Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.846
Filter
1.
Continuum (Minneap Minn) ; 30(3): 757-780, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830070

ABSTRACT

OBJECTIVE: This article describes nervous system infections and complications that lead to neurologic emergencies. LATEST DEVELOPMENTS: New research on the use of dexamethasone in viral and fungal infections is reviewed. The use of advanced MRI techniques to evaluate nervous system infections is discussed. ESSENTIAL POINTS: Neurologic infections become emergencies when they lead to a rapid decline in a patient's function. Emergent complications may result from neurologic infections that, if not identified promptly, can lead to permanent deficits or death. These complications include cerebral edema and herniation, spinal cord compression, hydrocephalus, vasculopathy resulting in ischemic stroke, venous thrombosis, intracerebral hemorrhage, status epilepticus, and neuromuscular respiratory weakness.


Subject(s)
Emergencies , Humans , Male , Female , Central Nervous System Infections/complications , Central Nervous System Infections/diagnosis , Middle Aged , Dexamethasone/administration & dosage
2.
Mycopathologia ; 189(3): 34, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637353

ABSTRACT

Central nervous system (CNS) infections represent a challenge due to the complexities associated with their diagnosis and treatment, resulting in a high incidence rate and mortality. Here, we presented a case of CNS mixed infection involving Candida and human cytomegalovirus (HCMV), successfully diagnosed through macrogenomic next-generation sequencing (mNGS) in China. A comprehensive review and discussion of previously reported cases were also provided. Our study emphasizes the critical role of early pathogen identification facilitated by mNGS, underscoring its significance. Notably, the integration of mNGS with traditional methods significantly enhances the diagnostic accuracy of CNS infections. This integrated approach has the potential to provide valuable insights for clinical practice, facilitating early diagnosis, allowing for treatment adjustments, and ultimately, improving the prognosis for patients with CNS infections.


Subject(s)
Central Nervous System Infections , Coinfection , Humans , Central Nervous System , Early Diagnosis , High-Throughput Nucleotide Sequencing , Metagenomics , Central Nervous System Infections/diagnosis , Sensitivity and Specificity , Retrospective Studies
3.
Proc Natl Acad Sci U S A ; 121(17): e2320311121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635627

ABSTRACT

Listeria monocytogenes is a bacterial pathogen that can cause life-threatening central nervous system (CNS) infections. While mechanisms by which L. monocytogenes and other pathogens traffic to the brain have been studied, a quantitative understanding of the underlying dynamics of colonization and replication within the brain is still lacking. In this study, we used barcoded L. monocytogenes to quantify the bottlenecks and dissemination patterns that lead to cerebral infection. Following intravenous (IV) inoculation, multiple independent invasion events seeded all parts of the CNS from the blood, however, only one clone usually became dominant in the brain. Sequential IV inoculations and intracranial inoculations suggested that clones that had a temporal advantage (i.e., seeded the CNS first), rather than a spatial advantage (i.e., invaded a particular brain region), were the main drivers of clonal dominance. In a foodborne model of cerebral infection with immunocompromised mice, rare invasion events instead led to a highly infected yet monoclonal CNS. This restrictive bottleneck likely arose from pathogen transit into the blood, rather than directly from the blood to the brain. Collectively, our findings provide a detailed quantitative understanding of the L. monocytogenes population dynamics that lead to CNS infection and a framework for studying the dynamics of other cerebral infections.


Subject(s)
Central Nervous System Infections , Listeria monocytogenes , Listeriosis , Mice , Animals , Listeria monocytogenes/physiology , Listeriosis/microbiology , Brain/microbiology
4.
Curr Opin Infect Dis ; 37(3): 192-200, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38602163

ABSTRACT

PURPOSE OF REVIEW: Central nervous system (CNS) infections in solid organ transplant (SOT) recipients may present atypical or nonspecific symptoms. Due to a wider range of infectious agents compared with immunocompetent hosts, diagnosis is challenging. This review categorizes CNS infections in SOT recipients by cause. RECENT FINDINGS: New studies have reported new data on the epidemiology and the risk factors associated with each specific pathogen described in this review. Additionally, we included the treatment recommendations. SUMMARY: The latest findings give us an insight into the different pathogens causing infectious neurologic complications in SOT recipients.


