Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.329
Filter
1.
Bioessays ; 46(6): e2400008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697917

ABSTRACT

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Subject(s)
Neuronal Plasticity , Purkinje Cells , Purkinje Cells/metabolism , Purkinje Cells/physiology , Animals , Neuronal Plasticity/genetics , Humans , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Synapses/genetics , Cerebellar Cortex/cytology , Cerebellar Cortex/metabolism , Cerebellar Cortex/physiology
2.
Eur J Histochem ; 68(2)2024 May 15.
Article in English | MEDLINE | ID: mdl-38766720

ABSTRACT

Previous studies on the granular layer of the cerebellar cortex have revealed a wide distribution of different subpopulations of less-known large neuron types, called "non-traditional large neurons", which are distributed in three different zones of the granular layer. These neuron types are mainly involved in the formation of intrinsiccircuits inside the cerebellar cortex. A subpopulation of these neuron types is represented by the synarmotic neuron, which could play a projective role within the cerebellar circuitry. The synarmotic neuron cell body map within the internal zone of the granular layer or in the subjacent white substance. Furthermore, the axon crosses the granular layer and runs in the subcortical white substance, to reenter in an adjacent granular layer, associating two cortico-cerebellar regions of the same folium or of different folia, or could project to the intrinsic cerebellar nuclei. Therefore, along with the Purkinje neuron, the traditional projective neuron type of the cerebellar cortex, the synarmotic neuron is candidate to represent the second projective neuron type of the cerebellar cortex. Studies of chemical neuroanatomy evidenced a predominant inhibitory GABAergic nature of the synarmotic neuron, suggesting that it may mediate an inhibitory GABAergic output of cerebellar cortex within cortico-cortical interconnections or in projections towards intrinsic cerebellar nuclei. On this basis, the present minireview mainly focuses on the morphofunctional and neurochemical data of the synarmotic neuron, and explores its potential involvement in some forms of cerebellar ataxias.


Subject(s)
Cerebellar Cortex , Neurons , Cerebellar Cortex/cytology , Animals , Humans , Neurons/cytology , Neurons/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/cytology
3.
J Comp Neurol ; 532(4): e25616, 2024 04.
Article in English | MEDLINE | ID: mdl-38634526

ABSTRACT

Like the cerebralcortex, the surface of the cerebellum is repeatedly folded. Unlike the cerebralcortex, however, cerebellar folds are much thinner and more numerous; repeatthemselves largely along a single direction, forming accordion-like folds transverseto the mid-sagittal plane; and occur in all but the smallest cerebella. We haveshown previously that while the location of folds in mammalian cerebral cortex isclade-specific, the overall degree of folding strictly follows a universalpower law relating cortical thickness and the exposed and total surface areas predictedfrom the minimization of the effective free energy of an expanding, self-avoidingsurface of a certain thickness. Here we show that this scaling law extends tothe folding of the mid-sagittal sections of the cerebellum of 53 speciesbelonging to six mammalian clades. Simultaneously, we show that each clade hasa previously unsuspected distinctive spatial pattern of folding evident at themid-sagittal surface of the cerebellum. We note, however, that the mammaliancerebellum folds as a multi-fractal object, because of the difference betweenthe outside-in development of the cerebellar cortex around a preexisting coreof already connected white matter, compared to the inside-out development ofthe cerebral cortex with a white matter volume that develops as the cerebralcortex itself gains neurons. We conclude that repeated folding, one of the mostrecognizable features of biology, can arise simply from the interplay betweenthe universal applicability of the physics of self-organization and biological,phylogenetical clade-specific contingency, without the need for invokingselective pressures in evolution.


Subject(s)
Cerebellum , Cerebral Cortex , Animals , Cerebral Cortex/physiology , Mammals , Neurons/physiology , Cerebellar Cortex
4.
PLoS Comput Biol ; 20(4): e1011277, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574161

ABSTRACT

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.


