Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 398
Filter
1.
Rev Med Virol ; 34(3): e2539, 2024 May.
Article in English | MEDLINE | ID: mdl-38719789

ABSTRACT

The viral infection of the central nervous system is a significant public health concern. So far, most clinical cases of viral neuroinvasion are dealt with supportive and/or symptomatic treatments due to the unavailability of specific treatments. Thus, developing specific therapies is required to alleviate neurological symptoms and disorders. In this review, we shed light on molecular aspects of viruses' entry into the brain which upon targeting with specific drugs have shown promising efficacy in vitro and in preclinical in vivo model systems. Further assessing the therapeutic potential of these drugs in clinical trials may offer opportunities to halt viral neuroinvasion in humans.


Subject(s)
Antiviral Agents , Humans , Animals , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Virus Internalization/drug effects , Brain/virology , Brain/pathology , Brain/drug effects , Central Nervous System Viral Diseases/drug therapy , Central Nervous System Viral Diseases/virology
2.
J Virol ; 96(15): e0083322, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35852353

ABSTRACT

Human enterovirus D68 (EV-D68) is a globally reemerging respiratory pathogen that is associated with the development of acute flaccid myelitis (AFM) in children. Currently, there are no approved vaccines or treatments for EV-D68 infection, and there is a paucity of data related to the virus and host-specific factors that predict disease severity and progression to the neurologic syndrome. EV-D68 infection of various animal models has served as an important platform for characterization and comparison of disease pathogenesis between historic and contemporary isolates. Still, there are significant gaps in our knowledge of EV-D68 pathogenesis that constrain the development and evaluation of targeted vaccines and antiviral therapies. Continued refinement and characterization of animal models that faithfully reproduce key elements of EV-D68 infection and disease is essential for ensuring public health preparedness for future EV-D68 outbreaks.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus D, Human , Enterovirus Infections , Models, Animal , Myelitis , Animals , Antiviral Agents , Central Nervous System Viral Diseases/complications , Central Nervous System Viral Diseases/virology , Child , Disease Outbreaks , Disease Progression , Enterovirus D, Human/pathogenicity , Enterovirus D, Human/physiology , Enterovirus Infections/complications , Humans , Myelitis/complications , Myelitis/virology , Viral Vaccines
4.
Microbiol Spectr ; 10(1): e0245221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35170992

ABSTRACT

Enterovirus D68 (EV-D68) is an emerging pathogen which causes respiratory disease and is associated with an acute flaccid myelitis that predominately affects children. EV-D68 can infect motor neurons, causing cell death and a loss of motor control leading to flaccid paralysis. However, it remains unknown how viral particles gain entry into the central nervous system (CNS). Here, we show that three distinct densities of EV-D68 particle can be isolated from infected muscle and neural cell lines (RD and SH-SY5Y) using high-speed density centrifugation to separate cell supernatant. The lowest-density peak is composed of viral particles, which have adhered to the exterior surface of a small extracellular vesicle called an exosome. Analysis of prototypic (historic) and contemporary EV-D68 strains suggests that binding to exosomes is a ubiquitous characteristic of EV-D68. We further show that interaction with exosomes increases viral infectivity in a neural cell line. Analysis of the two higher-density peaks, which are not associated with exosomes, revealed that a significant amount of viral titer in the modern (2014) EV-D68 strains is found at 1.20 g/cm3, whereas this density has a very low viral titer in the prototypic Fermon strain. IMPORTANCE Despite the strong causal link between enterovirus D68 (EV-D68) and acute flaccid myelitis (AFM), it remains unclear how EV-D68 gains entry into the central nervous system and what receptors enable it to infect motor neurons. We show that EV-D68 particles can adhere to exosomes, placing EV-D68 among a handful of other picornaviruses which are known to interact with extracellular vesicles. Uptake and infection of permissive cells by virally contaminated exosomes would have major implications in the search for the EV-D68 receptor, as well as providing a possible route for viral entry into motor neurons. This work identifies a novel cellular entry route for EV-D68 and may facilitate the identification of genetic risk factors for development of AFM.