Subject(s)
Central Nervous System Infections , Organ Transplantation , Humans , Organ Transplantation/adverse effects , Central Nervous System Infections/etiology , Central Nervous System Infections/epidemiology , Risk Factors , Transplant Recipients , Immunocompromised Host
5.
Curr Opin Infect Dis ; 37(3): 201-210, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38529912

ABSTRACT

PURPOSE OF REVIEW: Emerging and re-emerging central nervous system (CNS) infections are a major public health concern in the tropics. The reasons for this are myriad; climate change, rainfall, deforestation, increased vector density combined with poverty, poor sanitation and hygiene. This review focuses on pathogens, which have emerged and re-emerged, with the potential for significant morbidity and mortality. RECENT FINDINGS: In recent years, multiple acute encephalitis outbreaks have been caused by Nipah virus, which carries a high case fatality. Arboviral infections, predominantly dengue, chikungunya and Zika are re-emerging increasingly especially in urban areas due to changing human habitats, vector behaviour and viral evolution. Scrub typhus, another vector borne disease caused by the bacterium Orientia tsutsugamushi , is being established as a leading cause of CNS infections in the tropics. SUMMARY: A syndromic and epidemiological approach to CNS infections in the tropics is essential to plan appropriate diagnostic tests and management. Rapid diagnostic tests facilitate early diagnosis and thus help prompt initiation and focusing of therapy to prevent adverse outcomes. Vector control, cautious urbanization and deforestation, and reducing disturbance of ecosystems can help prevent spread of vector-borne diseases. Regional diagnostic and treatment approaches and specific vaccines are required to avert morbidity and mortality.


Subject(s)
Central Nervous System Infections , Tropical Climate , Humans , Central Nervous System Infections/epidemiology , Communicable Diseases, Emerging/epidemiology
6.
Shock ; 61(3): 375-381, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38517267

ABSTRACT

ABSTRACT: Background. Identifying the causative pathogens of central nervous system infections (CNSIs) is crucial, but the low detection rate of traditional culture methods in cerebrospinal fluid (CSF) has made the pathogenic diagnosis of CNSIs a longstanding challenge. Patients with CNSIs after neurosurgery often overlap with inflammatory and bleeding. Metagenomic next-generation sequencing (mNGS) has shown some benefits in pathogen detection. This study aimed to investigate the diagnostic performance of mNGS in the etiological diagnosis of CNSIs in patients after neurosurgery. Methods. In this prospective observational study, we enrolled patients with suspected CNSIs after neurosurgical operations who were admitted to the intensive care unit of Beijing Tiantan Hospital. All enrolled patients' CSF was tested using mNGS and pathogen culture. According to comprehensive clinical diagnosis, the enrolled patients were divided into CNSIs group and non-CNSIs group to compare the diagnostic efficiency of mNGS and pathogen culture. Results. From December 2021 to March 2023, 139 patients were enrolled while 66 in CNSIs group and 73 in non-CNSIs. The mNGS exceeded culture in the variety and quantity of pathogens detected. The mNGS outperformed traditional pathogen culture in terms of positive percent agreement (63.63%), accuracy (82.01%), and negative predictive value (75.00%), with statistically significant differences ( P < 0.05) for traditional pathogen culture. The mNGS also detected bacterial spectrum and antimicrobial resistance genes. Conclusions. Metagenomics has the potential to assist in the diagnosis of patients with CNSIs who have a negative culture.


Subject(s)
Central Nervous System Infections , Critical Care , Humans , High-Throughput Nucleotide Sequencing , Intensive Care Units , Central Nervous System Infections/diagnosis , Hospitalization , Sensitivity and Specificity
7.
Pediatr Emerg Care ; 40(6): 438-442, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38478927

ABSTRACT

OBJECTIVE: The aim of the present study is to evaluate the necessity of performing lumbar puncture in patients experiencing febrile seizures, considering the epidemiology specific to Brazil. METHODS: A retrospective cross-sectional study was performed from January 2017 to December 2021. RESULTS: A total of 469 children with seizure and fever were analyzed. The identified event was the first in 65.9% (n = 309). A total of 54.2% (n = 254) of patients had a simple febrile seizure. Infectious focus, excluding previous central nervous system (CNS) infection, was identified in 35.6% (n = 167) patients. Meningitis was identified in 7.7% (n = 36) patients, all of them were viral. Patients with CNS infection had a higher frequency of symptoms such as nausea and vomiting, drowsiness, headache, and higher level of leukocytosis. A longer duration of fever was found to be more strongly associated with CNS infection. CONCLUSIONS: When considering the use of lumbar puncture in febrile seizure, it is important to conduct a comprehensive evaluation that considers multiple factors, including clinical signs, symptoms, and the overall clinical context. Meningeal signs may be less prominent, and other symptoms such as lethargy, irritability, and vomiting may serve as more reliable indicators. Although clinical examination suggestive of meningitis remains an important factor, the recurrence of febrile seizures and a longer length of fever can provide additional insights and aid in decision-making regarding lumbar puncture.


