Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.340
Filter
1.
Nat Commun ; 15(1): 4503, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802334

ABSTRACT

The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.


Subject(s)
Brain Neoplasms , Glioblastoma , Nerve Net , Glioblastoma/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/physiopathology , Glioblastoma/genetics , Animals , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Mice , Humans , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Glutamic Acid/metabolism , Neurons/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Calcium Signaling , Disease Models, Animal , Male , Calcium/metabolism , Female
2.
Biochem Biophys Res Commun ; 716: 150010, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704892

ABSTRACT

Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.


Subject(s)
Calcium , Cerebral Cortex , Corpus Striatum , Disease Models, Animal , Gene Knock-In Techniques , Huntington Disease , Mitochondria , Presynaptic Terminals , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Calcium/metabolism , Mitochondria/metabolism , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Presynaptic Terminals/metabolism , Cells, Cultured , Neurons/metabolism , Neurons/pathology , Mice, Transgenic
3.
Brain Behav ; 14(5): e3529, 2024 May.
Article in English | MEDLINE | ID: mdl-38747741

ABSTRACT

BACKGROUND AND AIMS: Stress ulcer (SU) is a common complication in patients with acute ischemic stroke. The relationship of infarction location and the incidence of SU was unclear. Herein, we aim to investigate the association between ischemic insular damage and the development of SU. METHODS: Data were retrieved from the SPARK study (Effect of Cardiac Function on Short-Term Functional Prognosis in Patients with Acute Ischemic Stroke). We included the patients who had experienced an ischemic stroke within 7 days. The diagnosis of SU was based on clinical manifestations, including hematemesis, bloody nasogastric tube aspirate, or hematochezia. Evaluation of ischemic insular damage was conducted through magnetic resonance imaging. Cyclo-oxygenase regression analysis and Kaplan-Meier survival curves were used to assess the relationship between ischemic insular damage and the occurrence of SU. RESULTS: Among the 1357 patients analyzed, 110 (8.1%) developed SUs during hospitalization, with 69 (6.7%) experiencing infarctions in the anterior circulation. After adjusting for potential confounders, patients with ischemic insular damage exhibited a 2.16-fold higher risk of developing SUs compared to those without insular damage (p = .0206). Notably, among patients with infarctions in the anterior circulation, those with insular damage had a 2.21-fold increased risk of SUs (p = .0387). Moreover, right insular damage was associated with a higher risk of SUs compared to left insular damage or no insular damage (p for trend = .0117). Kaplan-Meier curves demonstrated early separation among groups, persisting throughout the follow-up period (all p < .0001). CONCLUSIONS: This study identified a significant independent correlation between ischemic insular damage, particularly on the right side, and the development of SU during hospitalization, indicating the need to consider prophylactic acid-suppressive treatment for patients with ischemic insular damage.


Subject(s)
Ischemic Stroke , Humans , Male , Female , Ischemic Stroke/complications , Ischemic Stroke/epidemiology , Ischemic Stroke/diagnostic imaging , Aged , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Magnetic Resonance Imaging , Brain Ischemia/diagnostic imaging , Brain Ischemia/epidemiology , Ulcer/pathology
4.
J Comp Neurol ; 532(5): e25623, 2024 May.
Article in English | MEDLINE | ID: mdl-38803103

ABSTRACT

In Alzheimer´s disease (AD), hyperphosphorylated tau spreads along the cerebral cortex in a stereotypical pattern that parallels cognitive deterioration. Tau seems to spread transsynaptically along cortico-cotical pathways that, according to synaptic tract-tracing studies in nonhuman primates, have specific laminar patterns related to the cortical type of the connected areas. This relation is described in the Structural Model. In the present article, we study the laminar distribution of hyperphosphorylated tau, labeled with the antibody AT8, along temporal cortical types in postmortem human brains with different AD stages to test the predictions of the Structural Model. Brains from donors without dementia had scant AT8-immunorreactive (AT8-ir) neurons in allo-, meso-, and isocortical types. In early AD stages, the mesocortical dysgranular type, including part of the transentorhinal cortex, had the highest AT8 immunostaining and AT8-ir neurons density. In advanced AD stages, AT8 immunostaining increased along the isocortical types until reaching the auditory koniocortex. Regarding laminar patterns, in early AD stages there were more AT8-ir neurons in supragranular layers in each de novo involved neocortical type; in advanced AD stages, AT8-ir neurons were equally distributed in supra- and infragranular layers. These AT8-ir laminar patterns are compatible with the predictions of the Structural Model. In summary, we show that hyperphosphorylated tau initially accumulates in allo-, meso-, and isocortical types, offer a proof of concept for the validity of the Structural Model to predict synaptic pathway organization in the human cerebral cortex, and highlight the relevance of nonhuman primate tract-tracing studies to understand human neuropathology.


