Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.288
Filter
1.
PLoS One ; 19(5): e0301267, 2024.
Article in English | MEDLINE | ID: mdl-38753768

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative diseases for which at present no cure is available. Despite the extensive research the progress from diagnosis to prognosis in ALS and frontotemporal dementia (FTD) has been slow which represents suboptimal understanding of disease pathophysiological processes. In recent studies, several genes have been associated with the ALS and FTD diseases such as SOD1, TDP43, and TBK1, whereas the hexanucleotide GGGGCC repeat expansion (HRE) in C9orf72 gene is a most frequent cause of ALS and FTD, that has changed the understanding of these diseases. METHODS: The goal of this study was to identify and spatially determine differential gene expression signature differences between cerebellum and frontal cortex in C9orf72-associated ALS (C9-ALS), to study the network properties of these differentially expressed genes, and to identify miRNAs targeting the common differentially expressed genes in both the tissues. This study thus highlights underlying differential cell susceptibilities to the disease mechanisms in C9-ALS and suggesting therapeutic target selection in C9-ALS. RESULTS: In this manuscript, we have identified that the genes involved in neuron development, protein localization and transcription are mostly enriched in cerebellum of C9-ALS patients, while the UPR-related genes are enriched in the frontal cortex. Of note, UPR pathway genes were mostly dysregulated both in the C9-ALS cerebellum and frontal cortex. Overall, the data presented here show that defects in normal RNA processing and the UPR pathway are the pathological hallmarks of C9-ALS. Interestingly, the cerebellum showed more strong transcriptome changes than the frontal cortex. CONCLUSION: Interestingly, the cerebellum region showed more significant transcriptomic changes as compared to the frontal cortex region suggesting its active participation in the disease process. This nuanced understanding may offer valuable insights for the development of targeted therapeutic strategies aimed at mitigating disease progression in C9-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontal Lobe , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Female , Male , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , Aged , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism
2.
Cereb Cortex ; 34(13): 94-103, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696597

ABSTRACT

Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.


Subject(s)
Cerebellum , Humans , Cerebellum/pathology , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Animals , Autistic Disorder/pathology , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Purkinje Cells/pathology
3.
Medicine (Baltimore) ; 103(21): e37605, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788012

ABSTRACT

RATIONALE: Subacute combined degeneration of the spinal cord is a degenerative disease of the central and peripheral nervous systems caused by vitamin B12 deficiency, mainly involving the spinal cord posterior, lateral, and peripheral nerves, but rarely involving the cerebellum. PATIENT CONCERNS: A 41-year-old woman presented with a 2-year history of walking unsteadily. Her hematologic examination revealed megaloblastic anemia and vitamin B12 deficiency. Electromyography showed multiple peripheral nerve damage (sensory fibers and motor fibers were involved). Imaging examination showed long T2 signal in the cervical, thoracic and lumbar spinal cord and cerebellum. Gastroscopy revealed autoimmune gastritis. DIAGNOSES: Subacute combined degeneration of the spinal cord. INTERVENTIONS: By supplementing with vitamin B12. OUTCOMES: The patient's symptoms of limb weakness, diet, and consciousness were improved, and the muscle strength of both lower limbs recovered to grade IV. LESSONS: The symptomatic people should seek medical treatment in time to avoid further deterioration of the disease. When esophagogastroduodenoscopy is performed as part of routine physical examination in asymptomatic people, it should be checked for the presence of autoimmune gastritis. Early diagnosis can prevent irreversible neuropathy.


Subject(s)
Subacute Combined Degeneration , Humans , Female , Adult , Subacute Combined Degeneration/etiology , Subacute Combined Degeneration/diagnosis , Vitamin B 12 Deficiency/complications , Vitamin B 12 Deficiency/diagnosis , Gastritis/diagnosis , Vitamin B 12/therapeutic use , Vitamin B 12/administration & dosage , Cerebellum/pathology , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging
4.
Cell Mol Life Sci ; 81(1): 234, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789799

ABSTRACT

Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. To date, it remains unclear which factors contribute to VWM pathogenesis. Here, we investigated the basis of VWM pathogenesis using the 2b5ho mouse model. We first mapped the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild-type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we showed that the proteome in the cerebellum and cortex of 2b5ho mice was already dysregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after pathology onset. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region. Importantly, 2b5ho mouse brain proteome changes reflect features well-known in VWM. Comparison of the 2b5ho mouse and VWM patient brain proteomes revealed shared changes. These could represent changes that contribute to the disease or even drive its progression in patients. Taken together, we show that the 2b5ho mouse brain proteome is affected in a region- and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, providing a resource to study aspects of VWM pathogenesis by highlighting alterations from early to late disease stages, and those that possibly drive disease progression.