Subject(s)
Central Nervous System Infections , Seizures, Febrile , Spinal Puncture , Humans , Seizures, Febrile/epidemiology , Seizures, Febrile/etiology , Retrospective Studies , Male , Female , Cross-Sectional Studies , Child, Preschool , Infant , Risk Factors , Central Nervous System Infections/epidemiology , Central Nervous System Infections/complications , Brazil/epidemiology , Child , Fever/epidemiology , Fever/etiology
9.
Eur J Pediatr ; 183(6): 2615-2623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492030

ABSTRACT

Parechovirus (HpEV) and Enterovirus (EV) infections in children mostly have a mild course but are particularly fearsome in newborns in whom they may cause aseptic meningitis, encephalitis, and myocarditis. Our study aimed to describe the clinical presentations and peculiarities of CNS infection by HpEV and EV in neonates. This is a single-center retrospective study at Istituto Gaslini, Genoa, Italy. Infants aged ≤ 30 days with a CSF RTq-PCR positive for EV or HpEV from January 1, 2022, to December 1, 2023, were enrolled. Each patient's record included demographic data, blood and CSF tests, brain MRI, therapies, length of stay, ICU admission, complications, and mortality. The two groups were compared to identify any differences and similarities. Twenty-five patients (15 EV and 10 HpEV) with a median age of 15 days were included. EV patients had a more frequent history of prematurity/neonatal respiratory distress syndrome (p = 0.021), more respiratory symptoms on admission (p = 0.012), and higher C-reactive protein (CRP) levels (p = 0.027), whereas ferritin values were significantly increased in HpEV patients (p = 0.001). Eight patients had a pathological brain MRI, equally distributed between the two groups. Three EV patients developed myocarditis and one HpEV necrotizing enterocolitis with HLH-like. No deaths occurred.  Conclusion: EV and HpEV CNS infections are not easily distinguishable by clinical features. In both cases, brain MRI abnormalities are not uncommon, and a severe course of the disease is possible. Hyper-ferritinemia may represent an additional diagnostic clue for HpEV infection, and its monitoring is recommended to intercept HLH early and initiate immunomodulatory treatment. Larger studies are needed to confirm our findings. What is Known: • Parechovirus and Enteroviruses are the most common viral pathogens responsible for sepsis and meningoencephalitis in neonates and young infants. • The clinical course and distinguishing features of Parechovirus and Enterovirus central nervous system infections are not well described. What is New: • Severe disease course, brain MRI abnormalities, and complications are not uncommon in newborns with Parechovirus and Enteroviruses central nervous system infections. • Hyper-ferritinemia may represent an additional diagnostic clue for Parechovirus infection and its monitoring is recommended.


Subject(s)
Enterovirus Infections , Parechovirus , Picornaviridae Infections , Humans , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Enterovirus Infections/complications , Male , Retrospective Studies , Female , Parechovirus/isolation & purification , Infant, Newborn , Picornaviridae Infections/diagnosis , Picornaviridae Infections/complications , Picornaviridae Infections/epidemiology , Enterovirus/isolation & purification , Italy/epidemiology , Central Nervous System Infections/virology , Central Nervous System Infections/diagnosis , Central Nervous System Infections/epidemiology , Central Nervous System Infections/cerebrospinal fluid , Magnetic Resonance Imaging
10.
Infect Dis (Lond) ; 56(5): 402-409, 2024 May.
Article in English | MEDLINE | ID: mdl-38339990

