Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47.031
Filter
1.
Commun Biol ; 7(1): 522, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702520

ABSTRACT

An organism's ability to accurately anticipate the sensations caused by its own actions is crucial for a wide range of behavioral, perceptual, and cognitive functions. Notably, the sensorimotor expectations produced when touching one's own body attenuate such sensations, making them feel weaker and less ticklish and rendering them easily distinguishable from potentially harmful touches of external origin. How the brain learns and keeps these action-related sensory expectations updated is unclear. Here we employ psychophysics and functional magnetic resonance imaging to pinpoint the behavioral and neural substrates of dynamic recalibration of expected temporal delays in self-touch. Our psychophysical results reveal that self-touches are less attenuated after systematic exposure to delayed self-generated touches, while responses in the contralateral somatosensory cortex that normally distinguish between delayed and nondelayed self-generated touches become indistinguishable. During the exposure, the ipsilateral anterior cerebellum shows increased activity, supporting its proposed role in recalibrating sensorimotor predictions. Moreover, responses in the cingulate areas gradually increase, suggesting that as delay adaptation progresses, the nondelayed self-touches trigger activity related to cognitive conflict. Together, our results show that sensorimotor predictions in the simplest act of touching one's own body are upheld by a sophisticated and flexible neural mechanism that maintains them accurate in time.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Somatosensory Cortex , Humans , Somatosensory Cortex/physiology , Male , Cerebellum/physiology , Cerebellum/diagnostic imaging , Female , Adult , Young Adult , Touch Perception/physiology , Touch/physiology
2.
No Shinkei Geka ; 52(3): 507-513, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38783493

ABSTRACT

The angioarchitecture of the hindbrain is homologous to that of the spinal cord, and its vascular system can be analyzed at the longitudinal and axial structures. During embryonic development, there are two main longitudinal arteries: the longitudinal neural artery and the primitive lateral basilovertebral anastomosis. Commonly observed variations are formed by the fenestration and duplication of either the vertebrobasilar artery, or cerebellar artery, which can be observed when the primitive lateral basilovertebral anastomosis partially persists. Understanding the pattern and development of blood supply to the hindbrain provides useful information of various anomalies in the vertebrobasilar junction and cerebellar arteries.


Subject(s)
Cerebellum , Vertebral Artery , Humans , Vertebral Artery/abnormalities , Vertebral Artery/surgery , Vertebral Artery/anatomy & histology , Cerebellum/blood supply , Cerebellum/surgery , Male , Female
3.
No Shinkei Geka ; 52(3): 514-521, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38783494

ABSTRACT

The basilar artery(BA)is formed by the fusion of two longitudinal arteries, and incomplete development may lead to BA fenestration. The BA provides many short perforating arteries and long lateral pontine arteries to the brain stem. The anterior inferior cerebellar artery(AICA)usually branches from the proximal third of the BA and primarily perfuses the ventral, inferior and lateral aspect of the cerebellum and inner ear organ. However, there are many variations to the AICA that depend on the degree of posterior inferior cerebellar artery development. The superior cerebellar artery(SCA)branches into not only to the rostral, ventral aspect of the cerebellar hemisphere, but also to the deeper cerebellar nucleus and brain stem. Duplications within this vessel are frequently identified, but it is not missing.


Subject(s)
Basilar Artery , Cerebellum , Humans , Basilar Artery/abnormalities , Basilar Artery/diagnostic imaging , Cerebellum/blood supply
4.
Curr Biol ; 34(9): R340-R343, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714159

ABSTRACT

The posterior cerebellum is emerging as a key structure for social cognition. A new study causally demonstrates its early involvement during emotion perception and functional connectivity with the posterior superior temporal sulcus, a cortical hub of the social brain.


Subject(s)
Cerebellum , Social Perception , Humans , Cerebellum/physiology , Emotions/physiology , Social Cognition , Temporal Lobe/physiology
5.
Sci Transl Med ; 16(747): eadl1408, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748772

ABSTRACT

Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.


