Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 104(9): 1323-1333, 2017 09.
Article in English | MEDLINE | ID: mdl-29885233

ABSTRACT

PREMISE OF THE STUDY: Seed-level trade-offs of heterocarpic species remain poorly understood. We propose that seedlings emerging from seeds with a permanent pappus (dispersing seeds) are stronger competitors than those emerging from seeds without a pappus (nondispersing seeds) because dispersing seeds are larger and germinate faster than nondispersing seeds in Centaurea solstitialis. METHODS: We conducted a competition experiment with both seed morphs, in which we recorded emergence rate and proportion, estimated seed dispersal by wind (anemochory) and by mammals (exozoochory), and measured size and abundance of seed morphs. KEY RESULTS: We found that seedlings from pappus seeds had greater competitive abilities than those from non-pappus seeds. Similarly, pappus seedlings emerged at much faster rates and larger proportions than non-pappus seedlings. Pappus seeds were larger, were more numerous, and displayed improved exozoochory compared to non-pappus seeds. Anemochory was poor for both seed morphs. CONCLUSIONS: We found support for our hypothesis, raising in turn the possibility that competition and colonization are positively associated in seed morphs of heterocarpic species with enhanced exozoochory of larger seeds. These findings are not consistent with those from heterocarpic species with enhanced anemochory of smaller seeds or slower-germinating seeds. Our results additionally suggest that pappus and non-pappus seeds of C. solstitialis display a task-division strategy in which pappus morphs colonize and preempt unoccupied sites through improved dispersal and fast and large emergence of seedlings with increased competitive abilities, whereas non-pappus morphs promote site persistence through delayed germination and dormancy. This strategy may contribute to the success of C. solstitialis in highly variable environments.


Subject(s)
Centaurea/physiology , Seed Dispersal , Seedlings/physiology , Seeds/physiology , Centaurea/anatomy & histology , Seeds/anatomy & histology
2.
Mol Phylogenet Evol ; 77: 195-215, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24784974

ABSTRACT

The Centaurea group is part of the Circum-Mediterranean Clade (CMC) of genus Centaurea subgenus Centaurea, a mainly Mediterranean plant group with more than 200 described species. The group is traditionally split on morphological basis into three sections: Centaurea, Phalolepis and Willkommia. This division, however, is doubtful, especially in light of molecular approaches. In this study we try to resolve this phylogenetic problem and to consolidate the circumscription and delimitation of the entire group against other closely related groups. We analyzed nuclear (internal transcribed spacer of the ribosomal genes) and chloroplast (rpl32-trnL intergenic spacer) DNA regions for most of the described species of the Centaurea group using phylogenetic and network approaches, and we checked the data for recombination. Phylogeny was used to reconstruct the evolution of the lacerate-membranaceous bract appendages using parsimony. The magnitude of incomplete lineage sorting was tested estimating the effective population sizes. Molecular dating was performed using a Bayesian approach, and the ancestral area reconstruction was conducted using the Dispersal-Extinction-Cladogenesis method. Monophyly of the Centaurea group is confirmed if a few species are removed. Our results do not support the traditional sectional division. There is a high incongruence between the two markers and between genetic data and morphology. However, there is a clear relation between geography and the structure of the molecular data. Diversification in the Centaurea group mainly took place during the Pliocene and Pleistocene. The ancestral area infered for the Circum-Mediterranean Clade of Centaurea is the Eastern Mediterranean, whereas for the Centaurea group it is most likely NW-Africa. The large incongruencies, which hamper phylogenetic reconstruction, are probably the result of introgression, even though the presence of incomplete lineage sorting as an additional factor cannot be ruled out. Convergent evolution of morphological traits may have led to incongruence between morphology-based, traditional systematics and molecular results. Our results also cast major doubts about current species delimitation.


Subject(s)
Centaurea/genetics , Phylogeny , Africa , Bayes Theorem , Centaurea/anatomy & histology , DNA, Plant/genetics , Genetic Speciation , Phylogeography , Recombination, Genetic , Sequence Analysis, DNA
3.
Am J Bot ; 100(10): 2040-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24107581