Subject(s)
Central Nervous System Viral Diseases/virology , Enterovirus D, Human/chemistry , Enterovirus D, Human/physiology , Enterovirus Infections/virology , Exosomes/virology , Myelitis/virology , Neuromuscular Diseases/virology , Virion/chemistry , Cell Line , Densitometry , Humans , Neurons/chemistry , Neurons/virology , Virion/physiology , Virus Internalization
5.
Int J Neuropsychopharmacol ; 25(1): 1-12, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34648616

ABSTRACT

From the earliest days of the coronavirus disease 2019 (COVID-19) pandemic, there have been reports of significant neurological and psychological symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This narrative review is designed to examine the potential psychoneuroendocrine pathogenic mechanisms by which SARS-CoV-2 elicits psychiatric sequelae as well as to posit potential pharmacologic strategies to address and reverse these pathologies. Following a brief overview of neurological and psychological sequelae from previous viral pandemics, we address mechanisms by which SARS-CoV-2 could enter or otherwise elicit changes in the CNS. We then examine the hypothesis that COVID-19-induced psychiatric disorders result from challenges to the neuroendocrine system, in particular the hypothalamic-pituitary-adrenal stress axis and monoamine synthesis, physiological mechanisms that are only further enhanced by the pandemic-induced social environment of fear, isolation, and socioeconomic pressure. Finally, we evaluate several FDA-approved therapeutics in the context of COVID-19-induced psychoneuroendocrine disorders.


Subject(s)
COVID-19/virology , Central Nervous System Viral Diseases/virology , Central Nervous System/virology , Neurosecretory Systems/virology , SARS-CoV-2/pathogenicity , Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/physiopathology , COVID-19/psychology , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/physiopathology , Central Nervous System Viral Diseases/drug therapy , Central Nervous System Viral Diseases/physiopathology , Central Nervous System Viral Diseases/psychology , Host-Pathogen Interactions , Humans , Neuroimmunomodulation , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Neurosecretory Systems/physiopathology , Prognosis , Risk Factors , Virus Internalization , COVID-19 Drug Treatment
6.
J Mol Biol ; 434(3): 167243, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34536442

ABSTRACT

Brain organoids are self-organized three-dimensional aggregates generated from pluripotent stem cells. They exhibit complex cell diversities and organized architectures that resemble human brain development ranging from neural tube formation, neuroepithelium differentiation, neurogenesis and gliogenesis, to neural circuit formation. Rapid advancements in brain organoid culture technologies have allowed researchers to generate more accurate models of human brain development and neurological diseases. These models also allow for direct investigation of pathological processes associated with infectious diseases affecting the nervous system. In this review, we first briefly summarize recent advancements in brain organoid methodologies and neurodevelopmental processes that can be effectively modeled by brain organoids. We then focus on applications of brain organoids to investigate the pathogenesis of neurotropic viral infection. Finally, we discuss limitations of the current brain organoid methodologies as well as applications of other organ specific organoids in the infectious disease research.


Subject(s)
Brain , Central Nervous System Viral Diseases , Organoids , Brain/growth & development , Brain/virology , Central Nervous System Viral Diseases/virology , Humans , Neurogenesis , Organoids/virology
7.
J Virol ; 96(4): e0196921, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935438

ABSTRACT

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Central Nervous System Viral Diseases/immunology , Microglia/immunology , SARS-CoV-2/physiology , Virus Replication/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Central Nervous System/immunology , Central Nervous System/virology , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , Chemokines/genetics , Chemokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Microglia/virology , Neurons/immunology , Neurons/virology , Virus Replication/genetics
8.
mBio ; 12(6): e0271221, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34781742

ABSTRACT

Poliomyelitis-like illness is a common clinical manifestation of neurotropic viral infections. Functional loss and death of motor neurons often lead to reduced muscle tone and paralysis, causing persistent motor sequelae among disease survivors. Despite several reports demonstrating the molecular basis of encephalopathy, the pathogenesis behind virus-induced flaccid paralysis remained largely unknown. The present study for the first time aims to elucidate the mechanism responsible for limb paralysis by studying clinical isolates of Japanese encephalitis virus (JEV) and Chandipura virus (CHPV) responsible for causing acute flaccid paralysis (AFP) in vast regions of Southeast Asia and the Indian subcontinent. An experimental model for studying virus-induced AFP was generated by intraperitoneal injection of 10-day-old BALB/c mice. Progressive decline in motor performance of infected animals was observed, with paralysis being correlated with death of motor neurons (MNs). Furthermore, we demonstrated that upon infection, MNs undergo an extrinsic apoptotic pathway in a RIG-I-dependent fashion via transcription factors pIRF-3 and pIRF-7. Both gene-silencing experiments using specific RIG-I-short interfering RNA and in vivo morpholino abrogated cellular apoptosis, validating the important role of pattern recognition receptor (PRR) RIG-I in MN death. Hence, from our experimental observations, we hypothesize that host innate response plays a significant role in deterioration of motor functioning upon neurotropic virus infections. IMPORTANCE Neurotropic viral infections are an increasingly common cause of immediate or delayed neuropsychiatric sequelae, cognitive impairment, and movement disorders or, in severe cases, death. Given the highest reported disability-adjusted life years and mortality rate worldwide, a better understanding of molecular mechanisms for underlying clinical manifestations like AFP will help in development of more effective tools for therapeutic solutions.