ABSTRACT

BACKGROUND: Carbapenems are widely used for empiric treatment of healthcare-associated central nervous system (CNS) infections. We investigated the feasibility of a carbapenem-sparing strategy, utilising a third-generation cephalosporin (ceftriaxone or cefotaxime) (combined with vancomycin) for the empirical treatment of healthcare-associated CNS infections in Eastern Denmark. METHODS: The departments of neurosurgery and neuro-intensive care at Copenhagen University Hospital Rigshospitalet. First, we analysed local microbiological data (1st January 2020-31st August 2022) to identify microorganisms non-susceptible to third-generation cephalosporin. Subsequently, we assessed all carbapenem prescriptions over a three-month period for their indication and justification. RESULTS: In total, 25,247 bacterial cultures were identified, of which 2,563 CNS-related, were included in the analysis. The positivity rate was 10.5% (n = 257/2439) for cerebrospinal-fluid samples and 75.8% (n = 95/124) for brain parenchyma. CNS samples from five individual patients revealed bacteria non-susceptible to third generation cephalosporins (Enterobacter spp. (n = 3), Pseudomonas spp. (n = 2), Klebsiella spp. (n = 2), Citrobacter freundii (n = 1)). All five patients had been hospitalised for ≥10days at the time-point of antibiotic therapy. Out of 11,626 sets of blood cultures, a total of 10 individual patients had Gram-negative blood-stream infections with resistance to ceftriaxone and piperacillin/tazobactam. 140 days-of-therapy (32%) with carbapenem in 18 patients (36%) were definitively or possibly indicated according to guidelines, none were indicated for healthcare-associated CNS-infections. CONCLUSION: An empiric treatment strategy relying on a third-generation cephalosporin appears suitable for healthcare-associated CNS infections at our tertiary hospital, serving a population of 2.6 million. However, in patients with prolonged hospitalization (≥10 days), immunosuppression, prior broad-spectrum antibiotic use, or history of resistant Gram-negative bacteria, empirical prescription of carbapenem may be needed.


Subject(s)
Central Nervous System Infections , Cross Infection , Humans , Carbapenems/therapeutic use , Ceftriaxone , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Delivery of Health Care , Central Nervous System , Central Nervous System Infections/drug therapy , Denmark
11.
J Antimicrob Chemother ; 79(4): 820-825, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38366379

ABSTRACT

OBJECTIVES: To describe the pharmacokinetics/pharmacodynamics (PK/PD) of ceftazidime/avibactam in critically ill patients with CNS infections. METHODS: A prospective study of critically ill patients with CNS infections who were treated with ceftazidime/avibactam and the steady-state concentration (Css) of ceftazidime/avibactam in serum and/or CSF was conducted between August 2020 and May 2023. The relationship between PK/PD goal achievement, microbial eradication and the clinical efficacy of ceftazidime/avibactam was evaluated. RESULTS: Seven patients were finally included. The ceftazidime/avibactam target attainment in plasma was optimal for three, quasi-optimal for one and suboptimal for three. In three patients with CSF drug concentrations measured, ceftazidime/avibactam target attainment in CSF was 100% (3/3), which was optimal. The AUCCSF/serum values were 0.59, 0.44 and 0.35 for ceftazidime and 0.57, 0.53 and 0.51 for avibactam. Of the seven patients, 100% (7/7) were treated effectively, 71.4% (5/7) achieved microbiological eradication, 85.7% (6/7) survived and 14.3% (1/7) did not survive. CONCLUSIONS: The limited clinical data suggest that ceftazidime/avibactam is effective in the treatment of CNS infections caused by MDR Gram-negative bacilli (MDR-GNB), can achieve the ideal drug concentration of CSF, and has good blood-brain barrier penetration.


Subject(s)
Ceftazidime , Central Nervous System Infections , Humans , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Carbapenems , Critical Illness , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Central Nervous System Infections/drug therapy , Microbial Sensitivity Tests
12.
Infection ; 52(2): 583-595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38315377

ABSTRACT

BACKGROUND: Little is known about the etiology, clinical presentation, management, and outcome of central nervous system (CNS) infections in Indonesia, a country with a high burden of infectious diseases and a rising prevalence of HIV. METHODS: We included adult patients with suspected CNS infections at two referral hospitals in a prospective cohort between April 2019 and December 2021. Clinical, laboratory, and radiological assessments were standardized. We recorded initial and final diagnoses, treatments, and outcomes during 6 months of follow-up. RESULTS: Of 1051 patients screened, 793 were diagnosed with a CNS infection. Patients (median age 33 years, 62% male, 38% HIV-infected) presented a median of 14 days (IQR 7-30) after symptom onset, often with altered consciousness (63%), motor deficits (73%), and seizures (21%). Among HIV-uninfected patients, CNS tuberculosis (TB) was most common (60%), while viral (8%) and bacterial (4%) disease were uncommon. Among HIV-infected patients, cerebral toxoplasmosis (41%) was most common, followed by CNS TB (19%), neurosyphilis (15%), and cryptococcal meningitis (10%). A microbiologically confirmed diagnosis was achieved in 25% of cases, and initial diagnoses were revised in 46% of cases. In-hospital mortality was 30%, and at six months, 45% of patients had died, and 12% suffered from severe disability. Six-month mortality was associated with older age, HIV, and severe clinical, radiological and CSF markers at presentation. CONCLUSION: CNS infections in Indonesia are characterized by late presentation, severe disease, frequent HIV coinfection, low microbiological confirmation and high mortality. These findings highlight the need for earlier disease recognition, faster and more accurate diagnosis, and optimized treatment, coupled with wider efforts to improve the uptake of HIV services.