ABSTRACT

PREMISE OF THE STUDY: Biological invasions threaten global biodiversity, resulting in severe ecological and economic costs. Phenotypic plasticity and differentiation in fitness-related traits after introduction can contribute to increased performance in invasive populations of plants. We determined whether postintroduction evolution in trait means or in their plasticity, or inherent species-wide phenotypic plasticity has promoted invasiveness in a European annual forb. • METHODS: In a common greenhouse, we compared several fitness-related traits and the phenotypic plasticity of those traits under four levels of nutrients among native and invasive populations of Centaurea melitensis. We tested 18 populations from three regions of similar mediterranean climate type: the native range (southern Spain) and two invaded ranges (California and central Chile). • KEY RESULTS: Centaurea melitensis possesses overall phenotypic plasticity, which is a trait that promotes invasiveness. Invasive populations were differentiated from native plants for several trait means and their levels of phenotypic plasticity in directions that enhance competitive ability and success. Invasive plants flowered earlier and grew faster in the early stages of growth phases, important features for invasiveness. • CONCLUSIONS: Phenotypic plasticity, its evolution postinvasion, and the evolution of fitness-related trait means in invasive populations have potentially contributed to the invasion of C. melitensis in California and Chile. Along with an overall wide range of tolerance to growing conditions, C. meltiensis populations that have colonized habitats in California and Chile have undergone rapid evolution in several life history traits and the plasticities of those traits in directions that would promote invasiveness in mediterranean ecosystems.


Subject(s)
Centaurea/anatomy & histology , Genetic Fitness , Introduced Species , Quantitative Trait, Heritable , Centaurea/growth & development , Confidence Intervals , Germination/physiology , Linear Models , Mediterranean Region , Phenotype
4.
J Evol Biol ; 26(11): 2415-27, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24070120

ABSTRACT

Even though the importance of selection for trait evolution is well established, we still lack a functional understanding of the mechanisms underlying phenotypic selection. Because animals necessarily use their sensory system to perceive phenotypic traits, the model of sensory bias assumes that sensory systems are the main determinant of signal evolution. Yet, it has remained poorly known how sensory systems contribute to shaping the fitness surface of selected individuals. In a greenhouse experiment, we quantified the strength and direction of selection on floral coloration in a population of cornflowers exposed to bumblebees as unique pollinators during 4 days. We detected significant selection on the chromatic and achromatic (brightness) components of floral coloration. We then studied whether these patterns of selection are explicable by accounting for the visual system of the pollinators. Using data on bumblebee colour vision, we first showed that bumblebees should discriminate among quantitative colour variants. The observed selection was then compared to the selection predicted by psychophysical models of bumblebee colour vision. The achromatic but not the chromatic channel of the bumblebee's visual system could explain the observed pattern of selection. These results highlight that (i) pollinators can select quantitative variation in floral coloration and could thus account for a gradual evolution of flower coloration, and (ii) stimulation of the visual system represents, at least partly, a functional mechanism potentially explaining pollinators' selection on floral colour variants.


Subject(s)
Bees/physiology , Centaurea/physiology , Color Vision , Color , Flowers/physiology , Visual Perception , Adaptation, Physiological , Animals , Biological Evolution , Centaurea/anatomy & histology , Flowers/anatomy & histology , Phenotype , Pollination , Selection, Genetic
5.
Am J Bot ; 100(8): 1555-61, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23935112

ABSTRACT

PREMISE OF THE STUDY: Because seeds have essential functions in the life cycle of plants, even subtle changes in their characteristics may have important demographic consequences. In this study, we examined whether potential changes in seed characteristics as a result of polyploidy or postintroduction evolution may have contributed to the invasion of Centaurea stoebe (Asteraceae). This plant occurs as diploid and tetraploid cytotypes in its native range in Europe, whereas only tetraploids have been found and become invasive in North America. Specific comparisons among these three "geo-cytotypes" allow us to explore hypotheses of preadaptation resulting from polyploidy (European diploids vs. European tetraploids) and postintroduction evolution (European tetraploids vs. North American tetraploids). METHODS: Using seeds collected from plants of each geo-cytotype grown in a common maternal environment, we compared seed mass, morphology (achene and pappus size), dispersal potential (falling velocity, seed roughness), survival, germination, and seedling emergence in a combination of laboratory, greenhouse and field experiments. KEY RESULTS: We found increased seed mass in North American tetraploids compared with European tetraploids. Seed morphology and dispersal potential were largely similar in all geo-cytotypes. Seed survival under field conditions was higher in native and invasive tetraploids compared with diploids. Germination in the laboratory was similar among all geo-cytotypes, but seedling emergence under field conditions was higher in invasive tetraploids than in the other geo-cytotypes. CONCLUSIONS: Our findings suggest that a combination of preadaptation due to polyploidy (increased seed survival) and further postintroduction evolution in North American tetraploids (increased seed mass and seedling emergence) may have contributed to their invasion.


Subject(s)
Centaurea/genetics , Seeds/genetics , Biomass , Centaurea/anatomy & histology , Centaurea/physiology , Diploidy , Europe , Genetic Drift , Germination , Introduced Species , North America , Seedlings/anatomy & histology , Seedlings/genetics , Seedlings/physiology , Seeds/anatomy & histology , Seeds/physiology , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...