Subject(s)
Central Nervous System Viral Diseases/metabolism , Central Nervous System Viral Diseases/physiopathology , DEAD Box Protein 58/metabolism , Encephalitis Virus, Japanese/physiology , Motor Neurons/cytology , Myelitis/metabolism , Myelitis/physiopathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/physiopathology , Vesiculovirus/physiology , Animals , Cell Death , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , DEAD Box Protein 58/genetics , Encephalitis Virus, Japanese/genetics , Female , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Male , Mice , Motor Activity , Motor Neurons/metabolism , Motor Neurons/virology , Myelitis/genetics , Myelitis/virology , Neuromuscular Diseases/genetics , Neuromuscular Diseases/virology , Vesiculovirus/genetics
9.
J Med Microbiol ; 70(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34672918

ABSTRACT

Introduction. Global poliovirus eradication is a public health emergency of international concern. The acute flaccid paralysis (AFP) surveillance programme in South Africa has been instrumental in eliminating polioviruses and keeping the country poliovirus free.Gap statement. The sensitivity of surveillance for polioviruses by every African country is of global interest in the effort to ensure global health security from poliovirus re-emergence.Aim. To describe the epidemiology of polioviruses from AFP cases and environmental samples in South Africa and to report the performance of the AFP surveillance system for the years 2016-2019 against targets established by the World Health Organization (WHO).Methods. Stool specimens from AFP or suspected AFP cases were received and tested as per WHO guidelines. Environmental samples were gathered from sites across the Gauteng province using the grab collection method. Concentration was effected by the two-phase polyethylene glycol method approved by the WHO. Suspected polioviruses were isolated in RD and/or L20B cell cultures through identification of typical cytopathic effects. The presence of polioviruses was confirmed by intratypic differentiation PCR. All polioviruses were sequenced using the Sanger method, and their VP1 gene analysed for mutations.Results. Data from 4597 samples (2385 cases) were analysed from the years 2016-2019. Two cases of immunodeficiency-associated vaccine-derived poliovirus (iVDPV) type 3 were detected in 2017 and 2018. A further 24 Sabin type 1 or type 3 polioviruses were detected for the 4 years. The national surveillance programme detected an average of 3.1 cases of AFP/100 000 individuals under 15 years old (2.8/100 000-3.5/100 000). The stool adequacy of the samples received was 53.0 % (47.0-55.0%), well below the WHO target of 80 % adequacy. More than 90 % of results were released from the laboratory within the turnaround time (96.6 %) and non-polio enteroviruses were detected in 11.6 % of all samples. Environmental surveillance detected non-polio enterovirus in 87.5 % of sewage samples and Sabin polioviruses in 12.5 % of samples.Conclusion. The AFP surveillance programme in South Africa is sensitive to detect polioviruses in South Africa and provided no evidence of wild poliovirus or VDPV circulation in the country.


Subject(s)
Central Nervous System Viral Diseases/epidemiology , Myelitis/epidemiology , Neuromuscular Diseases/epidemiology , Poliomyelitis/epidemiology , Poliovirus/isolation & purification , Adolescent , Central Nervous System Viral Diseases/prevention & control , Central Nervous System Viral Diseases/virology , Child , Child, Preschool , Disease Eradication/standards , Disease Eradication/statistics & numerical data , Epidemiological Monitoring , Feces/virology , Humans , Myelitis/prevention & control , Myelitis/virology , Neuromuscular Diseases/prevention & control , Neuromuscular Diseases/virology , Poliomyelitis/prevention & control , Poliomyelitis/virology , Poliovirus Vaccines/isolation & purification , Sewage/virology , South Africa/epidemiology
10.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502105