Subject(s)
Central Nervous System Infections , HIV Infections , Meningitis, Cryptococcal , Adult , Humans , Male , Female , Prospective Studies , Indonesia/epidemiology , HIV Infections/complications , HIV Infections/diagnosis , HIV Infections/epidemiology , Central Nervous System Infections/diagnosis , Central Nervous System Infections/epidemiology
13.
Fluids Barriers CNS ; 21(1): 17, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383424

ABSTRACT

BACKGROUND: Interpretation of cerebrospinal fluid (CSF) studies can be challenging in preterm infants. We hypothesized that intraventricular hemorrhage (IVH), post-hemorrhagic hydrocephalus (PHH), and infection (meningitis) promote pro-inflammatory CSF conditions reflected in CSF parameters. METHODS: Biochemical and cytological profiles of lumbar CSF and peripheral blood samples were analyzed for 81 control, 29 IVH grade 1/2 (IVH1/2), 13 IVH grade 3/4 (IVH3/4), 15 PHH, 20 culture-confirmed bacterial meningitis (BM), and 27 viral meningitis (VM) infants at 36.5 ± 4 weeks estimated gestational age. RESULTS: PHH infants had higher (p < 0.02) CSF total cell and red blood cell (RBC) counts compared to control, IVH1/2, BM, and VM infants. No differences in white blood cell (WBC) count were found between IVH3/4, PHH, BM, and VM infants. CSF neutrophil counts increased (p ≤ 0.03) for all groups compared to controls except IVH1/2. CSF protein levels were higher (p ≤ 0.02) and CSF glucose levels were lower (p ≤ 0.003) for PHH infants compared to all other groups. In peripheral blood, PHH infants had higher (p ≤ 0.001) WBC counts and lower (p ≤ 0.03) hemoglobin and hematocrit than all groups except for IVH3/4. CONCLUSIONS: Similarities in CSF parameters may reflect common pathological processes in the inflammatory response and show the complexity associated with interpreting CSF profiles, especially in PHH and meningitis/ventriculitis.


Subject(s)
Central Nervous System Infections , Hydrocephalus , Meningitis , Infant , Infant, Newborn , Humans , Infant, Premature , Clinical Relevance , Cerebral Hemorrhage/complications , Hydrocephalus/cerebrospinal fluid , Central Nervous System Infections/complications , Meningitis/complications , Cerebrospinal Fluid
14.
J Infect ; 88(3): 106117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320644

ABSTRACT

OBJECTIVES: We aimed to determine diagnostic accuracy of inflammatory markers in plasma and cerebrospinal fluid (CSF) for the diagnosis of central nervous system (CNS) infections and specifically bacterial meningitis. METHODS: We analyzed 12 cytokines, chemokines, and acute phase reactants in CSF and plasma of 738 patients with suspected neurological infection included in a multicenter prospective cohort. We determined diagnostic accuracy for predicting any CNS infection and bacterial meningitis. RESULTS: We included 738 episodes between 2017 and 2022, split into a derivation (n = 450) and validation cohort (n = 288). Of these patients, 224 (30%) were diagnosed with CNS infection, of which 81 (11%) with bacterial meningitis, 107 (14%) with viral meningitis or encephalitis, and 35 patients (5%) with another CNS infection. Diagnostic accuracy of CRP, IL-6, and Il-1ß in CSF was high, especially for diagnosing bacterial meningitis. Combining these biomarkers in a multivariable model increased accuracy and provided excellent discrimination between bacterial meningitis and all other disorders (AUC = 0.99), outperforming all individual biomarkers as well as CSF leukocytes (AUC = 0.97). When applied to the population of patients with a CSF leukocyte count of 5-1000 cells/mm3, accuracy of the model also provided a high diagnostic accuracy (AUC model = 0.97 vs. AUC CSF leukocytes = 0.80) with 100% sensitivity and 92% specificity. These results remained robust in a temporal validation cohort. CONCLUSIONS: Inflammatory biomarkers in CSF are able to differentiate CNS infections and especially bacterial meningitis from other disorders. When these biomarkers are combined, their diagnostic accuracy exceeds that of CSF leukocytes alone and as such these markers have added value to current clinical practice.


