Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.326
Filter
1.
Neurologia (Engl Ed) ; 39(5): 408-416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830720

ABSTRACT

Ataxias are characterized by aberrant movement patterns closely related to cerebellar dysfunction. Purkinje cell axons are the sole outputs from the cerebellar cortex, and dysfunctional activity of Purkinje cells has been associated with ataxic movements. However, the synaptic characteristics of Purkinje cells in cases of ataxia are not yet well understood. The nicotinamide antagonist 3-acethylpyridine (3-AP) selectively destroys inferior olivary nucleus neurons so it is widely used to induce cerebellar ataxia. Five days after 3-AP treatment (65mg/kg) in adult male Sprague-Dawley rats, motor incoordination was revealed through BBB and Rotarod testing. In addition, in Purkinje cells from lobules V-VII of the cerebellar vermis studied by the Golgi method, the density of dendritic spines decreased, especially the thin and mushroom types. Western blot analysis showed a decrease in AMPA and PSD-95 content with an increase of the α-catenin protein, while GAD-67 and synaptophysin were unchanged. Findings suggest a limited capacity of Purkinje cells to acquire and consolidate afferent excitatory inputs and an aberrant, rigid profile in the movement-related output patterns of Purkinje neurons that likely contributes to the motor-related impairments characteristic of cerebellar ataxias.


Subject(s)
Cerebellum , Purkinje Cells , Rats, Sprague-Dawley , Animals , Purkinje Cells/drug effects , Purkinje Cells/pathology , Male , Rats , Cerebellum/drug effects , Cerebellar Ataxia/chemically induced , Pyridines/pharmacology , Neuronal Plasticity/drug effects
2.
Turk J Med Sci ; 54(1): 1-15, 2024.
Article in English | MEDLINE | ID: mdl-38812654

ABSTRACT

Background/aim: This study aims to determine the possible embryotoxic effects of propofol on the cerebellum and spinal cord using fertile chicken eggs. Materials and methods: A total of 430 fertile eggs were divided into 5 groups: control, saline, 2.5 mg.kg-1, 12.5 mg.kg-1, and 37.5 mg.kg-1 propofol. Injections were made immediately before incubation via the air chamber. On the 15th, 18th, and 21st day of incubation, 6 embryos from each group were evaluated. Serial paraffin sections taken from the cerebellum and spinal cord were stained with hematoxylin-eosin, Kluver-Barrera, toluidine blue, and periodic acid-Schiff's reaction. The outer granular layer and total cortex thickness were measured, and the linear density of the Purkinje cells was determined. The ratios of the substantia grisea surface area to the total surface area of the spinal cord were calculated. The transverse and longitudinal diameters of the canalis centralis were also assessed. Results: No structural malformation was observed in any embryos examined macroscopically. No significant difference was observed between the groups in terms of development and histologic organization of the cerebellum and spinal cord. However, on the 15th, 18th, and 21st day, the outer granular layer (p < 0.001 for all days) and the total cortex thickness (p < 0.01, p < 0.001, and p < 0.001, respectively) decreased significantly in different propofol dose groups in varying degrees in the cerebellum. Similarly, in the spinal cord, there were significant changes in the ratios of the substantia grisea surface area to the total surface area (p < 0.01 and p < 0.001, respectively). Conclusion: It was concluded that the in-ovo-administered propofol given immediately before incubation has adverse effects on the developing cerebellum and spinal cord. Therefore, it is important for anesthesiologists always to remain vigilant when treating female patients of childbearing age.