ABSTRACT

The human brain and central nervous system (CNS) harbor a select sub-group of potentially pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in progressive and often lethal viral- and prion-mediated and related neurological syndromes associated with progressive inflammatory neurodegeneration. These include ~18 different viral-induced encephalopathies for which data are available, at least ~10 known prion diseases (PrD) of animals and humans, Alzheimer's disease (AD) and other sporadic and progressive age-related neurological disorders. Despite the apparent lack of nucleic acids in prions, both DNA- and RNA-containing viruses along with prions significantly induce miRNA-146a in the infected host, but whether this represents part of the host's adaptive immunity, innate-immune response or a mechanism to enable the invading prion or virus a successful infection is not well understood. Current findings suggest an early and highly interactive role for miRNA-146a: (i) as a major small noncoding RNA (sncRNA) regulator of innate-immune responses and inflammatory signaling in cells of the human brain and CNS; (ii) as a critical component of the complement system and immune-related neurological dysfunction; (iii) as an inducible sncRNA of the brain and CNS that lies at a critical intersection of several important neurobiological adaptive immune response processes with highly interactive associations involving complement factor H (CFH), Toll-like receptor pathways, the innate-immunity, cytokine production, apoptosis and neural cell decline; and (iv) as a potential biomarker for viral infection, TSE and AD and other neurological diseases in both animals and humans. In this report, we review the recent data supporting the idea that miRNA-146a may represent a novel and unique sncRNA-based biomarker for inflammatory neurodegeneration in multiple species. This paper further reviews the current state of knowledge regarding the nature and mechanism of miRNA-146a in viral and prion infection of the human brain and CNS with reference to AD wherever possible.


Subject(s)
Brain/pathology , Central Nervous System Viral Diseases/immunology , Gene Expression Regulation/immunology , MicroRNAs/metabolism , Prion Diseases/immunology , Apoptosis/genetics , Apoptosis/immunology , Biomarkers/analysis , Biomarkers/metabolism , Brain/immunology , Brain/virology , Central Nervous System Viral Diseases/diagnosis , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , Complement Factor H/metabolism , Cytokines/metabolism , Humans , MicroRNAs/analysis , MicroRNAs/genetics , NF-kappa B/metabolism , Prion Diseases/diagnosis , Prion Diseases/genetics , Prion Diseases/pathology , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptors/metabolism
11.
mBio ; 12(4): e0114321, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465023

ABSTRACT

Meningitis and encephalitis are leading causes of central nervous system (CNS) disease and often result in severe neurological compromise or death. Traditional diagnostic workflows largely rely on pathogen-specific tests, sometimes over days to weeks, whereas metagenomic next-generation sequencing (mNGS) profiles all nucleic acid in a sample. In this single-center, prospective study, 68 hospitalized patients with known (n = 44) or suspected (n = 24) CNS infections underwent mNGS from RNA and DNA to identify potential pathogens and also targeted sequencing of viruses using hybrid capture. Using a computational metagenomic classification pipeline based on KrakenUniq and BLAST, we detected pathogen nucleic acid in cerebrospinal fluid (CSF) from 22 subjects, 3 of whom had no clinical diagnosis by routine workup. Among subjects diagnosed with infection by serology and/or peripheral samples, we demonstrated the utility of mNGS to detect pathogen nucleic acid in CSF, importantly for the Ixodes scapularis tick-borne pathogens Powassan virus, Borrelia burgdorferi, and Anaplasma phagocytophilum. We also evaluated two methods to enhance the detection of viral nucleic acid, hybrid capture and methylated DNA depletion. Hybrid capture nearly universally increased viral read recovery. Although results for methylated DNA depletion were mixed, it allowed the detection of varicella-zoster virus DNA in two samples that were negative by standard mNGS. Overall, mNGS is a promising approach that can test for multiple pathogens simultaneously, with efficacy similar to that of pathogen-specific tests, and can uncover geographically relevant infectious CNS disease, such as tick-borne infections in New England. With further laboratory and computational enhancements, mNGS may become a mainstay of workup for encephalitis and meningitis. IMPORTANCE Meningitis and encephalitis are leading global causes of central nervous system (CNS) disability and mortality. Current diagnostic workflows remain inefficient, requiring costly pathogen-specific assays and sometimes invasive surgical procedures. Despite intensive diagnostic efforts, 40 to 60% of people with meningitis or encephalitis have no clear cause of CNS disease identified. As diagnostic uncertainty often leads to costly inappropriate therapies, the need for novel pathogen detection methods is paramount. Metagenomic next-generation sequencing (mNGS) offers the unique opportunity to circumvent these challenges using unbiased laboratory and computational methods. Here, we performed comprehensive mNGS from 68 prospectively enrolled patients with known (n = 44) or suspected (n = 24) CNS viral infection from a single center in New England and evaluated enhanced methods to improve the detection of CNS pathogens, including those not traditionally identified in the CNS by nucleic acid detection. Overall, our work helps elucidate how mNGS can become integrated into the diagnostic toolkit for CNS infections.