Subject(s)
Alzheimer Disease , Cerebral Cortex , Neural Pathways , tau Proteins , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Humans , tau Proteins/metabolism , Male , Female , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Aged , Phosphorylation , Aged, 80 and over , Neural Pathways/metabolism , Neural Pathways/pathology , Neural Pathways/chemistry , Middle Aged , Models, Neurological , Neurons/metabolism , Neurons/pathology
5.
Mol Autism ; 15(1): 22, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38790065

ABSTRACT

BACKGROUND: Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS: Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we  tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS: At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS: Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS: By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.


Subject(s)
Autism Spectrum Disorder , Organoids , Humans , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Organoids/pathology , Male , Female , Child, Preschool , Cerebral Cortex/pathology , Social Behavior , Organ Size , Infant , Severity of Illness Index , Brain/pathology
6.
BMC Res Notes ; 17(1): 143, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773625

ABSTRACT

OBJECTIVES: The G72 mouse model of schizophrenia represents a well-known model that was generated to meet the main translational criteria of isomorphism, homology and predictability of schizophrenia to a maximum extent. In order to get a more detailed view of the complex etiopathogenesis of schizophrenia, whole genome transcriptome studies turn out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex, hippocampus and thalamus of G72 transgenic and wild-type control mice. Experimental animals were age-matched and importantly, both sexes were considered separately. DATA DESCRIPTION: The isolated RNA from all three brain regions was purified, quantified und quality controlled before initiation of the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8  ×  60 K microarrays. Following immunofluorescent measurement und preprocessing of image data, raw transcriptome data from G72 mice and control animals were extracted and uploaded in a public database. Our data allow insight into significant alterations in gene transcript levels in G72 mice and enable the reader/user to perform further complex analyses to identify potential age-, sex- and brain-region-specific alterations in transcription profiles and related pathways. The latter could facilitate biomarker identification and drug research and development in schizophrenia research.


Subject(s)
Cerebral Cortex , Disease Models, Animal , Hippocampus , Schizophrenia , Thalamus , Transcriptome , Animals , Schizophrenia/genetics , Schizophrenia/metabolism , Hippocampus/metabolism , Male , Female , Mice , Transcriptome/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Thalamus/metabolism , Mice, Transgenic , Gene Expression Profiling/methods , Sex Factors
7.
J Psychiatry Neurosci ; 49(3): E182-E191, 2024.
Article in English | MEDLINE | ID: mdl-38816028

ABSTRACT

BACKGROUND: Esketamine is a version of ketamine that has been approved for treatment-resistant depression, but our previous studies showed a link between non-medical use of ketamine and brain structural and functional alterations, including dorsal prefrontal grey matter reduction among chronic ketamine users. In this study, we sought to determine cortical thickness abnormalities following long-term, non-medical use of ketamine. METHODS: We acquired structural brain images for patients with ketamine use disorder and drug-free healthy controls. We used FreeSurfer software to measure cortical thickness for 68 brain regions. We compared cortical thickness between the 2 groups using analysis of covariance with covariates of age, gender, educational level, smoking, drinking, and whole-brain mean cortical thickness. RESULTS: We included images from 95 patients with ketamine use disorder and 169 controls. Compared with healthy controls, patients with ketamine use disorder had widespread decreased cortical thickness, with the most extensive reductions in the frontal (including the dorsolateral prefrontal cortex) and parietal (including the precuneus) lobes. Increased cortical thickness was not observed among ketamine users relative to comparison participants. Estimated total lifetime ketamine consumption was correlated with reductions in the right inferior parietal and the right rostral middle frontal cortical thickness. LIMITATIONS: We conducted a retrospective cross-sectional study, but longitudinal studies are needed to further validate decreased cortical thickness after nonmedical use of ketamine. CONCLUSION: This study provided evidence that, compared with healthy controls, chronic ketamine users have widespread reductions in cortical thickness. Our study underscores the importance of the long-term effects of ketamine on brain structure and serves as a reference for the antidepressant use of ketamine.


Subject(s)
Cerebral Cortex , Ketamine , Magnetic Resonance Imaging , Substance-Related Disorders , Humans , Ketamine/administration & dosage , Male , Female , Adult , Substance-Related Disorders/diagnostic imaging , Substance-Related Disorders/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Young Adult , Brain Cortical Thickness , Middle Aged
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731978

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aß induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aß treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.