Subject(s)
Cerebellum , Propofol , Spinal Cord , Animals , Propofol/toxicity , Propofol/administration & dosage , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/embryology , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/embryology , Chick Embryo/drug effects , Anesthetics, Intravenous/toxicity , Anesthetics, Intravenous/administration & dosage
3.
Rev Assoc Med Bras (1992) ; 70(5): e20231333, 2024.
Article in English | MEDLINE | ID: mdl-38775505

ABSTRACT

OBJECTIVE: In this study, the effects of leptin, cannabinoid-1 (CB1) receptor agonist ACEA and antagonist AM251, and the interactions between leptin and CB1 receptor agonist/antagonist on oxidant and antioxidant enzymes in the cerebrum, cerebellum, and pedunculus cerebri tissue samples were investigated in the penicillin-induced epileptic model. METHODS: Male Wistar albino rats (n=56) were included in this study. In anesthetized animals, 500 IU penicillin-G potassium was injected into the cortex to induce epileptiform activity. Leptin (1 µg), ACEA (7.5 µg), AM251 (0.25 µg), and the combinations of the leptin+ACEA and leptin+AM251 were administered intracerebroventricularly (i.c.v.) after penicillin injections. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were measured in the cerebral tissue samples and plasma with the ELISA method. RESULTS: MDA levels increased, while SOD and GPx levels decreased after penicillin injection in the cerebrum and cerebellum. The efficacy of penicillin on SOD, MDA and GPx levels was further enhanced after leptin or AM251 injections. Whereas, ACEA decreased the MDA levels and increased GPx levels compared with the penicillin group. Administration of AM251+leptin did not change any oxidation parameter compared with the AM251. Furthermore, co-administration of ACEA and leptin significantly increased oxidative stress compared with the ACEA-treated group by increasing MDA and decreasing GPx levels. CONCLUSION: It was concluded that leptin reversed the effect of ACEA on oxidative stress. Co-administration of AM251 and leptin did not change oxidative stress compared with the AM251-treated group suggesting AM251 and leptin affect oxidative stress using the same pathways.


Subject(s)
Epilepsy , Leptin , Malondialdehyde , Piperidines , Pyrazoles , Rats, Wistar , Receptor, Cannabinoid, CB1 , Superoxide Dismutase , Animals , Leptin/pharmacology , Male , Receptor, Cannabinoid, CB1/agonists , Epilepsy/drug therapy , Epilepsy/chemically induced , Malondialdehyde/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/analysis , Piperidines/pharmacology , Pyrazoles/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/analysis , Arachidonic Acids/pharmacology , Rats , Oxidative Stress/drug effects , Disease Models, Animal , Penicillins , Cerebellum/drug effects , Cerebellum/metabolism , Cerebrum/drug effects , Cerebrum/metabolism , Enzyme-Linked Immunosorbent Assay , Cannabinoid Receptor Agonists/pharmacology
4.
Environ Pollut ; 352: 124114, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718965

ABSTRACT

Lead (Pb) is a heavy metal that has been recognized as a neurotoxin, meaning it can cause harmful effects on the nervous system. However, the neurotoxicology of Pb to birds still needs further study. In this study, we examined the neurotoxic effects of Pb exposure on avian cerebellum by using an animal model-Japanese quail (Coturnix japonica). The one-week old male chicks were exposed to 50, 200 and 500 mg/kg Pb of environmental relevance in the feed for five weeks. The results showed Pb caused cerebellar microstructural damages charactered by deformation of neuroglia cells, granule cells and Purkinje cells with Nissl body changes. Moreover, cerebellar neurotransmission was disturbed by Pb with increasing acetylcholine (ACh) and decreasing acetylcholinesterase (AChE), dopamine (DA), γ-Aminobutyric Acid (GABA) and Na+/K+ ATPase. Meanwhile, cerebellar oxidative stress was caused by Pb exposure represented by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) as well as decreasing catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH) and superoxide dismutase (SOD). Moreover, RNA-Seq analysis showed that molecular signaling pathways in the cerebellum were disrupted by Pb exposure. In particular, the disruption of nuclear factor erythroid-2-related factor 2 (Nfr2)/kelch-like ECH-associated protein 1 (Keap1) pathway and glutathione metabolism pathway indicated increasing cell apoptosis and functional disorder in the cerebellum. The present study revealed that Pb induced cerebellar toxicology through structural injury, oxidative stress, neurotransmission interference and abnormal apoptosis.