Subject(s)
Cerebellum , Computer Simulation , Conditioning, Eyelid , Models, Neurological , Neuronal Plasticity , Neuronal Plasticity/physiology , Animals , Cerebellum/physiology , Conditioning, Eyelid/physiology , Purkinje Cells/physiology , Blinking/physiology , Conditioning, Classical/physiology , Synapses/physiology , Computational Biology , Mice , Cerebellar Cortex/physiology
5.
Nat Neurosci ; 27(5): 940-951, 2024 May.
Article in English | MEDLINE | ID: mdl-38565684

ABSTRACT

Supervised learning depends on instructive signals that shape the output of neural circuits to support learned changes in behavior. Climbing fiber (CF) inputs to the cerebellar cortex represent one of the strongest candidates in the vertebrate brain for conveying neural instructive signals. However, recent studies have shown that Purkinje cell stimulation can also drive cerebellar learning and the relative importance of these two neuron types in providing instructive signals for cerebellum-dependent behaviors remains unresolved. In the present study we used cell-type-specific perturbations of various cerebellar circuit elements to systematically evaluate their contributions to delay eyeblink conditioning in mice. Our findings reveal that, although optogenetic stimulation of either CFs or Purkinje cells can drive learning under some conditions, even subtle reductions in CF signaling completely block learning to natural stimuli. We conclude that CFs and corresponding Purkinje cell complex spike events provide essential instructive signals for associative cerebellar learning.


Subject(s)
Association Learning , Optogenetics , Purkinje Cells , Animals , Purkinje Cells/physiology , Mice , Association Learning/physiology , Conditioning, Eyelid/physiology , Male , Mice, Inbred C57BL , Cerebellum/physiology , Cerebellum/cytology , Nerve Fibers/physiology , Mice, Transgenic , Cerebellar Cortex/physiology , Female
6.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38641414

ABSTRACT

Sleep spindles appear to play an important role in learning new motor skills. Motor skill learning engages several brain regions with two important areas being the motor cortex (M1) and the cerebellum (CB). However, the neurophysiological processes in these areas during sleep, especially how spindle oscillations affect local and cross-region spiking, are not fully understood. We recorded an activity from the M1 and cerebellar cortex in eight rats during spontaneous activity to investigate how sleep spindles in these regions are related to local spiking as well as cross-region spiking. We found that M1 firing was significantly changed during both M1 and CB spindles, and this spiking occurred at a preferred phase of the spindle. On average, M1 and CB neurons showed most spiking at the M1 or CB spindle peaks. These neurons also developed a preferential phase locking to local or cross-area spindles with the greatest phase-locking value at spindle peaks; however, this preferential phase locking was not significant for cerebellar neurons when compared with CB spindles. Additionally, we found that the percentage of task-modulated cells in the M1 and CB that fired with nonuniform spike phase distribution during M1/CB spindle peaks were greater in the rats that learned a reach-to-grasp motor task robustly. Finally, we found that spindle band LFP coherence (for M1 and CB LFPs) showed a positive correlation with success rate in the motor task. These findings support the idea that sleep spindles in both the M1 and CB recruit neurons that participate in the awake task to support motor memory consolidation.


Subject(s)
Action Potentials , Motor Cortex , Neurons , Sleep , Animals , Motor Cortex/physiology , Male , Neurons/physiology , Sleep/physiology , Rats , Action Potentials/physiology , Cerebellum/physiology , Learning/physiology , Motor Skills/physiology , Rats, Sprague-Dawley , Rats, Long-Evans , Cerebellar Cortex/physiology
8.
Elife ; 122024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536959

ABSTRACT

The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.


Subject(s)
Purkinje Cells , Stem Cell Factor , Mice , Animals , Purkinje Cells/physiology , Stem Cell Factor/metabolism , Cerebellum/physiology , Cerebellar Cortex/metabolism , Interneurons/physiology , Receptor Protein-Tyrosine Kinases/metabolism , Mammals/metabolism
9.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397008