Subject(s)
Disease Models, Animal , Leukoencephalopathies , Proteome , Proteomics , White Matter , Animals , Mice , Humans , Proteome/metabolism , Leukoencephalopathies/metabolism , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , White Matter/metabolism , White Matter/pathology , Corpus Callosum/metabolism , Corpus Callosum/pathology , Eukaryotic Initiation Factor-2B/metabolism , Eukaryotic Initiation Factor-2B/genetics , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL , Cerebellum/metabolism , Cerebellum/pathology
5.
Front Immunol ; 15: 1388667, 2024.
Article in English | MEDLINE | ID: mdl-38799430

ABSTRACT

Cerebellar ataxia is an uncommon and atypical manifestation of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, often accompanied by seizures, psychiatric symptoms, and cognitive deficits. Previous cases of isolated brainstem-cerebellar symptoms in patients with anti-NMDAR encephalitis have not been documented. This report presents a case of anti-NMDAR encephalitis in which the patient exhibited cerebellar ataxia, nystagmus, diplopia, positive bilateral pathological signs, and hemiparesthesia with no other accompanying symptoms or signs. The presence of positive CSF anti-NMDAR antibodies further supports the diagnosis. Other autoantibodies were excluded through the use of cell-based assays. Immunotherapy was subsequently administered, leading to a gradual recovery of the patient.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Autoantibodies , Brain Stem , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Brain Stem/pathology , Autoantibodies/immunology , Autoantibodies/cerebrospinal fluid , Autoantibodies/blood , Female , Cerebellar Ataxia/etiology , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/immunology , Cerebellum/pathology , Cerebellum/diagnostic imaging , Receptors, N-Methyl-D-Aspartate/immunology , Adult , Immunotherapy , Male , Magnetic Resonance Imaging
6.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626762

ABSTRACT

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Subject(s)
Mosaicism , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Humans , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics , Female , Male , Adult , Middle Aged , Cerebellum/metabolism , Cerebellum/pathology , Aged , Brain/metabolism , Brain/pathology , Ataxin-1/genetics
7.
Medicine (Baltimore) ; 103(17): e37923, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669361

ABSTRACT

RATIONALE: Primary central nervous system lymphoma (PCNSL) is a rare, highly malignant form of non-Hodgkin lymphoma categorized under the diffuse large B-cell type. It accounts for merely 1% of all non-Hodgkin lymphoma cases and comprises approximately 3% of all brain tumors. The involvement of the cerebellum is observed in only 9% of these cases. Recently, we came across an unusual instance: a young man presenting with multiple lesions located specifically within the cerebellum. PATIENT CONCERNS: A 26-year-old male was admitted to the hospital due to severe headaches. He has a medical history of sporadic headaches, accompanied by dizziness, nausea, and vomiting persisting for a month. Over the last 10 days, his headaches have intensified, coupled with decreased vision and protrusion of the eyeballs. Magnetic resonance imaging (MRI) revealed abnormal signals in both cerebellar hemispheres. DIAGNOSES, INTERVENTIONS, AND OUTCOMES: Diagnostic procedures included cerebellar biopsy, posterior fossa decompression, and lateral ventricle drainage. Histopathological examination identified diffuse large B-cell lymphoma (DLBCL) with high proliferative activity. To minimize neurotoxicity, chemotherapy involved intrathecal methotrexate (MTX) injections combined with the CHOP program. The patient has shown good tolerance to the treatment so far. LESSONS: While the definitive optimal treatment approach remains elusive, current chemotherapy centered on high-dose MTX stands as the standard induction therapy. Integrating surgery with radiotherapy and chemotherapy significantly extends patient survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Cerebellar Neoplasms , Lymphoma, Large B-Cell, Diffuse , Humans , Male , Adult , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cerebellar Neoplasms/therapy , Cerebellar Neoplasms/pathology , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Vincristine/therapeutic use , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Methotrexate/therapeutic use , Methotrexate/administration & dosage , Prednisone/therapeutic use , Prednisone/administration & dosage , Combined Modality Therapy , Magnetic Resonance Imaging , Cerebellum/pathology , Cerebellum/diagnostic imaging
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673763

ABSTRACT

Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1ß, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.