Subject(s)
Apoptosis , Cerebellum , Coturnix , Glutathione , Kelch-Like ECH-Associated Protein 1 , Lead , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Lead/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Cerebellum/drug effects , Cerebellum/metabolism , NF-E2-Related Factor 2/metabolism , Male , Kelch-Like ECH-Associated Protein 1/metabolism , Glutathione/metabolism , Signal Transduction/drug effects , Environmental Pollutants/toxicity , Reactive Oxygen Species/metabolism
5.
Neurobiol Learn Mem ; 211: 107925, 2024 May.
Article in English | MEDLINE | ID: mdl-38579895

ABSTRACT

Our previous studies found that the central amygdala (CeA) modulates cerebellum-dependent eyeblink conditioning (EBC) using muscimol inactivation. We also found that CeA inactivation decreases cerebellar neuronal activity during the conditional stimulus (CS) from the start of training. Based on these findings, we hypothesized that the CeA facilitates CS input to the cerebellum. The current study tested the CS facilitation hypothesis using optogenetic inhibition with archaerhodopsin (Arch) and excitation with channelrhodopsin (ChR2) of the CeA during EBC in male rats. Optogenetic manipulations were administered during the 400 ms tone CS or during a 400 ms pre-CS period. As predicted by the CS facilitation hypothesis CeA inhibition during the CS impaired EBC and CeA excitation during the CS facilitated EBC. Unexpectedly, CeA inhibition just prior to the CS also impaired EBC, while CeA excitation during the pre-CS pathway did not facilitate EBC. The results suggest that the CeA contributes to CS facilitation and vigilance during the pre-CS period. These putative functions of the CeA may be mediated through separate output pathways from the CeA to the cerebellum.


Subject(s)
Central Amygdaloid Nucleus , Cerebellum , Conditioning, Eyelid , Optogenetics , Animals , Male , Cerebellum/physiology , Cerebellum/drug effects , Central Amygdaloid Nucleus/physiology , Central Amygdaloid Nucleus/drug effects , Conditioning, Eyelid/physiology , Conditioning, Eyelid/drug effects , Rats , Rats, Long-Evans , Conditioning, Classical/physiology , Conditioning, Classical/drug effects
6.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630337

ABSTRACT

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Subject(s)
Cell Death , Ethanol , Neurons , Neuroprotective Agents , Plant Extracts , Plant Leaves , Sterculia , Animals , Rats , Caspase 3/metabolism , Ethanol/administration & dosage , Ethanol/chemistry , Ethanol/toxicity , Hydrogen Peroxide/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Rats, Wistar , Sterculia/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Lactate Dehydrogenases/metabolism , GAP-43 Protein/analysis , Apoptosis/genetics , Oxidative Stress/genetics , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/physiology , Male , Female , Cells, Cultured , Cell Death/drug effects , Gene Expression Regulation/drug effects , Phytochemicals/administration & dosage , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Secondary Metabolism
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673763

ABSTRACT

Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1ß, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.


Subject(s)
Alcohol Drinking , Cerebellum , Chemokine CCL2 , Corpus Striatum , Ethanol , Hippocampus , Mice, Inbred C57BL , Prefrontal Cortex , Animals , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Cerebellum/metabolism , Cerebellum/drug effects , Cerebellum/pathology , Male , Corpus Striatum/metabolism , Corpus Striatum/pathology , Corpus Striatum/drug effects , Ethanol/adverse effects , Alcohol Drinking/adverse effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Inflammation/metabolism , Inflammation/pathology , Inflammation/chemically induced
8.
Biomed Pharmacother ; 174: 116526, 2024 May.
Article in English | MEDLINE | ID: mdl-38574621

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.


Subject(s)
Disease Models, Animal , Memantine , Phenotype , Spinocerebellar Ataxias , Animals , Memantine/pharmacology , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/pathology , Mice , Ataxin-1/metabolism , Ataxin-1/genetics , Motor Activity/drug effects , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/metabolism , Purkinje Cells/drug effects , Purkinje Cells/pathology , Purkinje Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Neuroglia/drug effects , Neuroglia/pathology , Neuroglia/metabolism , Male , Neuronal Plasticity/drug effects
9.
J Mol Histol ; 55(3): 279-301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639812