Subject(s)
Cerebellum , Essential Tremor , Neurons , Olivary Nucleus , Essential Tremor/physiopathology , Animals , Humans , Olivary Nucleus/physiopathology , Cerebellum/physiopathology , Mice , Male , Optogenetics , Female , Deep Brain Stimulation , Middle Aged , Electroencephalography , Aged
6.
PLoS One ; 19(5): e0301267, 2024.
Article in English | MEDLINE | ID: mdl-38753768

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative diseases for which at present no cure is available. Despite the extensive research the progress from diagnosis to prognosis in ALS and frontotemporal dementia (FTD) has been slow which represents suboptimal understanding of disease pathophysiological processes. In recent studies, several genes have been associated with the ALS and FTD diseases such as SOD1, TDP43, and TBK1, whereas the hexanucleotide GGGGCC repeat expansion (HRE) in C9orf72 gene is a most frequent cause of ALS and FTD, that has changed the understanding of these diseases. METHODS: The goal of this study was to identify and spatially determine differential gene expression signature differences between cerebellum and frontal cortex in C9orf72-associated ALS (C9-ALS), to study the network properties of these differentially expressed genes, and to identify miRNAs targeting the common differentially expressed genes in both the tissues. This study thus highlights underlying differential cell susceptibilities to the disease mechanisms in C9-ALS and suggesting therapeutic target selection in C9-ALS. RESULTS: In this manuscript, we have identified that the genes involved in neuron development, protein localization and transcription are mostly enriched in cerebellum of C9-ALS patients, while the UPR-related genes are enriched in the frontal cortex. Of note, UPR pathway genes were mostly dysregulated both in the C9-ALS cerebellum and frontal cortex. Overall, the data presented here show that defects in normal RNA processing and the UPR pathway are the pathological hallmarks of C9-ALS. Interestingly, the cerebellum showed more strong transcriptome changes than the frontal cortex. CONCLUSION: Interestingly, the cerebellum region showed more significant transcriptomic changes as compared to the frontal cortex region suggesting its active participation in the disease process. This nuanced understanding may offer valuable insights for the development of targeted therapeutic strategies aimed at mitigating disease progression in C9-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontal Lobe , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Female , Male , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , Aged , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism
7.
Nat Commun ; 15(1): 4003, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734715

ABSTRACT

Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.


Subject(s)
Macaca mulatta , Purkinje Cells , Animals , Purkinje Cells/physiology , Male , Head Movements/physiology , Cerebellum/physiology , Cerebellum/cytology , Vestibule, Labyrinth/physiology , Motion Perception/physiology
8.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741271

ABSTRACT

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Subject(s)
Brain Stem Infarctions , Cerebellum , Magnetic Resonance Imaging , Neural Pathways , Pons , Humans , Male , Female , Middle Aged , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Pons/diagnostic imaging , Pons/physiopathology , Brain Stem Infarctions/physiopathology , Brain Stem Infarctions/diagnostic imaging , Aged , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
9.
Cereb Cortex ; 34(13): 94-103, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696597

ABSTRACT

Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.


Subject(s)
Cerebellum , Humans , Cerebellum/pathology , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Animals , Autistic Disorder/pathology , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Purkinje Cells/pathology
10.
Exp Brain Res ; 242(6): 1517-1531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722346

ABSTRACT

Cerebellar strokes induce coordination disorders that can affect activities of daily living. Evidence-based neurorehabilitation programs are founded on motor learning principles. The cerebellum is a key neural structure in motor learning. It is unknown whether and how well chronic cerebellar stroke individuals (CCSIs) can learn to coordinate their upper limbs through bimanual motor skill learning. The aim was to determine whether CCSIs could achieve bimanual skill learning through a serious game with the REAplan® robot and to compare CCSIs with healthy individuals (HIs). Over three consecutive days, sixteen CCSIs and eighteen HIs were trained on an asymmetric bimanual coordination task ("CIRCUIT" game) with the REAplan® robot, allowing quantification of speed, accuracy and coordination. The primary outcomes were the bimanual speed/accuracy trade-off (BiSAT) and bimanual coordination factor (BiCo). They were also evaluated on a bimanual REACHING task on Days 1 and 3. Correlation analyses between the robotic outcomes and clinical scale scores were computed. Throughout the sessions, BiSAT and BiCo improved during the CIRCUIT task in both HIs and CCSIs. On Day 3, HIs and CCSIs showed generalization of BiSAT, BiCo and transferred to the REACHING task. There was no significant between-group difference in progression. Four CCSIs and two HIs were categorized as "poor learners" according to BiSAT and/or BiCo. Increasing age correlated with reduced BiSAT but not BiCo progression. Over three days of training, HIs and CCSIs improved, retained, generalized and transferred a coordinated bimanual skill. There was no between-group difference, suggesting plastic compensation in CCSIs. Clinical trial NCT04642599 approved the 24th of November 2020.