Subject(s)
Alzheimer Disease , Neurons , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Neurons/metabolism , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Humans , Mice , Phosphorylation , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Rats
9.
Cell Rep ; 43(5): 114173, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38700984

ABSTRACT

Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Neurons , Organoids , PTEN Phosphohydrolase , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Organoids/metabolism , Neurons/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Mutation/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Signal Transduction , Cell Proliferation , Regulatory-Associated Protein of mTOR/metabolism , Regulatory-Associated Protein of mTOR/genetics , Phenotype
10.
Neurocase ; 30(1): 1-7, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38758704

ABSTRACT

A research participant was monitored over nearly two decades at Mayo Clinic, undergoing annual neurologic assessments, neuropsychological tests, and multimodal imaging. Initially, he was cognitively normal but developed symptoms consistent with Posterior Cortical Atrophy (PCA) during the study. Early tests indicated mild, yet normal-range declines in language and visuospatial skills. FDG-PET scans revealed increased metabolism in posterior brain regions long before symptoms appeared. Advanced analysis using a novel in-house machine-learning tool predicted concurrent Alzheimer's disease and dementia with Lewy bodies. Autopsy confirmed a mixed neurodegenerative condition with significant Alzheimer's pathology and dense neocortical Lewy bodies. This case underscores the value of longitudinal imaging in predicting complex neurodegenerative diseases, offering vital insights into the early neurocognitive changes associated with PCA and dementia with Lewy bodies.


Subject(s)
Atrophy , Lewy Body Disease , Positron-Emission Tomography , Humans , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Lewy Body Disease/diagnostic imaging , Male , Atrophy/pathology , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Aged , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Prodromal Symptoms , Neuropsychological Tests
11.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788180

ABSTRACT

BACKGROUND AND OBJECTIVES: The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS: In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS: The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION: The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Female , Male , Adult , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/diagnosis , Middle Aged , Cross-Sectional Studies , Prognosis , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Disease Progression , Longitudinal Studies
12.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608784

ABSTRACT

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Subject(s)
Brain-Derived Neurotrophic Factor , Cerebral Cortex , Disease Models, Animal , Huntington Disease , Neurons , Synapses , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Synapses/drug effects , Synapses/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Mice , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Mice, Transgenic , Cells, Cultured , Synapsins/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mice, Inbred C57BL
13.
Neurochem Int ; 176: 105742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641028

ABSTRACT

Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Mice , Male , Mice, Inbred C57BL , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
14.
J Affect Disord ; 356: 356-362, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38621510

ABSTRACT

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) often present with anxiety, depression and cognitive deterioration. Structural changes in the cerebral cortex in PAH patients have also been reported in observational studies. METHODS: PAH genome-wide association (GWAS) including 162,962 European individuals was used to assess genetically determined PAH. GWAS summary statistics were obtained for cognitive performance, depression, anxiety and alterations in cortical thickness (TH) or surface area (SA) of the brain cortex, respectively. Two-sample Mendelian randomization (MR) was performed. Finally, sensitivity analyses including Cochran's Q test, MR-Egger intercept test, leave-one-out analyses, and funnel plot was performed. RESULTS: PAH had no causal relationship with depression, anxiety, and cognitive performance. At the global level, PAH was not associated with SA or TH of the brain cortex; at the functional regional level, PAH increased TH of insula (P = 0.015), pars triangularis (P = 0.037) and pars opercularis (P = 0.010) without global weighted. After global weighted, PAH increased TH of insula (P = 0.004), pars triangularis (P = 0.032), pars opercularis (P = 0.007) and rostral middle frontal gyrus (P = 0.022) while reducing TH of inferior parietal (P = 0.004), superior parietal (P = 0.031) and lateral occipital gyrus (P = 0.033). No heterogeneity and pleiotropy were detected. LIMITATIONS: The enrolled patients were all European and the causal relationship between PAH and the structure of the cerebral cortex in other populations remains unknown. CONCLUSION: Causal relationship between PAH and the brain cortical structure was implied, thus providing novel insights into the PAH associated neuropsychiatric symptoms.