ABSTRACT

Tramadol is a novel centrally acting analgesic. Despite, its implementation during pregnancy may impair neuronal survival and synaptic development in neonatal cerebella. The current investigation assessed the histological and ultrastructural alterations in postnatal cortical cerebellar neuronal development induced by prenatal tramadol. 30 offsprings were divided to control group I: fifteen pups born to mothers given saline from D10 till D21 of gestation. Tramadol-treated group II: fifteen pups born to mothers received tramadol HCL (50 mg/kg/day) from D10 till D21 of gestation. Pups were categorized into three subgroups (a, b, and c) and offered for sacrifice on the seventh, fourteenth and twenty-first post-natal days. Light microscopic examination revealed the overcrowding and signs of red degeneration affecting purkinje cell layer. Neurodegenerative signs of both purkinje and granule cell neurons were also confirmed by TEM in form of chromatin condensation, dilated Golgi channels, disrupted endoplasmic reticulum, marked infolding of the nuclear envelope and decrease in granule cell precursors. In addition, the astrocytic processes and terminal nerve axons appeared with different degrees of demyelination and decreased number of oligodendrocytes and degenerated mitochondria. Furthermore, group II exhibited an increase in P53 immune expression. The area percentage of apoptotic cells detected by TUNEL assay was significantly increased. Besides to the significant decrease of Ki67 immunoreactivity in the stem neuronal cell progenitors. Quantitative PCR results showed a significant decline in micro RNA7 gene expression in tramadol treated groups resulting in affection of multiple target genes in P53 signaling pathways, improper cortical size and defect in neuronal development.


Subject(s)
Glial Fibrillary Acidic Protein , Ki-67 Antigen , MicroRNAs , Prenatal Exposure Delayed Effects , Signal Transduction , Tramadol , Tumor Suppressor Protein p53 , Animals , Tramadol/pharmacology , Tramadol/adverse effects , MicroRNAs/genetics , MicroRNAs/metabolism , Pregnancy , Signal Transduction/drug effects , Female , Rats , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Ki-67 Antigen/metabolism , Ki-67 Antigen/genetics , Cerebellum/drug effects , Cerebellum/ultrastructure , Cerebellum/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/ultrastructure , Apoptosis/drug effects , Rats, Wistar , Animals, Newborn
10.
Int J Dev Neurosci ; 84(3): 177-189, 2024 May.
Article in English | MEDLINE | ID: mdl-38327108

ABSTRACT

Alcohol consumption during adolescence causes negative structural changes in the cerebellum and can lead to cognitive and motor skill disorders. Unfortunately, the age at which individuals begin drinking alcohol has decreased in recent years, which has drawn attention to the effects of alcohol on neurological changes during preadolescence. In this study, we investigated the effects of adolescent intermittent ethanol (AIE) exposure on the cellular composition of the cerebellum in male rats, particularly when alcohol consumption begins early. The male rats received eight doses of intermittent intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) or saline from postnatal days (PND) 25 to PND 38. In rats, 28-42 days old corresponds to 10-18 years old in humans. Two hours after the last injection, the cells, neurons, and non-neuronal cells in the cerebellum were immunocytochemically labeled and the total numbers of related cells were calculated using the Isotropic Fractionator method. We found that AIE exposure does not change the cell numbers of the cerebellum in the short term, but it does activate astrocytes in the white matter of the cerebellum. These findings suggest that alcohol use during adolescence impairs the innate immune system and negatively affects brain plasticity.


Subject(s)
Astrocytes , Cerebellum , Ethanol , Animals , Male , Cerebellum/drug effects , Ethanol/toxicity , Rats , Astrocytes/drug effects , Astrocytes/pathology , Cell Count , Central Nervous System Depressants/toxicity , Central Nervous System Depressants/pharmacology , Animals, Newborn , Glial Fibrillary Acidic Protein/metabolism , Neurons/drug effects , Rats, Wistar , Alcohol Drinking/adverse effects
11.
Niger J Physiol Sci ; 38(2): 135-143, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38696691