Subject(s)
Alcohol Drinking , Cerebellum , Chemokine CCL2 , Corpus Striatum , Ethanol , Hippocampus , Mice, Inbred C57BL , Prefrontal Cortex , Animals , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Cerebellum/metabolism , Cerebellum/drug effects , Cerebellum/pathology , Male , Corpus Striatum/metabolism , Corpus Striatum/pathology , Corpus Striatum/drug effects , Ethanol/adverse effects , Alcohol Drinking/adverse effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Inflammation/metabolism , Inflammation/pathology , Inflammation/chemically induced
9.
Neurobiol Dis ; 195: 106492, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575093

ABSTRACT

We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.


Subject(s)
Disease Models, Animal , Phenotype , Animals , Mice , Cerebellum/pathology , Cerebellum/metabolism , Purkinje Cells/pathology , Purkinje Cells/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Genotype , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Mice, Neurologic Mutants , Mice, Inbred C57BL , Mice, Transgenic
10.
JCI Insight ; 9(10)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625743

ABSTRACT

Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.


Subject(s)
Homeostasis , Lipid Metabolism , Purkinje Cells , Sorting Nexins , Sorting Nexins/metabolism , Sorting Nexins/genetics , Animals , Mice , Humans , Purkinje Cells/metabolism , Purkinje Cells/pathology , Disease Models, Animal , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Mice, Knockout , Cerebellum/metabolism , Cerebellum/pathology , Male , Lipid Droplets/metabolism
11.
Acta Neuropathol ; 147(1): 73, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641715

ABSTRACT

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Transcriptome
12.
Biomed Pharmacother ; 174: 116526, 2024 May.
Article in English | MEDLINE | ID: mdl-38574621

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.


Subject(s)
Disease Models, Animal , Memantine , Phenotype , Spinocerebellar Ataxias , Animals , Memantine/pharmacology , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/pathology , Mice , Ataxin-1/metabolism , Ataxin-1/genetics , Motor Activity/drug effects , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/metabolism , Purkinje Cells/drug effects , Purkinje Cells/pathology , Purkinje Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Neuroglia/drug effects , Neuroglia/pathology , Neuroglia/metabolism , Male , Neuronal Plasticity/drug effects
13.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38616770

ABSTRACT

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Subject(s)
Corpus Striatum , Disease Models, Animal , Dystonia , Interneurons , Parvalbumins , Proto-Oncogene Proteins c-fos , Receptors, Dopamine D2 , Animals , Interneurons/metabolism , Interneurons/drug effects , Parvalbumins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Dystonia/pathology , Dystonia/metabolism , Dystonia/physiopathology , Corpus Striatum/pathology , Corpus Striatum/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D1/metabolism , Cerebellum/pathology , Cerebellum/metabolism , Ouabain/pharmacology , Mice, Inbred C57BL , Mice , Male
14.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673939

ABSTRACT

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Subject(s)
Ataxin-7 , Dependovirus , Disease Models, Animal , Peptides , Phenotype , RNA, Small Interfering , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Spinocerebellar Ataxias/metabolism , Peptides/genetics , Dependovirus/genetics , Mice , Ataxin-7/genetics , Ataxin-7/metabolism , Trinucleotide Repeat Expansion/genetics , RNA, Small Interfering/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Purkinje Cells/metabolism , Purkinje Cells/pathology , Mice, Transgenic , Cerebellum/metabolism , Cerebellum/pathology , Humans , Genetic Therapy/methods , Alleles
15.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630337

ABSTRACT

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Subject(s)
Cell Death , Ethanol , Neurons , Neuroprotective Agents , Plant Extracts , Plant Leaves , Sterculia , Animals , Rats , Caspase 3/metabolism , Ethanol/administration & dosage , Ethanol/chemistry , Ethanol/toxicity , Hydrogen Peroxide/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Rats, Wistar , Sterculia/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Lactate Dehydrogenases/metabolism , GAP-43 Protein/analysis , Apoptosis/genetics , Oxidative Stress/genetics , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/physiology , Male , Female , Cells, Cultured , Cell Death/drug effects , Gene Expression Regulation/drug effects , Phytochemicals/administration & dosage , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Secondary Metabolism
16.
Neuropathol Appl Neurobiol ; 50(2): e12970, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504418

ABSTRACT

PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.


Subject(s)
Cerebellar Neoplasms , Hamartoma Syndrome, Multiple , Child , Humans , Animals , Mice , Germ-Line Mutation , Phosphatidylinositol 3-Kinases , PTEN Phosphohydrolase/genetics , Cerebellum/pathology , Hamartoma Syndrome, Multiple/genetics , Hamartoma Syndrome, Multiple/pathology , Phenotype , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Germ Cells/pathology , Mutation
17.
Adv Neurobiol ; 36: 329-363, 2024.
Article in English | MEDLINE | ID: mdl-38468041

ABSTRACT

The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.