Subject(s)
Learning , Motor Skills , Stroke Rehabilitation , Stroke , Adult , Aged , Female , Humans , Male , Middle Aged , Cerebellar Diseases/physiopathology , Cerebellar Diseases/rehabilitation , Cerebellum/physiopathology , Cerebellum/physiology , Chronic Disease , Learning/physiology , Motor Skills/physiology , Psychomotor Performance/physiology , Robotics , Stroke/physiopathology , Stroke Rehabilitation/methods , Prospective Studies , Adolescent , Aged, 80 and over
11.
Environ Mol Mutagen ; 65(3-4): 106-115, 2024.
Article in English | MEDLINE | ID: mdl-38767089

ABSTRACT

As final process of every DNA repair pathway, DNA ligation is crucial for maintaining genomic stability and preventing DNA strand breaks to accumulate. Therefore, a method reliably assessing DNA ligation capacity in protein extracts from murine tissues was aimed to establish. To optimize applicability, the use of radioactively labeled substrates was avoided and replaced by fluorescently labeled oligonucleotides. Briefly, tissue extracts were incubated with those complementary oligonucleotides so that in an ensuing gel electrophoresis ligated strands could be separated from unconnected molecules. Originally, the method was intended for use in cerebellum tissue to further elucidate possible mechanisms of neurodegenerative diseases. However, due to its inhomogeneous anatomy, DNA ligation efficiency varied strongly between different cerebellar areas, illuminating the established assay to be suitable only for homogenous organs. Thus, for murine liver tissue sufficient intra- and interday repeatability was shown during validation. In further experiments, the established assay was applied to an animal study comprising young and old (24 and 110 weeks) mice which showed that DNA ligation efficiency was affected by neither sex nor age. Finally, the impact of in vitro addition of the trace elements copper, iron, and zinc on DNA ligation in tissue extracts was investigated. While all three metals inhibited DNA ligation, variations in their potency became evident. In conclusion, the established method can be reliably used for investigation of DNA ligation efficiency in homogenous murine tissues.


Subject(s)
DNA , Animals , Mice , Male , Female , Liver/metabolism , Liver/drug effects , Cerebellum/metabolism , Mice, Inbred C57BL , DNA Ligases/metabolism , DNA Repair
12.
Medicine (Baltimore) ; 103(21): e37605, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788012

ABSTRACT

RATIONALE: Subacute combined degeneration of the spinal cord is a degenerative disease of the central and peripheral nervous systems caused by vitamin B12 deficiency, mainly involving the spinal cord posterior, lateral, and peripheral nerves, but rarely involving the cerebellum. PATIENT CONCERNS: A 41-year-old woman presented with a 2-year history of walking unsteadily. Her hematologic examination revealed megaloblastic anemia and vitamin B12 deficiency. Electromyography showed multiple peripheral nerve damage (sensory fibers and motor fibers were involved). Imaging examination showed long T2 signal in the cervical, thoracic and lumbar spinal cord and cerebellum. Gastroscopy revealed autoimmune gastritis. DIAGNOSES: Subacute combined degeneration of the spinal cord. INTERVENTIONS: By supplementing with vitamin B12. OUTCOMES: The patient's symptoms of limb weakness, diet, and consciousness were improved, and the muscle strength of both lower limbs recovered to grade IV. LESSONS: The symptomatic people should seek medical treatment in time to avoid further deterioration of the disease. When esophagogastroduodenoscopy is performed as part of routine physical examination in asymptomatic people, it should be checked for the presence of autoimmune gastritis. Early diagnosis can prevent irreversible neuropathy.


Subject(s)
Subacute Combined Degeneration , Humans , Female , Adult , Subacute Combined Degeneration/etiology , Subacute Combined Degeneration/diagnosis , Vitamin B 12 Deficiency/complications , Vitamin B 12 Deficiency/diagnosis , Gastritis/diagnosis , Vitamin B 12/therapeutic use , Vitamin B 12/administration & dosage , Cerebellum/pathology , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging
13.
Sci Rep ; 14(1): 11847, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38782921

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.