ABSTRACT

The African giant rat, AGR (Cricetomys gambianus) is a unique rodent known for its keen sense of smell which has enabled its use in the diagnosis of tuberculosis and demining activities in war torn countries. This keen sense of smell and the ability to navigate tight spaces are skills modulated by the olfactory bulb and cerebellum. While the brain is generally susceptible to environmental pollutants such as heavy metals, vanadium has predilection for these two brain regions. This work was thus designed to investigate the probable neurotoxic effect of vanadium on the neuronal cytoarchitecture of the cerebellum and olfactory bulb in this rodent. To achieve this, twelve adults male AGRs were divided into two groups (vanadium and control groups) and were given intraperitoneal injections of 3mg/kg body weight sodium metavanadate and normal saline respectively for 14 days. After which they were sacrificed, and brains harvested for histological investigations using Nissl and Golgi staining techniques. Results from our experiment revealed Purkinje cell degeneration and pyknosis as revealed by a lower intact-pyknotic cell (I-P) ratio, higher pyknotic Purkinje cell density and poor dendritic arborizations in the molecular layer of the cerebellum in the vanadium treated group. In the olfactory bulb, neuronal loss in the glomerular layer was observed as shrunken glomeruli. These neuronal changes have been linked to deficits in motor function and disruption of odor transduction in the olfactory bulb. This work has further demonstrated the neurotoxic effects of vanadium on the cerebellum and olfactory bulb of the AGR and the likely threat it may pose to the translational potentials of this rodent. We therefore propose the use of this rodent as a suitable model for better understanding vanadium induced olfactory and cerebellar dysfunctions.


Subject(s)
Cerebellum , Olfactory Bulb , Vanadium , Animals , Olfactory Bulb/drug effects , Olfactory Bulb/pathology , Male , Vanadium/toxicity , Cerebellum/drug effects , Cerebellum/pathology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/physiopathology , Rats , Purkinje Cells/drug effects , Purkinje Cells/pathology
12.
Glia ; 70(9): 1699-1719, 2022 09.
Article in English | MEDLINE | ID: mdl-35579329

ABSTRACT

Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1ß, we sought to uncover causes of cerebellar damage. In this model, IL-1ß is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1ß treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1ß leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.


Subject(s)
Cerebellar Diseases , Infant, Premature, Diseases , Inflammation , Interferon Type I , Interleukin-1beta , Microglia , Animals , Brain Diseases/chemically induced , Brain Diseases/immunology , Brain Diseases/pathology , Cerebellar Diseases/chemically induced , Cerebellar Diseases/immunology , Cerebellar Diseases/pathology , Cerebellum/drug effects , Cerebellum/immunology , Cerebellum/pathology , Disease Models, Animal , Female , Humans , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/chemically induced , Infant, Premature, Diseases/immunology , Infant, Premature, Diseases/pathology , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Interferon Type I/immunology , Interleukin-1beta/adverse effects , Interleukin-1beta/pharmacology , Microglia/drug effects , Microglia/immunology , Microglia/pathology , Pregnancy
13.
Mol Neurobiol ; 59(1): 234-244, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34661852

ABSTRACT

Acrylamide (ACR) is selective neurotoxicity, could be found in foods processed by high temperature. This work aimed to evaluate the protective role of the dark chocolate (DC) against cerebellar neurotoxicity induced by subchronic ACR exposure in recently weaned rat pups and to propose it as protective supplement against dietary ACR hazards. Eighteen weaning pups were used in the current study and divided into three groups, six rats in each group; group 1 (control group), group 2 (ACR group), and group 3 (ACR + DC group). The pups were sacrificed after 21 days and the cerebellums were removed for light microscope using H&E stain, ultrastructural study, morphometric analysis of the neurons count, biochemical analysis of oxidant and antioxidant markers and real-time quantitative PCR to evaluate the nuclear receptor subfamily 4, group A, member 2 (Nr4a2) gene expression. Pups with ACR consumption showed signs of neuronal degeneration and reduced Nr4a2 expression. On the other hand, pups with ACR + DC consumption showed relative signs of neuronal restoration and enhanced Nr4a2 expression. In conclusion, DC can be used as effective supplement to decrease the dietary ACR cerebellar neuronal risks.