Subject(s)
Neurodegenerative Diseases , Humans , Adult , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Fractals , Gray Matter/diagnostic imaging , Gray Matter/pathology , Aging , Cerebellum/diagnostic imaging , Cerebellum/pathology
18.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Article in English | MEDLINE | ID: mdl-38502237

ABSTRACT

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Subject(s)
Abnormalities, Multiple , Cell Differentiation , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Neurons , Retina , Retina/abnormalities , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Cerebellum/pathology , Cerebellum/metabolism , Neurons/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Retina/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Male , Female , Mutation/genetics , Cilia/metabolism
19.
Exp Neurol ; 376: 114751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484864

ABSTRACT

Despite great advances in acute care and rehabilitation, stroke remains the leading cause of motor impairment in the industrialized world. We have developed a deep brain stimulation (DBS)-based approach for post-stroke rehabilitation that has shown reproducible effects in rodent models and has been recently translated to humans. Mechanisms underlying the rehabilitative effects of this novel therapy have been largely focused on the ipsilesional cortex, including cortical reorganization, synaptogenesis, neurogenesis and greater expression of markers of long-term potentiation. The role of subcortical structures on its therapeutic benefits, particularly the striatum, remain unclear. In this study, we compared the motor rehabilitative effects of deep cerebellar stimulation in two rodent models of cerebral ischemia: a) cortical ischemia; and b) combined striatal and cortical ischemia. All animals underwent the same procedures, including implantation of the electrodes and tethered connections for stimulation. Both experimental groups received four weeks of continuous lateral cerebellar nucleus (LCN) DBS and each was paired with a no stimulation, sham, group. Fine motor function was indexed using the pasta matrix task. Brain tissue was harvested for histology and immunohistochemical analyses. In the cortical-only ischemia, the average pasta matrix performance of both sham and stimulated groups reduced from 19 to 24 pieces to 7-8 pieces following the stroke induction. At the end of the four-week treatment, the performance of stimulated group was significantly greater than that of sham group (14 pieces vs 7 pieces, p < 0.0001). Similarly, in the combined cortical and striatal ischemia, the performance of both sham and stimulated groups reduced from 29 to 30 pieces to 7-11 pieces following the stroke induction. However, at the end of the four-week treatment, the performance of stimulated group was not significantly greater than that of sham group (15 pieces vs 11 pieces, p = 0.452). In the post-mortem analysis, the number of cells expressing CaMKIIα at the perilesional cortical and striatum of the LCN DBS treated animals receiving cortical-only stroke elevated but not those receiving cortical+striatal stroke. The current findings suggested that the observed, LCN DBS-enhanced motor recovery and perilesional plasticity may involve striatal mechanisms.


Subject(s)
Corpus Striatum , Deep Brain Stimulation , Ischemic Stroke , Recovery of Function , Animals , Deep Brain Stimulation/methods , Recovery of Function/physiology , Male , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/pathology , Corpus Striatum/pathology , Rats , Rats, Sprague-Dawley , Cerebellum/pathology , Stroke Rehabilitation/methods
20.
Mov Disord ; 39(5): 892-897, 2024 May.
Article in English | MEDLINE | ID: mdl-38480525

ABSTRACT

BACKGROUND: Little is known about the impact of the cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) on cognition. OBJECTIVE: Our objective was to determine the frequency and severity of cognitive impairment in RFC1-positive patients and describe the pattern of deficits. METHODS: Participants underwent a comprehensive neuropsychological assessment. Volume of the cerebellum and its lobules was measured in those who underwent a 3 Tesla-magnetic resonance scan. RESULTS: Twenty-one patients underwent a complete assessment, including 71% scoring lower than the cutoff at the Montreal Cognitive assessment and 71% having a definite cerebellar cognitive affective/Schmahmann syndrome. Three patients had dementia and seven met the criteria of mild cognitive impairment. Severity of cognitive impairment did not correlate with severity of clinical manifestations. Performance at memory and visuospatial functions tests negatively correlated with the severity of cerebellar manifestations. CONCLUSION: Cognitive manifestations are frequent in RFC1-related disorders. They should be included in the phenotype and screened systematically. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellar Ataxia , Cognitive Dysfunction , Phenotype , Humans , Female , Male , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cerebellar Ataxia/physiopathology , Cerebellar Ataxia/complications , Middle Aged , Aged , Adult , Neuropsychological Tests , Replication Protein C/genetics , Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Cerebellum/pathology , Vestibular Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...