Subject(s)
Central Nervous System Infections , Meningitis, Bacterial , Meningitis, Viral , Nervous System Diseases , Adult , Humans , Prospective Studies , Meningitis, Bacterial/diagnosis , Meningitis, Viral/diagnosis , Biomarkers/cerebrospinal fluid , Central Nervous System Infections/diagnosis
15.
Ann Clin Microbiol Antimicrob ; 23(1): 22, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424544

ABSTRACT

BACKGROUND: Early and accurate etiological diagnosis is very important for improving the prognosis of central nervous system (CNS) infections in human immunodeficiency virus (HIV)-infected patients. The goal is not easily achieved by conventional microbiological tests. We developed a nanopore targeted sequencing (NTS) platform and evaluated the diagnostic performance for CNS infections in HIV-infected patients, with special focus on cryptococcal meningitis (CM). We compared the CM diagnostic performance of NTS with conventional methods and cryptococcal polymerase chain reaction (PCR). METHODS: This study included 57 hospitalized HIV-infected patients with suspected CNS infections from September 2018 to March 2022. The diagnosis established during hospitalization includes 27 cases of CM, 13 CNS tuberculosis, 5 toxoplasma encephalitis, 2 cytomegalovirus (CMV) encephalitis and 1 Varicella-zoster virus (VZV) encephalitis. The 2 cases of CMV encephalitis also have co-existing CM. Target-specific PCR amplification was used to enrich pathogen sequences before nanopore sequencing. NTS was performed on stored cerebrospinal fluid (CSF) samples and the results were compared with the diagnosis during hospitalization. RESULTS: 53 (93.0%) of the patients were male. The median CD4 cell count was 25.0 (IQR: 14.0-63.0) cells/uL. The sensitivities of CSF culture, India ink staining, cryptococcal PCR and NTS for CM were 70.4% (95%CI: 51.5 - 84.1%), 76.0% (95%CI: 56.6 - 88.5%), 77.8% (59.2 - 89.4%) and 85.2% (95%CI: 67.5 - 94.1%), respectively. All those methods had 100% specificity for CM. Our NTS platform could identify Cryptococcus at species level. Moreover, NTS was also able to identify all the 5 cases of toxoplasma encephalitis, 2 cases of CMV encephalitis and 1 VZV encephalitis. However, only 1 of 13 CNS tuberculosis cases was diagnosed by NTS, and so did Xpert MTB/RIF assay. CONCLUSIONS: NTS has a good diagnostic performance for CM in HIV-infected patients and may have the ability of simultaneously detecting other pathogens, including mixed infections. With continuing improving of the NTS platform, it may be a promising alterative microbiological test for assisting with the diagnosis of CNS infections.


Subject(s)
Central Nervous System Infections , Cytomegalovirus Infections , Encephalitis , HIV Infections , Nanopore Sequencing , Nanopores , Tuberculosis , Humans , Male , Female , HIV , DNA, Viral , Herpesvirus 3, Human/genetics , Central Nervous System Infections/diagnosis , Central Nervous System Infections/complications , Cytomegalovirus Infections/diagnosis , HIV Infections/complications , Tuberculosis/complications
16.
Sci Rep ; 14(1): 4015, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369552