Subject(s)
Acrylamide/toxicity , Cerebellum/drug effects , Chocolate , Neurons/drug effects , Neurotoxicity Syndromes/metabolism , Protective Agents/administration & dosage , Animals , Cerebellum/metabolism , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Weaning
14.
Article in English | MEDLINE | ID: mdl-34416354

ABSTRACT

Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological and functional substrate to modulate cognitive functions. Dysfunction of both medial prefrontal cortex (mPFC) and cerebellum underlie the phenotypes of several neuropsychiatric disorders that exhibit comorbidity with substance use disorder (SUD). In people with SUD, cue-action-reward associations appears to be particularly strong and salient, acting as powerful motivational triggers for craving and relapse. Studies of cue reactivity in human with SUD have shown cerebellar activations when drug-related cues are presented. Our preclinical research showed that cocaine-induced conditioned preference increases neural activity and upregulates perineuronal nets (PNNs) around Golgi interneurons in the posterior cerebellar cortex. In the present investigation, we aimed at evaluating cerebellar signatures of conditioned preference for cocaine when drug learning is established under mPFC impairment. We used lidocaine to temporarily inactivate in male rats either the Prelimbic (PL) or the Infralimbic (IL) cortices during cocaine-induced conditioning. The inactivation of the IL, but not the PL, encouraged the acquisition of preference for cocaine-related cues, increased posterior cerebellar cortex activity, and upregulated the expression of PNNs around Golgi interneurons. Moreover, IL impairment not only increased vGluT2- and vGAT-related activity around Golgi cells but also regulated PNNs differently on subpopulations of Golgi cells, increasing the number of neurogranin+ PNN-expressing Golgi cells. Our findings suggest that IL dysfunction may facilitate the acquisition of cocaine-induced memory and cerebellar drug-related learning hallmarks. Overall, IL perturbation during cocaine-induced Pavlovian learning increased cerebellar activity and drug effects. Importantly, cerebellum involvement requires a contingent experience with the drug, and it is not the effect of a mere inactivation of IL cortex.


Subject(s)
Cerebellum/drug effects , Cocaine , Cues , Dopamine Uptake Inhibitors , Prefrontal Cortex/drug effects , Animals , Cocaine/administration & dosage , Cocaine/pharmacology , Conditioning, Operant/drug effects , Dopamine Uptake Inhibitors/administration & dosage , Dopamine Uptake Inhibitors/pharmacology , Interneurons , Lidocaine , Male , Nerve Net , Rats , Reward
15.
Article in English | MEDLINE | ID: mdl-34320402

ABSTRACT

Clinical and preclinical studies have shown dysfunctions in genetic expression and neurotransmission of γ-Aminobutyric acid (GABA), GABAA receptor subunits, and GABA-synthesizing enzymes GAD67 and GAD65 in schizophrenia. It is well documented that there is significant weight gain after chronic neuroleptic treatment in humans. While there are limited studies on the effects of diet on GABA signaling directly, a change in diet has been used clinically as an adjunct to treatment for schizophrenic relief. In this study, rats chronically consumed either a chow diet (CD) or a 60% high-fat diet (HFD) and drank from bottles that contained one of the following solutions: water, haloperidol (1.5 mg/kg), or olanzapine (10 mg/kg) for four weeks. Rats were then euthanized and their brains were processed for GABAA in-vitro receptor autoradiography using [3H] flunitrazepam. A chronic HFD treatment yielded significantly increased [3H] flunitrazepam binding in the rat cerebellum independent of neuroleptic treatment. The desynchronization between the prefrontal cortex and the cerebellum is associated with major cognitive and motor dysfunctions commonly found in schizophrenic symptomatology, such as slowed reaction time, motor dyscoordination, and prefrontal activations related to speech fluency and cognitive alertness. These data support the notion that there is a dietary effect on GABA signaling within the cerebellum, as well as the importance of considering nutritional intervention methods as an adjunct treatment for patients chronically treated with neuroleptics. Finally, we indicate that future studies involving the analysis of individual patient's genetic profiles will further assist towards a precision medicine approach to the treatment of schizophrenia.