Subject(s)
Central Nervous System Viral Diseases/diagnosis , Encephalitis/virology , High-Throughput Nucleotide Sequencing/methods , Meningitis/virology , Metagenome , Metagenomics/methods , Viruses/genetics , Adult , Aged , Central Nervous System Viral Diseases/cerebrospinal fluid , Central Nervous System Viral Diseases/virology , Encephalitis/cerebrospinal fluid , Encephalitis/diagnosis , Female , Humans , Male , Meningitis/cerebrospinal fluid , Meningitis/diagnosis , Middle Aged , Prospective Studies , Viruses/classification , Viruses/isolation & purification , Viruses/pathogenicity
12.
Viruses ; 13(7)2021 07 15.
Article in English | MEDLINE | ID: mdl-34372576

ABSTRACT

Virus-induced infections of the central nervous system (CNS) are among the most serious problems in public health and can be associated with high rates of morbidity and mortality, mainly in low- and middle-income countries, where these manifestations have been neglected. Typically, herpes simplex virus 1 and 2, varicella-zoster, and enterovirus are responsible for a high number of cases in immunocompetent hosts, whereas other herpesviruses (for example, cytomegalovirus) are the most common in immunocompromised individuals. Arboviruses have also been associated with outbreaks with a high burden of neurological disorders, such as the Zika virus epidemic in Brazil. There is a current lack of understanding in Brazil about the most common viruses involved in CNS infections. In this review, we briefly summarize the most recent studies and findings associated with the CNS, in addition to epidemiological data that provide extensive information on the circulation and diversity of the most common neuro-invasive viruses in Brazil. We also highlight important aspects of the prion-associated diseases. This review provides readers with better knowledge of virus-associated CNS infections. A deeper understanding of these infections will support the improvement of the current surveillance strategies to allow the timely monitoring of the emergence/re-emergence of neurotropic viruses.


Subject(s)
Central Nervous System Diseases/virology , Central Nervous System Infections/epidemiology , Prion Diseases/epidemiology , Alphavirus/pathogenicity , Brazil/epidemiology , Central Nervous System/virology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/physiopathology , Central Nervous System Infections/virology , Central Nervous System Viral Diseases/physiopathology , Central Nervous System Viral Diseases/virology , Enterovirus/pathogenicity , Flavivirus/pathogenicity , Herpesviridae/pathogenicity , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , Prion Diseases/physiopathology , Prions/metabolism , Prions/pathogenicity , Simplexvirus/pathogenicity , Virus Diseases/virology , Viruses/pathogenicity , Zika Virus/pathogenicity
13.
Virulence ; 12(1): 2060-2072, 2021 12.
Article in English | MEDLINE | ID: mdl-34410208

ABSTRACT

In 2014, enterovirus D68 (EV-D68) emerged causing outbreaks of severe respiratory disease in children worldwide. In a subset of patients, EV-D68 infection was associated with the development of central nervous system (CNS) complications, including acute flaccid myelitis (AFM). Since then, the number of reported outbreaks has risen biennially, which emphasizes the need to unravel the systemic pathogenesis in humans. We present here a comprehensive review on the different stages of the pathogenesis of EV-D68 infection - infection in the respiratory tract, systemic dissemination and infection of the CNS - based on observations in humans as well as experimental in vitro and in vivo studies. This review highlights the knowledge gaps on the mechanisms of systemic dissemination, routes of entry into the CNS and mechanisms to induce AFM or other CNS complications, as well as the role of virus and host factors in the pathogenesis of EV-D68.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus D, Human , Enterovirus Infections , Myelitis , Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/virology , Disease Outbreaks , Enterovirus D, Human/pathogenicity , Humans , Myelitis/epidemiology , Myelitis/virology , Neuromuscular Diseases/virology , Virulence
14.
Viruses ; 13(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34452471