ABSTRACT

FilmArray® Meningitis/Encephalitis panel (FAME-p) is used to diagnose central nervous system (CNS) infections. In this study, we investigated performance of FAME-p compared to comparator assays (CA), and for the first time, clinical diagnosis at discharge (CDD). 1000 consecutive patients with a cerebrospinal fluid (CSF) sample analyzed with FAME-p were identified. As CA, culture, polymerase chain reaction and cryptococcal antigen test were used. Medical records of patients were obtained. A CDD of CNS infection was made in 139 of 1000 CSF samples. FAME-p was positive in 66 samples with 44 viral and 22 bacterial agents. Thirteen FAME-p findings were not confirmed by CA, with four discrepant results remaining after comparison with the CDD. Positive percentage agreement (PPA) calculated against CA was 100%. Negative percentage agreement (NPA) calculated against CA was 94.4-99.8% for Haemophilus influenzae, Listeria monocytogenes, Streptococcus agalactiae, S. pneumoniae and varicella-zoster virus (VZV). NPA calculated against CDD was higher (compared to CA) for L. monocytogenes, S. agalactiae and VZV (100%), and lower for Escherichia coli, enterovirus and herpes simplex virus 2 (50-83.3%). NPA of FAME-p for human herpes virus 6 was difficult to interpret. Eighty-four cases received diagnosis of CNS-infection despite negative FAME-p. The four most common non-infectious etiologies were primary headache disorders, cranial nerve palsies, neuroinflammatory disorders and seizure. Although FAME-p shows good performance in diagnosis of CNS infections, result of FAME-p should be interpreted carefully. Considering infectious diseases not covered by FAME-p as well as non-infectious differential diagnoses is important in this context.


Subject(s)
Central Nervous System Infections , Encephalitis , Meningitis , Humans , Patient Discharge , Herpesvirus 3, Human , Retrospective Studies , Central Nervous System Infections/diagnosis , Streptococcus pneumoniae , Meningitis/cerebrospinal fluid , Encephalitis/cerebrospinal fluid
17.
J Neurol ; 271(4): 2086-2101, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279999

ABSTRACT

BACKGROUND: With artificial intelligence (AI) on the rise, it remains unclear if AI is able to professionally evaluate medical research and give scientifically valid recommendations. AIM: This study aimed to assess the accuracy of ChatGPT's responses to ten key questions on brain abscess diagnostics and treatment in comparison to the guideline recently published by the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). METHODS: All ten PECO (Population, Exposure, Comparator, Outcome) questions which had been developed during the guideline process were presented directly to ChatGPT. Next, ChatGPT was additionally fed with data from studies selected for each PECO question by the ESCMID committee. AI's responses were subsequently compared with the recommendations of the ESCMID guideline. RESULTS: For 17 out of 20 challenges, ChatGPT was able to give recommendations on the management of patients with brain abscess, including grade of evidence and strength of recommendation. Without data prompting, 70% of questions were answered very similar to the guideline recommendation. In the answers that differed from the guideline recommendations, no patient hazard was present. Data input slightly improved the clarity of ChatGPT's recommendations, but, however, led to less correct answers including two recommendations that directly contradicted the guideline, being associated with the possibility of a hazard to the patient. CONCLUSION: ChatGPT seems to be able to rapidly gather information on brain abscesses and give recommendations on key questions about their management in most cases. Nevertheless, single responses could possibly harm the patients. Thus, the expertise of an expert committee remains inevitable.


Subject(s)
Biomedical Research , Brain Abscess , Brain Diseases , Central Nervous System Infections , Humans , Artificial Intelligence
18.
Pediatr Infect Dis J ; 43(4): 345-349, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38190645

ABSTRACT

BACKGROUND: Multiplex polymerase chain reaction assays have the potential to reduce antibiotic use and shorten length of inpatient stay in children with suspected central nervous system infection by obtaining an early microbiological diagnosis. The clinical impact of the implementation of the BioFire FilmArray Meningitis/Encephalitis Panel on the management of childhood meningitis was evaluated at the John Radcliffe Hospital in Oxford and Children's Health Ireland at Temple Street in Dublin. METHODS: Children who had lumbar punctures performed as part of a septic screen were identified retrospectively through clinical discharge coding and microbiology databases from April 2017 to December 2018. Anonymized clinical and laboratory data were collected. Comparison of antibiotic use, length of stay and outcome at discharge was made with a historical cohort in Oxford (2012-2016), presenting before implementation of the FilmArray. RESULTS: The study included 460 children who had a lumbar puncture as part of an evaluation for suspected central nervous system infection. Twelve bacterial cases were identified on the FilmArray that were not detected by conventional bacterial culture. Bacterial culture identified one additional case of bacterial meningitis, caused by Escherichia coli , which had not been identified on the FilmArray. Duration of antibiotics was shorter in children when FilmArray was used than before its implementation; enterovirus meningitis (median: 4 vs. 5 days), human parechovirus meningitis (median: 4 vs. 4.5 days) and culture/FilmArray-negative cerebrospinal fluid (median: 4 vs. 6 days). CONCLUSIONS: The use of a FilmArray can identify additional bacterial cases of meningitis in children that had been negative by traditional culture methods. Children with viral meningitis and culture-negative meningitis received shorter courses of antibiotics and had shorter hospital stays when FilmArray was used. Large studies to evaluate the clinical impact and cost effectiveness of incorporating the FilmArray into routine testing are warranted.