Subject(s)
Antipsychotic Agents/administration & dosage , Cerebellum/drug effects , Diet, High-Fat , Flunitrazepam/metabolism , Haloperidol/administration & dosage , Schizophrenia/drug therapy , Animals , Antipsychotic Agents/pharmacology , Autoradiography , Brain/metabolism , Haloperidol/pharmacology , Male , Olanzapine/administration & dosage , Olanzapine/pharmacology , Prefrontal Cortex/metabolism , Radioligand Assay , Rats , gamma-Aminobutyric Acid/metabolism
16.
Food Chem Toxicol ; 159: 112751, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34871666

ABSTRACT

Recent studies showed a possible association between perfluorooctane sulfonate (PFOS) and developmental disabilities. We previously found the specific effects of PFOS exposure on learning and memory, however, its effect on the other developmental disabilities such as motor and social deficits remains unclear. We examined the effect of early lactational PFOS exposure on motor coordination, social activity, and anxiety in male mice. We orally administered a PFOS solution to dams from postnatal day 1-14. At 10 weeks old, we conducted a behavior test battery to evaluate motor performance, social activity, and anxiety, followed by electrophysiology and Western blot analysis. PFOS-exposed mice displayed impaired motor coordination. Whole-cell patch-clamp recordings from Purkinje cells revealed that the short-term and long-term plasticity at parallel fiber-Purkinje cell synapses are affected by PFOS exposure. Western blot analysis indicated that PFOS exposure increased syntaxin binding protein 1 (Munc18-1) and glutamate metabotropic receptor 1 (mGluR1) protein levels, which may be associated with the change in neurotransmitter release from parallel fibers and the level of long-term depression, respectively. The present study demonstrates that lactational PFOS exposure may have disrupted the pre- and postsynaptic plasticity at parallel fiber-Purkinje cell synapses, causing profound, long-lasting abnormal effects on the cerebellar function.


Subject(s)
Alkanesulfonic Acids/toxicity , Cerebellum/drug effects , Dietary Exposure , Fluorocarbons/toxicity , Maternal Exposure , Neurotoxins/toxicity , Animals , Anxiety , Behavior, Animal/drug effects , Cerebellum/growth & development , Cerebellum/physiopathology , Female , Lactation , Male , Mice , Psychomotor Performance/drug effects
17.
J Med Chem ; 65(1): 303-322, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34962403

ABSTRACT

A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono- and dihalophenyl rings and were subsequently studied for their potentiation of KCa2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzene-substituted 4-pyrimidineamine in compound 2q conferred a ∼10-fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating KCa2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the KCa2.2a/KCa2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.


Subject(s)
Cerebellum , Membrane Transport Modulators , Potassium Channels, Calcium-Activated , Purkinje Cells , Pyrimidines , Spinocerebellar Ataxias , Animals , Female , Male , Mice , Cerebellum/drug effects , Disease Models, Animal , Ion Channel Gating , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/pharmacology , Potassium Channels, Calcium-Activated/agonists , Potassium Channels, Calcium-Activated/metabolism , Purkinje Cells/drug effects , Pyrimidines/chemistry , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology , Structure-Activity Relationship
18.
Neurotoxicology ; 88: 196-207, 2022 01.
Article in English | MEDLINE | ID: mdl-34883095

ABSTRACT

Diphenylarsinic acid (DPAA) is a non-natural pentavalent organic arsenic and was detected in well water in Kamisu, Ibaraki, Japan in 2003. Individuals that had consumed this arsenic-contaminated water developed cerebellar symptoms such as myoclonus. We previously revealed that DPAA exposure in rats in vitro and in vivo specifically affected astrocytes rather than neurons among cerebellar cells. Here, we evaluated adverse effects of DPAA in cultured normal human cerebellar astrocytes (NHA), which were compared with those in normal rat cerebellar astrocytes (NRA) exposed to DPAA at 10 µM for 96 h, focusing on aberrant activation of astrocytes; increase in cell viability, activation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and transcription factors (CREB, c-Jun, and c-Fos), upregulation of oxidative stress-responsive factors (Nrf2, HO-1, and Hsp70), and also hypersecretion of brain cytokines (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6) as reported in NRA. While DPAA exposure at 10 µM for 96 h had little effect on NHA, a higher concentration (50 µM for 96 h) and longer exposure (10 µM for 288 h) induced similar aberrant activation. Moreover, exposure to DPAA at 50 µM for 96 h or 10 µM for 288 h in NHA induced hypersecretion of cytokines induced in DPAA-exposed NRA (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6), and IL-8 besides into culture medium. These results suggested that aberrantly activated human astrocytes by DPAA exposure might play a pivotal role in the pathogenesis of cerebellar symptoms, affecting adjacent neurons, microglia, brain blood vessels, or astrocyte itself through these brain cytokines in human.