ABSTRACT

Enterovirus D68 (EV-D68) has emerged as an agent of epidemic respiratory illness and acute flaccid myelitis in the paediatric population but data are lacking in adult patients. We performed a 4.5-year single-centre retrospective study of all patients who tested positive for EV-D68 and analysed full-length EV-D68 genomes of the predominant clades B3 and D1. Between 1 June 2014, and 31 December 2018, 73 of the 11,365 patients investigated for respiratory pathogens tested positive for EV-D68, of whom 20 (27%) were adults (median age 53.7 years [IQR 34.0-65.7]) and 53 (73%) were children (median age 1.9 years [IQR 0.2-4.0]). The proportion of adults increased from 12% in 2014 to 48% in 2018 (p = 0.01). All adults had an underlying comorbidity factor, including chronic lung disease in 12 (60%), diabetes mellitus in six (30%), and chronic heart disease in five (25%). Clade D1 infected a higher proportion of adults than clades B3 and B2 (p = 0.001). Clade D1 was more divergent than clade B3: 5 of 19 amino acid changes in the capsid proteins were located in putative antigenic sites. Adult patients with underlying conditions are more likely to present with severe complications associated with EV-D68, notably the emergent clade D1.


Subject(s)
Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Respiratory Tract Infections/virology , Adult , Aged , Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/virology , Child, Preschool , DNA, Viral/genetics , Enterovirus D, Human/classification , Enterovirus D, Human/pathogenicity , Enterovirus Infections/complications , Female , France/epidemiology , Genome, Viral , Humans , Infant , Male , Middle Aged , Myelitis/epidemiology , Myelitis/virology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/virology , Phylogeny , Prospective Studies , Respiratory Tract Infections/epidemiology , Retrospective Studies
15.
J Neuroimmunol ; 358: 577639, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34214953

ABSTRACT

We present the case of a young woman being treated with rituximab for rheumatoid arthritis who developed a severe enteroviral meningoencephalitis and acute flaccid myelitis (AFM). Cerebrospinal fluid (CSF) and stool reverse transcription-polymerase chain reaction (RT-PCR) testing confirmed the diagnosis and additional sequencing studies performed at the CDC further characterized the enterovirus as enterovirus A71 (EV-A71). After treatment with intravenous immunoglobulin (IVIg) and fluoxetine (based on previous reports of possible efficacy) the patient experienced a remarkable improvement over time. This case highlights the importance of considering enteroviral infection in patients treated with rituximab, depicts a possible clinical course of enteroviral meningoencephalitis and AFM, and illustrates the importance of testing multiple sites for enterovirus infection (CSF, stool, nasopharyngeal swab, blood). Here we present the case with a brief review of the literature pertaining to EV-A71.


Subject(s)
Central Nervous System Viral Diseases/diagnostic imaging , Enterovirus A, Human/isolation & purification , Enterovirus Infections/diagnostic imaging , Immunologic Factors/therapeutic use , Meningoencephalitis/diagnostic imaging , Myelitis/diagnostic imaging , Neuromuscular Diseases/diagnostic imaging , Rituximab/therapeutic use , Adult , Central Nervous System Viral Diseases/drug therapy , Central Nervous System Viral Diseases/virology , Enterovirus Infections/drug therapy , Female , Humans , Immunologic Factors/adverse effects , Meningoencephalitis/drug therapy , Meningoencephalitis/virology , Myelitis/drug therapy , Myelitis/virology , Neuromuscular Diseases/drug therapy , Neuromuscular Diseases/virology , Rituximab/adverse effects
16.
Virol J ; 18(1): 153, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301271