ABSTRACT

Although more than 30 different types of neuropeptides have been identified in various cell types and circuits of the cerebellum, their unique functions in the cerebellum remain poorly understood. Given the nature of their diffuse distribution, peptidergic systems are generally assumed to exert a modulatory effect on the cerebellum via adaptively tuning neuronal excitability, synaptic transmission, and synaptic plasticity within cerebellar circuits. Moreover, cerebellar neuropeptides have also been revealed to be involved in the neurogenetic and developmental regulation of the developing cerebellum, including survival, migration, differentiation, and maturation of the Purkinje cells and granule cells in the cerebellar cortex. On the other hand, cerebellar neuropeptides hold a critical position in the pathophysiology and pathogenesis of many cerebellar-related motor and psychiatric disorders, such as cerebellar ataxias and autism. Over the past two decades, a growing body of evidence has indicated neuropeptides as potential therapeutic targets to ameliorate these diseases effectively. Therefore, this review focuses on eight cerebellar neuropeptides that have attracted more attention in recent years and have significant potential for clinical application associated with neurodegenerative and/or neuropsychiatric disorders, including brain-derived neurotrophic factor, corticotropin-releasing factor, angiotensin II, neuropeptide Y, orexin, thyrotropin-releasing hormone, oxytocin, and secretin, which may provide novel insights and a framework for our understanding of cerebellar-related disorders and have implications for novel treatments targeting neuropeptide systems.


Subject(s)
Cerebellar Diseases , Neuropeptides , Humans , Cerebellum/metabolism , Purkinje Cells/metabolism , Neurons/metabolism , Cerebellar Cortex/metabolism , Neuropeptides/metabolism , Cerebellar Diseases/pathology
10.
Hum Brain Mapp ; 45(3): e26624, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38376240

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.


Subject(s)
Connectome , Machado-Joseph Disease , Humans , Machado-Joseph Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebellum/pathology , Cerebellar Cortex
11.
Cells ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38391920

ABSTRACT

Internal granular progenitors (IGPs) in the developing cerebellar cortex of ferrets differentiate towards neural and glial lineages. The present study tracked IGPs that proliferated in response to valproic acid (VPA) to determine their fate during cerebellar cortical histogenesis. Ferret kits were used to administer VPA (200 µg/g body weight) on postnatal days 6 and 7. EdU and BrdU were injected on postnatal days 5 and 7, respectively, to label the post-proliferative and proliferating cells when exposed to VPA. At postnatal day 20, when the external granule layer was most expanded, EdU- and BrdU-single-labeled cells were significantly denser in the inner granular layer of VPA-exposed ferrets than in controls. No EdU- or BrdU-labeling was found in Purkinje cells and molecular layer interneurons. Significantly higher percentages of NeuN and Pax6 immunostaining in VPA-exposed ferrets revealed VPA-induced differentiation of IGPs towards granular neurons in BrdU-single-labeled cells. In contrast, both EdU- and BrdU-single-labeled cells exhibited significantly greater percentages of PCNA immunostaining, which appeared in immature Bergman glia, in the internal granular layer of VPA-exposed ferrets. These findings suggest that VPA affects the proliferation of IGPs to induce differentiative division towards granular neurons as well as post-proliferative IGPs toward differentiation into Bergmann glia.


Subject(s)
Ferrets , Valproic Acid , Humans , Animals , Valproic Acid/pharmacology , Bromodeoxyuridine , Cerebellar Cortex , Purkinje Cells
12.
Nat Neurosci ; 27(4): 689-701, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321293

ABSTRACT

The cerebellar cortex has a key role in generating predictive sensorimotor associations. To do so, the granule cell layer is thought to establish unique sensorimotor representations for learning. However, how this is achieved and how granule cell population responses contribute to behavior have remained unclear. To address these questions, we have used in vivo calcium imaging and granule cell-specific pharmacological manipulation of synaptic inhibition in awake, behaving mice. These experiments indicate that inhibition sparsens and thresholds sensory responses, limiting overlap between sensory ensembles and preventing spiking in many granule cells that receive excitatory input. Moreover, inhibition can be recruited in a stimulus-specific manner to powerfully decorrelate multisensory ensembles. Consistent with these results, granule cell inhibition is required for accurate cerebellum-dependent sensorimotor behavior. These data thus reveal key mechanisms for granule cell layer pattern separation beyond those envisioned by classical models.


Subject(s)
Cerebellum , Neurons , Mice , Animals , Neurons/physiology , Cerebellum/physiology , Cerebellar Cortex , Learning , Inhibition, Psychological
13.
Elife ; 132024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241596

ABSTRACT

Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons allow signals from the cerebellar cortex to influence the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many PC inputs are thought to converge onto each CbN neuron to suppress its firing. It has been proposed that PCs convey information using a rate code, a synchrony and timing code, or both. The influence of PCs on CbN neuron firing was primarily examined for the combined effects of many PC inputs with comparable strengths, and the influence of individual PC inputs has not been extensively studied. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modeling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, individual PC-CbN synapses are suited to concurrently convey rate codes and generate precisely timed responses in CbN neurons. Either synchronous firing or synchronous pauses of PCs promote CbN neuron firing on rapid time scales for nonuniform inputs, but less effectively than for uniform inputs. This is a secondary consequence of variable input sizes elevating the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. These findings may generalize to other brain regions with highly variable inhibitory synapse sizes.