Subject(s)
Arsenicals/adverse effects , Astrocytes/drug effects , Cerebellum/drug effects , Cytokines/metabolism , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Transcription Factors/metabolism , Animals , Arsenicals/administration & dosage , Astrocytes/metabolism , Blotting, Western , Cerebellum/cytology , Cerebellum/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Rats , Rats, Wistar
19.
Bull Exp Biol Med ; 171(5): 619-622, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34617178

ABSTRACT

We studied the antioxidant and cytoprotective effects of meconic acid in the model systems. Meconic acid, similar to commercial drug Mexidol, reduced the intensity of chemiluminescence in the model system of yolk lipoproteins. Meconic acid also reduced the toxic effect of glutamate on neurons in the primary cerebellar culture, but had no effect on cell viability under normal conditions.


Subject(s)
Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Pyrones/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Cerebellum/cytology , Cerebellum/drug effects , Cytoprotection/drug effects , Cytoprotection/physiology , Glutamic Acid/toxicity , Models, Biological , Neurons/drug effects , Neurons/physiology , Rats , Rats, Wistar
20.
Eur J Neurosci ; 54(9): 7048-7062, 2021 11.
Article in English | MEDLINE | ID: mdl-34622493

ABSTRACT

Calcium influx into presynaptic terminals through voltage-gated Ca2+ channels triggers univesicular or multivesicular release of neurotransmitters depending on the characteristics of the release machinery. However, the mechanisms underlying multivesicular release (MVR) and its regulation remain unclear. Previous studies showed that in rat cerebellum, the cyclin-dependent kinase inhibitor roscovitine profoundly increases excitatory postsynaptic current (EPSC) amplitudes at granule cell (GC)-Purkinje cell (PC) synapses by enhancing the MVR of glutamate. This compound can also moderately augment the amplitude and prolong the decay time of inhibitory postsynaptic currents (IPSCs) at molecular layer interneuron (MLI)-PC synapses via MVR enhancement and GABA spillover, thus allowing for persistent activation of perisynaptic GABA receptors. The enhanced MVR may depend on the driving force for Cav 2.1 channel-mediated Ca2+ influx. To determine whether the distinct spatiotemporal dynamics of presynaptic Ca2+ influence MVR, we compared the effects of slow and fast Ca2+ chelators, that is, EGTA and BAPTA, respectively, on roscovitine-induced actions at GC-PC and MLI-PC synapses. Membrane-permeable EGTA-AM decreased GC-PC EPSC and MLI-PC IPSC amplitudes to a similar extent but suppressed the roscovitine-induced enhancement of EPSCs. In contrast, BAPTA-AM attenuated the effects of roscovitine on IPSCs. These results suggest that roscovitine augmented glutamate release by activating the release machinery located distally from the Cav 2.1 channel clusters, while it enhanced GABA release in a manner less dependent on those at distal sites. Therefore, the spatial relationships among Ca2+ channels, buffers, and sensors are critical determinants of the differential facilitatory actions of roscovitine on glutamatergic and GABAergic synapses in the cerebellar cortex.


Subject(s)
Cerebellum/drug effects , Roscovitine/pharmacology , Synapses , Synaptic Transmission , Animals , Calcium Channels, N-Type , Cerebellum/metabolism , Glutamic Acid , Neurotransmitter Agents , Presynaptic Terminals/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...