ABSTRACT

BACKGROUND: Acute flaccid paralysis (AFP) surveillance was conducted as part of the World Health Organization's strategy for completely eradicating poliomyelitis and leaving non-polio enteroviruses NPEVs as one of the main potential causes of AFP. We aimed to detect NPEV in association with AFP. METHODS: We used 459 isolates reported to be Negative Polio and some NPEVs by the World Health Organization Polio Regional Reference Laboratory (Thailand), which had been obtained during polio surveillance programmes conducted in Thailand in 2013-2014. Of 459 isolates, 35 belonged to the genus Enterovirus by RT-PCR and genotyping by DNA sequencing. RESULTS: This study found 17 NPEV genotypes, with 3, 13 and 1 belonging to enterovirus (EV) species A (EV-A), EV-B, and EV-C, respectively. The EV-A types identified included coxsackievirus A2 (CA2), CA4, and EV71, typically associated with hand, foot and mouth diseases. EV-B is the most prevalent cause of AFP in Thailand, while CA21 was the only type of EV-C detected. The EV-B species (13/35; 76.5%) constituted the largest proportion of isolates, followed by EV-A (3/35; 17.6%) and EV-C (1/35; 5.9%). For the EV-B species, Echovirus (E) 30 and CVB were the most frequent isolates. E30, CVB, E14, and E6 were considered endemic strains. CONCLUSION: NPEVs, e.g. CA4, are reported for the first time in Thailand. Despite some limitations to this study, this is the first report on the circulation patterns of NPEVs associated with AFP in Thailand. AFP surveillance has unearthed many unknown NPEVs and, the cases of death due to AFP occur annually. Therefore, it is important to study NPEVs in the wake of the eradication of poliovirus in the context of the continued incidence of paralysis.


Subject(s)
Central Nervous System Viral Diseases/virology , Enterovirus Infections , Enterovirus , Myelitis/virology , Neuromuscular Diseases/virology , Enterovirus/genetics , Enterovirus Infections/epidemiology , Genotype , Humans , Thailand/epidemiology
17.
Phys Med Rehabil Clin N Am ; 32(3): 477-491, 2021 08.
Article in English | MEDLINE | ID: mdl-34175008

ABSTRACT

Acute flaccid myelitis (AFM) is an incompletely understood neurologic disorder occurring in epidemic fashion causing weakness ranging from mild paresis to devastating paralysis in children and some adults. This article reviews the case definition of AFM as well as its epidemiology and association with enteroviral infection. The clinical presentation, diagnostic investigation with particular attention to electrodiagnostics, acute management, and surgical options are described. Clinical outcomes and considerations for acute and long-term rehabilitation management are discussed extensively based on review of current literature, highlighting avenues for further study.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Central Nervous System Viral Diseases/diagnosis , Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/therapy , Central Nervous System Viral Diseases/virology , Communicable Diseases, Emerging , Diagnosis, Differential , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Enterovirus Infections/therapy , Enterovirus Infections/virology , Humans , Myelitis/diagnosis , Myelitis/epidemiology , Myelitis/therapy , Myelitis/virology , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/therapy , Neuromuscular Diseases/virology , Poliomyelitis/diagnosis , United States/epidemiology
18.
Viruses ; 13(3)2021 03 05.
Article in English | MEDLINE | ID: mdl-33807557

ABSTRACT

The risk of polio importation and re-emergence persists since epidemic polio still occurs in some countries, and the resurgence of polio occurring almost 20 years after polio eradication was declared in Asia has been reported. We analyzed the results of acute flaccid paralysis (AFP) surveillance in Korea to assess the quality of AFP surveillance and understand the etiology of non-polio enterovirus (NPEV)-associated central nervous system diseases in a polio-free area. We investigated 637 AFP patients under 15 years of age whose cases were confirmed during 2012-2019 by virus isolation, real-time reverse transcription polymerase chain reaction, and VP1 gene sequencing. Among the 637 AFP cases, NPEV was detected in 213 (33.4%) patients, with the majority observed in EV-A71, with 54.9% of NPEV positives. EV-A71 has been shown to play a role as a major causative agent in most neurological diseases except for Guillain-Barré syndrome (GBS), acute disseminated encephalomyelitis (ADEM), and meningitis. This study provides information on the AFP surveillance situation in Korea and highlights the polio eradication stage in the monitoring and characterization of NPEV against the outbreak of neurological infectious diseases such as polio.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus/isolation & purification , Epidemiological Monitoring , Myelitis , Neuromuscular Diseases , Adolescent , Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/virology , Child , Child, Preschool , Female , Humans , Infant , Male , Myelitis/epidemiology , Myelitis/virology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/virology , Republic of Korea/epidemiology
19.
Crit Rev Microbiol ; 47(5): 580-595, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33822674

