Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Vis Exp ; (133)2018 03 15.
Article in English | MEDLINE | ID: mdl-29608154

ABSTRACT

Adventitious shoot formation is an important technique for the propagation of economically important crops and for the regeneration of transgenic plants. Phytohormone treatment is required for the induction of adventitious shoots in most species. Whether adventitious shoots can be induced is determined by the balance between auxin and cytokinin (CK) levels. Much effort goes into determining optimum concentrations and combinations of phytohormones in each tissue used as explants and in each plant species. In ipecac, however, adventitious shoots can be induced on internodal segments in culture medium without phytohormone treatment. This allows the inherent plasticity of ipecac for cell differentiation to be evaluated. To induce adventitious shoots in ipecac, we cultured internodal segments at 24 °C under 15 µmol m-2 s-1 of light in a 14-h light/10-h dark cycle on phytohormone-free B5 medium solidified with 0.2% gellan gum for 5 weeks. To investigate phytohormone dynamics during adventitious shoot formation, we measured endogenous indole-3-acetic acid and CKs in the segments by liquid chromatography-tandem mass spectrometry LC-MS/MS. This method allows analysis of endogenous indole-3-acetic acid and CKs levels in a simple manner. It can be applied to investigate the dynamics of endogenous auxin and CK during organogenesis in other plant species.


Subject(s)
Cephaelis/metabolism , Chromatography, Liquid/methods , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Tandem Mass Spectrometry/methods , Cephaelis/chemistry , Cytokinins/analysis , Indoleacetic Acids/analysis , Plant Shoots/chemistry , Plant Shoots/metabolism
2.
Yakugaku Zasshi ; 137(12): 1443-1482, 2017.
Article in Japanese | MEDLINE | ID: mdl-29199255

ABSTRACT

Studies on the structural determination, biosynthesis, and biological activities of secondary metabolites from natural sources are significant in the field of natural products chemistry. This review focuses on diverse secondary metabolites isolated from medicinal plants and cultivated mycobionts of lichens in our laboratory. Monoterpene-tetrahydroisoquinoline glycosides and alkaloids isolated from Cephaelis acuminata and Alangium lamarckii gave important information on the biosynthesis of ipecac alkaloids. A variety of glycosides linked with a secologanin unit and indole alkaloids were obtained from medicinal plants belonging to the families of Rubiaceae, Apocynaceae, and Loganiaceae. Plant species of the four genera Fraxinus, Syringa, Jasminum, and Ligustrum of the family Oleaceae were chemically investigated to provide several types of secoiridoid and iridoid glucosides. The biosynthetic pathway leading from protopine to benzophenanthridine alkaloids in suspension cell cultures of Eschscholtzia californica was elucidated. The structures and biological activities of the bisbenzylisoquinoline alkaloids of Stephania cepharantha and Nelumbo nucifera were also investigated. In addition, the mycobionts of lichens were cultivated to afford various types of metabolites that differ from the lichen substances of intact lichens but are structurally similar to fungal metabolites. The biosynthetic origins of some metabolites were also studied. These findings suggest that cultures of lichen mycobionts could be sources of new bioactive compounds and good systems for investigating secondary metabolism in lichens.


Subject(s)
Alkaloids/isolation & purification , Glycosides/isolation & purification , Lichens/metabolism , Plants, Medicinal/metabolism , Alangiaceae/metabolism , Alkaloids/biosynthesis , Alkaloids/chemistry , Benzylisoquinolines , Cephaelis/metabolism , Eschscholzia/metabolism , Glycosides/biosynthesis , Glycosides/chemistry , Iridoids , Monoterpenes , Oleaceae/metabolism , Rubiaceae/metabolism , Stephania/metabolism , Tetrahydroisoquinolines
3.
J Biol Chem ; 283(50): 34650-9, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18927081

ABSTRACT

Ipecac alkaloids produced in the medicinal plant Psychotria ipecacuanha such as emetine and cephaeline possess a monoterpenoid-tetrahydroisoquinoline skeleton, which is formed by condensation of dopamine and secologanin. Deglucosylation of one of the condensed products N-deacetylisoipecoside (1 alpha(S)-epimer) is considered to be a part of the reactions for emetine biosynthesis, whereas its 1 beta(R)-epimer N-deacetylipecoside is converted to ipecoside in P. ipecacuanha. Here, we isolated a cDNA clone Ipeglu1 encoding Ipecac alkaloid beta-D-glucosidase from P. ipecacuanha. The deduced protein showed 54 and 48% identities to raucaffricine beta-glucosidase and strictosidine beta-glucosidase, respectively. Recombinant IpeGlu1 enzyme preferentially hydrolyzed glucosidic Ipecac alkaloids except for their lactams, but showed poor or no activity toward other substrates, including terpenoid-indole alkaloid glucosides. Liquid chromatography-tandem mass spectrometry analysis of deglucosylated products of N-deacetylisoipecoside revealed spontaneous transitions of the highly reactive aglycons, one of which was supposed to be the intermediate for emetine biosynthesis. IpeGlu1 activity was extremely poor toward 7-O-methyl and 6,7-O,O-dimethyl derivatives. However, 6-O-methyl derivatives were hydrolyzed as efficiently as non-methylated substrates, suggesting the possibility of 6-O-methylation prior to deglucosylation by IpeGlu1. In contrast to the strictosidine beta-glucosidase that stereospecifically hydrolyzes 3 alpha(S)-epimer in terpenoid-indole alkaloid biosynthesis, IpeGlu1 lacked stereospecificity for its substrates where 1 beta(R)-epimers were preferred to 1 alpha(S)-epimers, although ipecoside (1 beta(R)) is a major alkaloidal glucoside in P. ipecacuanha, suggesting the compartmentalization of IpeGlu1 from ipecoside. These facts have significant implications for distinct physiological roles of 1 alpha(S)- and 1 beta(R)-epimers and for the involvement of IpeGlu1 in the metabolic fate of both of them.


Subject(s)
Alkaloids/chemistry , Cephaelis/enzymology , Isoquinolines/chemistry , Terpenes/chemistry , beta-Glucosidase/chemistry , Biochemistry/methods , Cephaelis/metabolism , DNA, Complementary/metabolism , Escherichia coli/metabolism , Kinetics , Models, Chemical , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...