Subject(s)
Cerebellum , Evoked Potentials , Executive Function , Prefrontal Cortex , Transcranial Magnetic Stimulation , Humans , Male , Transcranial Magnetic Stimulation/methods , Female , Adult , Cerebellum/physiology , Executive Function/physiology , Prefrontal Cortex/physiology , Evoked Potentials/physiology , Young Adult , Healthy Volunteers , Cross-Over Studies , Theta Rhythm/physiology , Cognition/physiology , Dorsolateral Prefrontal Cortex/physiology
14.
Cell Mol Life Sci ; 81(1): 234, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789799

ABSTRACT

Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. To date, it remains unclear which factors contribute to VWM pathogenesis. Here, we investigated the basis of VWM pathogenesis using the 2b5ho mouse model. We first mapped the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild-type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we showed that the proteome in the cerebellum and cortex of 2b5ho mice was already dysregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after pathology onset. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region. Importantly, 2b5ho mouse brain proteome changes reflect features well-known in VWM. Comparison of the 2b5ho mouse and VWM patient brain proteomes revealed shared changes. These could represent changes that contribute to the disease or even drive its progression in patients. Taken together, we show that the 2b5ho mouse brain proteome is affected in a region- and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, providing a resource to study aspects of VWM pathogenesis by highlighting alterations from early to late disease stages, and those that possibly drive disease progression.


Subject(s)
Disease Models, Animal , Leukoencephalopathies , Proteome , Proteomics , White Matter , Animals , Mice , Humans , Proteome/metabolism , Leukoencephalopathies/metabolism , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , White Matter/metabolism , White Matter/pathology , Corpus Callosum/metabolism , Corpus Callosum/pathology , Eukaryotic Initiation Factor-2B/metabolism , Eukaryotic Initiation Factor-2B/genetics , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL , Cerebellum/metabolism , Cerebellum/pathology
15.
Rev Assoc Med Bras (1992) ; 70(5): e20231333, 2024.
Article in English | MEDLINE | ID: mdl-38775505

ABSTRACT

OBJECTIVE: In this study, the effects of leptin, cannabinoid-1 (CB1) receptor agonist ACEA and antagonist AM251, and the interactions between leptin and CB1 receptor agonist/antagonist on oxidant and antioxidant enzymes in the cerebrum, cerebellum, and pedunculus cerebri tissue samples were investigated in the penicillin-induced epileptic model. METHODS: Male Wistar albino rats (n=56) were included in this study. In anesthetized animals, 500 IU penicillin-G potassium was injected into the cortex to induce epileptiform activity. Leptin (1 µg), ACEA (7.5 µg), AM251 (0.25 µg), and the combinations of the leptin+ACEA and leptin+AM251 were administered intracerebroventricularly (i.c.v.) after penicillin injections. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were measured in the cerebral tissue samples and plasma with the ELISA method. RESULTS: MDA levels increased, while SOD and GPx levels decreased after penicillin injection in the cerebrum and cerebellum. The efficacy of penicillin on SOD, MDA and GPx levels was further enhanced after leptin or AM251 injections. Whereas, ACEA decreased the MDA levels and increased GPx levels compared with the penicillin group. Administration of AM251+leptin did not change any oxidation parameter compared with the AM251. Furthermore, co-administration of ACEA and leptin significantly increased oxidative stress compared with the ACEA-treated group by increasing MDA and decreasing GPx levels. CONCLUSION: It was concluded that leptin reversed the effect of ACEA on oxidative stress. Co-administration of AM251 and leptin did not change oxidative stress compared with the AM251-treated group suggesting AM251 and leptin affect oxidative stress using the same pathways.


Subject(s)
Epilepsy , Leptin , Malondialdehyde , Piperidines , Pyrazoles , Rats, Wistar , Receptor, Cannabinoid, CB1 , Superoxide Dismutase , Animals , Leptin/pharmacology , Male , Receptor, Cannabinoid, CB1/agonists , Epilepsy/drug therapy , Epilepsy/chemically induced , Malondialdehyde/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/analysis , Piperidines/pharmacology , Pyrazoles/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/analysis , Arachidonic Acids/pharmacology , Rats , Oxidative Stress/drug effects , Disease Models, Animal , Penicillins , Cerebellum/drug effects , Cerebellum/metabolism , Cerebrum/drug effects , Cerebrum/metabolism , Enzyme-Linked Immunosorbent Assay , Cannabinoid Receptor Agonists/pharmacology
16.
Hum Brain Mapp ; 45(8): e26717, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38798116