ABSTRACT

Rotaviruses, double-stranded, non-enveloped RNA viruses, are a global health concern, associated with acute gastroenteritis and secretory-driven watery diarrhoea, especially in infants and young children. Conventionally, rotavirus is primarily viewed as a pathogen for intestinal enterocytes. This notion is challenged, however, by data from patients and animal models documenting extra-intestinal clinical manifestations and viral replication following rotavirus infection. In addition to acute gastroenteritis, rotavirus infection has been linked to various neurological disorders, hepatitis and cholestasis, type 1 diabetes, respiratory illness, myocarditis, renal failure and thrombocytopenia. Concomitantly, molecular studies have provided insight into potential mechanisms by which rotavirus can enter and replicate in non-enterocyte cell types and evade host immune responses. Nevertheless, it is fair to say that the extra-intestinal aspect of the rotavirus infectious process is largely being overlooked by biomedical professionals, and there are gaps in the understanding of mechanisms of pathogenesis. Thus with the aim of increasing public and professional awareness we here provide a description of our current understanding of rotavirus-related extra-intestinal clinical manifestations and associated molecular pathogenesis. Further understanding of the processes involved should prove exceedingly useful for future diagnosis, treatment and prevention of rotavirus-associated disease.


Subject(s)
Central Nervous System Viral Diseases/virology , Diabetes Mellitus, Type 1/virology , Digestive System Diseases/virology , Gastroenteritis/virology , Respiratory Tract Infections/virology , Rotavirus Infections/virology , Animals , Child, Preschool , Humans , Infant , Rotavirus/pathogenicity , Rotavirus/physiology , Rotavirus Infections/complications
20.
Acta Neuropathol Commun ; 9(1): 39, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750455

ABSTRACT

The brain is the major target of congenital cytomegalovirus (CMV) infection. It is possible that neuron disorder in the developing brain is a critical factor in the development of neuropsychiatric diseases in later life. Previous studies using mouse model of murine CMV (MCMV) infection demonstrated that the viral early antigen (E1 as a product of e1 gene) persists in the postnatal neurons of the hippocampus (HP) and cerebral cortex (CX) after the disappearance of lytic infection from non-neuronal cells in the periventricular (PV) region. Furthermore, neuron-specific activation of the MCMV-e1-promoter (e1-pro) was found in the cerebrum of transgenic mice carrying the e1-pro-lacZ reporter construct. In this study, in order to elucidate the mechanisms of e1-pro activation in cerebral neurons during actual MCMV infection, we have generated the recombinant MCMV (rMCMV) carrying long e1-pro1373- or short e1-pro448-EGFP reporter constructs. The length of the former, 1373 nucleotides (nt), is similar to that of transgenic mice. rMCMVs and wild type MCMV did not significantly differed in terms of viral replication or E1 expression. rMCMV-infected mouse embryonic fibroblasts showed lytic infection and activation of both promoters, while virus-infected cerebral neurons in primary neuronal cultures demonstrated the non-lytic and persistent infection as well as the activation of e1-pro-1373, but not -448. In the rMCMV-infected postnatal cerebrum, lytic infection and the activation of both promoters were found in non-neuronal cells of the PV region until postnatal 8 days (P8), but these disappeared at P12, while the activation of e1-pro-1373, but not -448 appeared in HP and CX neurons at P8 and were prolonged exclusively in these neurons at P12, with preservation of the neuronal morphology. Therefore, e1-pro-448 is sufficient to activate E1 expression in non-neuronal cells, however, the upstream sequence from nt -449 to -1373 in e1-pro-1373 is supposed to work as an enhancer necessary for the neuron-specific activation of e1-pro, particularly around the second postnatal week. This unique activation of e1-pro in developing cerebral neurons may be an important factor in the neurodevelopmental disorders induced by congenital CMV infection.


Subject(s)
Cerebrum/growth & development , Cerebrum/virology , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/virology , Muromegalovirus/genetics , Neurons/virology , Promoter Regions, Genetic , Animals , Antigens, Viral/genetics , Cells, Cultured , Central Nervous System Viral Diseases/congenital , Central Nervous System Viral Diseases/pathology , Central Nervous System Viral Diseases/virology , Cerebrum/immunology , Cerebrum/pathology , Disease Models, Animal , Mice , Mice, Transgenic , Neuroglia/immunology , Neuroglia/virology , Neurons/immunology , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...