Subject(s)
Central Nervous System Infections , Encephalitis , Meningitis, Bacterial , Meningitis, Viral , Meningitis , Child , Humans , Encephalitis/diagnosis , Retrospective Studies , Meningitis/microbiology , Cohort Studies , Bacteria/genetics , Multiplex Polymerase Chain Reaction/methods , Central Nervous System Infections/diagnosis , Anti-Bacterial Agents/therapeutic use , Meningitis, Viral/diagnosis
19.
J Hosp Infect ; 145: 99-105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219837

ABSTRACT

BACKGROUND: The diagnosis of meningitis in non-surgical hospitalized patients is often difficult and diagnostic accuracy of clinical, laboratory, and radiological characteristics is unknown. AIM: To assess diagnostic accuracy for individual clinical characteristics of patients suspected of non-surgical nosocomial central nervous system (CNS) infections. METHODS: In a prospective multi-centre cohort study in the Netherlands with adults suspected of CNS infections, consecutive patients who underwent a lumbar puncture for the suspicion of a non-surgical nosocomial CNS infection were included. All episodes were categorized into five final clinical diagnosis categories, as reference standard: CNS infection, CNS inflammatory disease, systemic infection, other neurological disease, or non-systemic, non-neurological disease. FINDINGS: Between 2012 and 2022, 114 out of 1275 (9%) patients included in the cohort had suspected non-surgical nosocomial CNS infection: 16 (14%) had a confirmed diagnosis, including four (25%) with bacterial meningitis, nine (56%) with viral CNS infections, two (13%) fungal meningitis, and one (6%) parasitic meningitis. Diagnostic accuracy of individual clinical characteristics was generally low. Elevated CSF leucocyte count had the highest sensitivity (81%; 95% confidence interval (CI): 54-96) and negative predictive value (NPV) (96%; 95% CI: 90-99). When combining the presence of abnormalities in neurological or CSF examination, sensitivity for diagnosing a CNS infection was 100% (95% CI: 79-100) and NPV 100% (95% CI: 78-100). CSF examination changed clinical management in 47% of patients. CONCLUSION: Diagnostic accuracy for individual clinical characteristics was low, with elevated CSF leucocyte count having the highest sensitivity and NPV.


Subject(s)
Central Nervous System Infections , Cross Infection , Meningitis, Bacterial , Adult , Humans , Cohort Studies , Prospective Studies , Cross Infection/diagnosis , Central Nervous System Infections/diagnosis , Central Nervous System Infections/microbiology , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/microbiology
20.
BMC Infect Dis ; 24(1): 103, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238719

ABSTRACT

BACKGROUND: Detecting pathogens in pediatric central nervous system infection (CNSI) is still a major challenge in medicine. In addition to conventional diagnostic patterns, metagenomic next-generation sequencing (mNGS) shows great potential in pathogen detection. Therefore, we systematically evaluated the diagnostic performance of mNGS in cerebrospinal fluid (CSF) in pediatric patients with CNSI. METHODS: Related literature was searched in the Web of Science, PubMed, Embase, and Cochrane Library. We screened the literature and extracted the data according to the selection criteria. The quality of included studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and the certainty of the evidence was measured by the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) score system. Then, the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odd's ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic curve (sROC) were estimated in Stata Software and MetaDisc. Subgroup analyses were performed to investigate the potential factors that influence the diagnostic performance. RESULTS: A total of 10 studies were included in the meta-analysis. The combined sensitivity was 0.68 (95% confidence interval [CI]: 0.59 to 0.76, I2 = 66.77%, p < 0.001), and the combined specificity was 0.89 (95% CI: 0.80 to 0.95, I2 = 83.37%, p < 0.001). The AUC of sROC was 0.85 (95% CI, 0.81 to 0.87). The quality level of evidence elevated by the GRADE score system was low. CONCLUSIONS: Current evidence shows that mNGS presents a good diagnostic performance in pediatric CNSI. Due to the limited quality and quantity of the included studies, more high-quality studies are needed to verify the above conclusion.


Subject(s)
Central Nervous System Infections , Humans , Child , ROC Curve , Central Nervous System Infections/diagnosis , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...