Subject(s)
Cerebellum , Purkinje Cells , Cerebellum/physiology , Purkinje Cells/physiology , Neurons/physiology , Cerebellar Cortex , Cerebellar Nuclei/physiology , Action Potentials/physiology
14.
Histochem Cell Biol ; 161(1): 5-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37940705

ABSTRACT

The present review aims to provide a short update of our understanding of the inhibitory interneurons of the cerebellum. While these cells constitute but a minority of all cerebellar neurons, their functional significance is increasingly being recognized. For one, inhibitory interneurons of the cerebellar cortex are now known to constitute a clearly more diverse group than their traditional grouping as stellate, basket, and Golgi cells suggests, and this diversity is now substantiated by single-cell genetic data. The past decade or so has also provided important information about interneurons in cerebellar nuclei. Significantly, developmental studies have revealed that the specification and formation of cerebellar inhibitory interneurons fundamentally differ from, say, the cortical interneurons, and define a mode of diversification critically dependent on spatiotemporally patterned external signals. Last, but not least, in the past years, dysfunction of cerebellar inhibitory interneurons could also be linked with clinically defined deficits. I hope that this review, however fragmentary, may stimulate interest and help focus research towards understanding the cerebellum.


Subject(s)
Cerebellar Cortex , Cerebellum , Interneurons/physiology
15.
Cerebellum ; 23(2): 502-511, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37120494

ABSTRACT

Cerebellar neurodegeneration is a classical feature of ataxia telangiectasia (A-T), an autosomal recessive condition caused by loss-of-function mutation of the ATM gene, a gene with multiple regulatory functions. The increased vulnerability of cerebellar neurones to degeneration compared to cerebral neuronal populations in individuals with ataxia telangiectasia implies a specific importance of intact ATM function in the cerebellum. We hypothesised that there would be elevated transcription of ATM in the cerebellar cortex relative to ATM expression in other grey matter regions during neurodevelopment in individuals without A-T. Using ATM transcription data from the BrainSpan Atlas of the Developing Human Brain, we demonstrate a rapid increase in cerebellar ATM expression relative to expression in other brain regions during gestation and remaining elevated during early childhood, a period corresponding to the emergence of cerebellar neurodegeneration in ataxia telangiectasia patients. We then used gene ontology analysis to identify the biological processes represented in the genes correlated with cerebellar ATM expression. This analysis demonstrated that multiple processes are associated with expression of ATM in the cerebellum, including cellular respiration, mitochondrial function, histone methylation, and cell-cycle regulation, alongside its canonical role in DNA double-strand break repair. Thus, the enhanced expression of ATM in the cerebellum during early development may be related to the specific energetic demands of the cerebellum and its role as a regulator of these processes.


Subject(s)
Ataxia Telangiectasia , Child, Preschool , Humans , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cerebellum/metabolism , Brain/metabolism , Cerebellar Cortex/metabolism
16.
J Physiol ; 602(1): 153-181, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37987552

ABSTRACT

The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.


Subject(s)
Cerebellum , Vibrissae , Mice , Animals , Vibrissae/physiology , Biomechanical Phenomena , Cerebellum/physiology , Purkinje Cells/physiology , Cerebellar Cortex
17.
Neuroreport ; 35(2): 115-122, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38109417

