermentable sugar for the yeast, and ethanol, at concentrations of up to 1.8 g/L, directly from neoagarobiose.


Subject(s)
Disaccharides/metabolism , Ethanol/metabolism , Glycoside Hydrolases/metabolism , Biofuels , Cellvibrio/enzymology , Cellvibrio/genetics , Cloning, Molecular , Fermentation , Galactose/metabolism , Genes, Bacterial , Glycoside Hydrolases/genetics , Mating Factor/genetics , Protein Sorting Signals/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
16.
J Biol Chem ; 291(14): 7300-12, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26858252

ABSTRACT

Cellvibrio japonicusis a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO,CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of theCjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and ß-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show thatCjLPMO10A is needed byC. japonicusto obtain efficient growth on both purified chitin and crab shell particles.


Subject(s)
Cellvibrio/enzymology , Chitin/chemistry , Mixed Function Oxygenases/chemistry , Chitin/metabolism , Crystallography, X-Ray , Mixed Function Oxygenases/metabolism , Protein Structure, Tertiary
17.
J Biol Chem ; 291(14): 7439-49, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26801613

ABSTRACT

Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases,CfLPMO10 andTbLPMO10 fromCellulomonas fimiandThermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducingCtCBM3a, from theClostridium thermocellumcellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact ofCtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM fromCfLPMO10 or the introduction of a family 10 CBM fromCellvibrio japonicusLPMO10B intoTbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations.


Subject(s)
Cellulomonas/enzymology , Cellvibrio/enzymology , Clostridium thermocellum/enzymology , Mixed Function Oxygenases/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellulomonas/genetics , Cellvibrio/genetics , Clostridium thermocellum/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mixed Function Oxygenases/genetics , Polysaccharides, Bacterial/genetics , Protein Structure, Tertiary
18.
J Biotechnol ; 214: 57-8, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26253962

ABSTRACT

Cellvibrio pealriver PR1 (CGMCC 1.14955=NBRC 110968) was isolated from a freshwater sample from the Pearl River in China. It is able to degrade various carbohydrates such as starch, xylan, agar, cellulose or chitin. The genomic feature and polysaccharide hydrolases of this strain were described in this paper. The total genome size of C. pealriver PR1 is 4,427,922 bp with 3986 coding sequences (CDS), 53 tRNAs, 16 rRNAs and 1 sRNA. The annotated full genome sequence of this strain provides the genetic basis for revealing its role as a xylanolytic and agarolytic bacterium.


Subject(s)
Cellvibrio/genetics , Fresh Water/microbiology , Genome, Bacterial/genetics , Bacterial Proteins , Cellvibrio/enzymology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Endo-1,4-beta Xylanases , Glycoside Hydrolases , Water Microbiology
19.
Carbohydr Polym ; 132: 452-9, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26256370

ABSTRACT

Structurally different wheat arabinoxylan hydrolyzates (AXH) were generated using different combinations of Cellvibrio japonicas xylanase (CJX), Aspergillus niger xylanase (ANX), Bifidobacterium adolescentis arabinofuranosidase (BAF) and Clostridium thermocellum arabinofuranosidase (CAF). Between the two xylanases, ANX might be an enzyme of choice for the production of AXH with simple structural details while CJX might be selected for the production of AXH with more complex structural features. Addition of BAF followed by CAF is more effective in generating AXH with higher amount of unsubstituted xylose. CJX series resulted in lower molecular weights compared to ANX series. The information derived about the capabilities of the two xylanases and two arabinofuranosidase could provide important information in decision making regarding enzymes to be used to generate AXH with specific structural details. Such hydrolyzates could be useful as substrate for future research exploring the effect of fine structural details in AXH on their biological and physical properties.


Subject(s)
Endo-1,4-beta Xylanases/metabolism , Triticum/metabolism , Xylans/metabolism , Bifidobacterium/enzymology , Cellvibrio/enzymology , Clostridium/enzymology , Discriminant Analysis , Gas Chromatography-Mass Spectrometry , Hydrolysis , Magnetic Resonance Spectroscopy , Xylans/chemistry
20.
Sci Rep ; 5: 10521, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25994900

ABSTRACT

Cellvibrio mixtus strain J3-8 is a gram-negative, xylanase-producing aerobic soil bacterium isolated from giant snails in Singapore. It is able to produce up to 10.1 U ml(-1) of xylanase, which is comparable to xylanase production from known bacterial and fungal strains. Genome sequence analysis of strain J3-8 reveals that the assembled draft genome contains 5,171,890 bp with a G + C content of 46.66%, while open reading frame (ORF) annotations indicate a high density of genes encoding glycoside hydrolase (GH) families involved in (hemi)cellulose hydrolysis. On the basis of 15 identified putative xylanolytic genes, one metabolic pathway in strain J3-8 is constructed for utilization of xylan. In addition, a 1,083 bp xylanase gene from strain J3-8 represents a new member of GH11 family. This gene is verified to be novel via phylogenetic analysis. To utilize this novel gene for hydrolysis of xylan to xylose, it is expressed in recombinant E. coli and characterized for its hydrolytic activity. This study shows that strain J3-8 is a potential candidate for hydrolysis of lignocellulosic materials.


Subject(s)
Bacterial Proteins/metabolism , Cellvibrio/genetics , Genome, Bacterial , Xylosidases/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cellvibrio/classification , Cellvibrio/enzymology , Cloning, Molecular , Escherichia coli/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Sequence Homology, Amino Acid , Snails/microbiology , Xylosidases/chemistry , Xylosidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...