ABSTRACT

Twin studies have found gross cerebellar volume to be highly heritable. However, whether fine-grained regional volumes within the cerebellum are similarly heritable is still being determined. Anatomical MRI scans from two independent datasets (QTIM: Queensland Twin IMaging, N = 798, mean age 22.1 years; QTAB: Queensland Twin Adolescent Brain, N = 396, mean age 11.3 years) were combined with an optimised and automated cerebellum parcellation algorithm to segment and measure 28 cerebellar regions. We show that the heritability of regional volumetric measures varies widely across the cerebellum ( h 2 $$ {h}^2 $$ 47%-91%). Additionally, the good to excellent test-retest reliability for a subsample of QTIM participants suggests that non-genetic variance in cerebellar volumes is due primarily to unique environmental influences rather than measurement error. We also show a consistent pattern of strong associations between the volumes of homologous left and right hemisphere regions. Associations were predominantly driven by genetic effects shared between lobules, with only sparse contributions from environmental effects. These findings are consistent with similar studies of the cerebrum and provide a first approximation of the upper bound of heritability detectable by genome-wide association studies.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Humans , Cerebellum/diagnostic imaging , Cerebellum/anatomy & histology , Male , Adolescent , Female , Young Adult , Child , Adult , Organ Size , Twins, Monozygotic
17.
Front Immunol ; 15: 1388667, 2024.
Article in English | MEDLINE | ID: mdl-38799430

ABSTRACT

Cerebellar ataxia is an uncommon and atypical manifestation of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, often accompanied by seizures, psychiatric symptoms, and cognitive deficits. Previous cases of isolated brainstem-cerebellar symptoms in patients with anti-NMDAR encephalitis have not been documented. This report presents a case of anti-NMDAR encephalitis in which the patient exhibited cerebellar ataxia, nystagmus, diplopia, positive bilateral pathological signs, and hemiparesthesia with no other accompanying symptoms or signs. The presence of positive CSF anti-NMDAR antibodies further supports the diagnosis. Other autoantibodies were excluded through the use of cell-based assays. Immunotherapy was subsequently administered, leading to a gradual recovery of the patient.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Autoantibodies , Brain Stem , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Brain Stem/pathology , Autoantibodies/immunology , Autoantibodies/cerebrospinal fluid , Autoantibodies/blood , Female , Cerebellar Ataxia/etiology , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/immunology , Cerebellum/pathology , Cerebellum/diagnostic imaging , Receptors, N-Methyl-D-Aspartate/immunology , Adult , Immunotherapy , Male , Magnetic Resonance Imaging
18.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733989

ABSTRACT

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Subject(s)
Cerebellum , Neurons , Retina , Animals , Female , Male , Mice , Cerebellum/metabolism , Cerebellum/blood supply , Cerebellum/cytology , Ion Channels/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Retina/cytology , Retina/metabolism , Retinal Ganglion Cells/metabolism , Retinal Vessels/metabolism
20.
PeerJ ; 12: e17228, 2024.
Article in English | MEDLINE | ID: mdl-38618564

ABSTRACT

Background: Driving is a complex skill involving various cognitive activities. Previous research has explored differences in the brain structures related to the navigational abilities of drivers compared to non-drivers. However, it remains unclear whether changes occur in the structures associated with low-level sensory and higher-order cognitive abilities in drivers. Methods: Gray matter volume, assessed via voxel-based morphometry analysis of T1-weighted images, is considered a reliable indicator of structural changes in the brain. This study employs voxel-based morphological analysis to investigate structural differences between drivers (n = 22) and non-drivers (n = 20). Results: The results indicate that, in comparison to non-drivers, drivers exhibit significantly reduced gray matter volume in the middle occipital gyrus, middle temporal gyrus, supramarginal gyrus, and cerebellum, suggesting a relationship with driving-related experience. Furthermore, the volume of the middle occipital gyrus, and middle temporal gyrus, is found to be marginally negative related to the years of driving experience, suggesting a potential impact of driving experience on gray matter volume. However, no significant correlations were observed between driving experiences and frontal gray matter volume. Conclusion: These findings suggest that driving skills and experience have a pronounced impact on the cortical areas responsible for low-level sensory and motor processing. Meanwhile, the influence on cortical areas associated with higher-order cognitive function appears to be minimal.


Subject(s)
Brain , Gray Matter , Gray Matter/diagnostic imaging , Brain/diagnostic imaging , Cerebellum , Cognition , Occipital Lobe/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...