ABSTRACT

The mechanism by which α2-adrenergic receptors (ARs) modulate the cerebellar parallel fiber-Purkinje cell (PF-PC) synaptic transmission is unclear. We investigated this issue using electrophysiological and neuropharmacological methods. Six- to eight-week-old ICR mice were used in the study. Under in vivo conditions, PF-PC synaptic transmission was evoked by facial stimulation of ipsilateral whisker pad, and recorded using cell-attached patch from PCs. Under in-vitro conditions, PF-PC synaptic transmission was evoked by electrical stimulation of the molecular layer in cerebellar slices, and was recorded using whole-cell recording from PCs. SR95531 (20 µM) was added to the ACSF during all recordings to prevent GABAA receptor-mediated inhibition. Air-puff stimulation of the ipsilateral whisker pad in-vivo evoked simple spike (eSS) firing of cerebellar PCs. Microapplication of noradrenaline (15 µM) to the molecular layer significantly decreased the numbers and frequency of eSS, an effect abolished by the α2-AR antagonist. Microapplication of an α2-AR agonist, UK14304 (1 µM), significantly decreased the numbers of eSS in PCs, which was abolished by either α2A- or α2B-AR antagonist, but not by α2C-AR antagonist. Under in-vitro conditions, application of UK 14304 significantly decreased the amplitude of PF-PC EPSCs and increased the paired-pulse ratio, which were abolished by either α2A- or α2B-AR antagonist. The present results indicate that activation of presynaptic α2A- and α2B-AR downregulates PF-PC synaptic transmission in mouse cerebellar cortex.


Subject(s)
Cerebellar Cortex , Purkinje Cells , Animals , Mice , Mice, Inbred ICR , Cerebellum/physiology , Synaptic Transmission
18.
Nat Commun ; 14(1): 7459, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985778

ABSTRACT

Associative learning during delay eyeblink conditioning (EBC) depends on an intact cerebellum. However, the relative contribution of changes in the cerebellar nuclei to learning remains a subject of ongoing debate. In particular, little is known about the changes in synaptic inputs to cerebellar nuclei neurons that take place during EBC and how they shape the membrane potential of these neurons. Here, we probed the ability of these inputs to support associative learning in mice, and investigated structural and cell-physiological changes within the cerebellar nuclei during learning. We find that optogenetic stimulation of mossy fiber afferents to the anterior interposed nucleus (AIP) can substitute for a conditioned stimulus and is sufficient to elicit conditioned responses (CRs) that are adaptively well-timed. Further, EBC induces structural changes in mossy fiber and inhibitory inputs, but not in climbing fiber inputs, and it leads to changes in subthreshold processing of AIP neurons that correlate with conditioned eyelid movements. The changes in synaptic and spiking activity that precede the CRs allow for a decoder to distinguish trials with a CR. Our data reveal how structural and physiological modifications of synaptic inputs to cerebellar nuclei neurons can facilitate learning.


Subject(s)
Cerebellar Nuclei , Conditioning, Eyelid , Mice , Animals , Conditioning, Eyelid/physiology , Conditioning, Classical/physiology , Cerebellum/physiology , Cerebellar Cortex/physiology , Blinking
19.
Nat Commun ; 14(1): 7581, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989740

ABSTRACT

Local feedforward and recurrent connectivity are rife in the frontal areas of the cerebral cortex, which gives rise to rich heterogeneous dynamics observed in such areas. Recently, similar local connectivity motifs have been discovered among Purkinje and molecular layer interneurons of the cerebellar cortex, however, task-related activity in these neurons has often been associated with relatively simple facilitation and suppression dynamics. Here, we show that the rodent cerebellar cortex supports heterogeneity in task-related neuronal activity at a scale similar to the cerebral cortex. We provide a computational model that inculcates recent anatomical insights into local microcircuit motifs to show the putative basis for such heterogeneity. We also use cell-type specific chronic viral lesions to establish the involvement of cerebellar lobules in associative learning behaviors. Functional heterogeneity in neuronal profiles may not merely be the remit of the associative cerebral cortex, similar principles may be at play in subcortical areas, even those with seemingly crystalline and homogenous cytoarchitectures like the cerebellum.


Subject(s)
Cerebellar Cortex , Cerebellum , Cerebellar Cortex/physiology , Cerebellum/physiology , Neurons , Interneurons/physiology , Cerebral Cortex/physiology , Purkinje Cells/physiology
20.
Nat Neurosci ; 26(11): 1916-1928, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814026

ABSTRACT

The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.


Subject(s)
Cerebellum , Motor Cortex , Mice , Animals , Cerebellum/physiology , Neurons/physiology , Cerebellar Cortex , Motor Cortex/physiology , Movement/physiology , Neural Pathways/physiology , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...