Subject(s)
Anxiety , Cerebral Cortex , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Anxiety/genetics , Depression/genetics , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Male , Female , Cognition/physiology , Magnetic Resonance Imaging , Adult , Middle Aged
15.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679482

ABSTRACT

Higher sensitivity to reward (SR) and weaker sensitivity to punishment (SP) construct the fundamental craving characteristics of methamphetamine abuse. However, few studies have appraised relationships between SR/SP (SR or SP) and cortical morphological alterations in methamphetamine abusers and whether hereditary factors take effects on SR/SP is unclear. Based on surface-based morphometric analysis, cortical discrepancy was investigated between 38 methamphetamine abusers and 37 healthy controls. Within methamphetamine abusers, correlation profiling was performed to discover associations among aberrant neuroimaging substrates, SR, SP, and craving. According to nine single nucleotide polymorphism sites of dopamine-related genes, we conducted univariate general linear model to find different effects of genotypes on cortical alterations and SR/SP/craving (SR, SP, or craving). Ultimately, mediation analyses were conducted among single nucleotide polymorphism sites, SR/SP/craving, and cortical morphological alterations to discover their association pathways. Compared to healthy controls, thinner cortices in inferior temporal gyrus, lateral orbitofrontal cortex, medial orbitofrontal cortex, inferior parietal lobule, and lateral occipital cortex in the left hemisphere were found in methamphetamine abusers (P < 0.05, family-wise error corrected). Cortical thickness in the inferior temporal gyrus was negatively correlated with SR scores. We found that rs1800497 A-containing genotypes had lower cortical thickness in the left inferior parietal lobule than the GG genotype. The rs5751876 had effects on SR scores. This study would provide convincing biomarkers for SR in methamphetamine abusers and offer potential genetic targets for personalizing relapse prevention.


Subject(s)
Amphetamine-Related Disorders , Cerebral Cortex , Magnetic Resonance Imaging , Methamphetamine , Polymorphism, Single Nucleotide , Reward , Humans , Male , Adult , Amphetamine-Related Disorders/genetics , Amphetamine-Related Disorders/diagnostic imaging , Amphetamine-Related Disorders/pathology , Methamphetamine/adverse effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Female , Young Adult , Substance Withdrawal Syndrome/genetics , Substance Withdrawal Syndrome/pathology , Substance Withdrawal Syndrome/psychology , Substance Withdrawal Syndrome/diagnostic imaging , Craving/physiology , Punishment
16.
Alzheimers Res Ther ; 16(1): 85, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641653

ABSTRACT

BACKGROUND: Dementia with Lewy bodies (DLB) is characterized by insular atrophy, which occurs at the early stage of the disease. Damage to the insula has been associated with disorders reflecting impairments of the most fundamental components of the self, such as anosognosia, which is a frequently reported symptom in patients with Lewy bodies (LB). The purpose of this study was to investigate modifications of the self-concept (SC), another component of the self, and to identify neuroanatomical correlates, in prodromal to mild DLB. METHODS: Twenty patients with prodromal to mild DLB were selected to participate in this exploratory study along with 20 healthy control subjects matched in terms of age, gender, and level of education. The Twenty Statements Test (TST) was used to assess the SC. Behavioral performances were compared between LB patients and control subjects. Three-dimensional magnetic resonance images (MRI) were acquired for all participants and correlational analyses were performed using voxel-based morphometry (VBM) in whole brain and using a mask for the insula. RESULTS: The behavioral results on the TST showed significantly impaired performances in LB patients in comparison with control subjects (p < .0001). Correlational analyses using VBM revealed positive correlations between the TST and grey matter volume within insular cortex, right supplementary motor area, bilateral inferior temporal gyri, right inferior frontal gyrus, and left lingual gyrus, using a threshold of p = .001 uncorrected, including total intracranial volume (TIV), age, and MMSE as nuisance covariates. Additionally, correlational analysis using a mask for the insula revealed positive correlation with grey matter volume within bilateral insular cortex, using a threshold of p = .005. CONCLUSIONS: The behavioral results confirm the existence of SC impairments in LB patients from the prodromal stage of the disease, compared to matched healthy controls. As we expected, VBM analyses revealed involvement of the insula, among that of other brain regions, already known to be involved in other self-components. While this study is exploratory, our findings provide important insights regarding the involvement of the insula within the self, confirming the insula as a core region of the self-networks, including for high-order self-representations such as the SC.


Subject(s)
Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Insular Cortex , Brain/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging
18.
Medicina (Kaunas) ; 60(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38674233

ABSTRACT

Background and Objectives: Magnetic resonance imaging is vital for diagnosing cognitive decline. Brodmann areas (BA), distinct regions of the cerebral cortex categorized by cytoarchitectural variances, provide insights into cognitive function. This study aims to compare cortical thickness measurements across brain areas identified by BA mapping. We assessed these measurements among patients with and without cognitive impairment, and across groups categorized by cognitive performance levels using the Montreal Cognitive Assessment (MoCA) test. Materials and Methods: In this cross-sectional study, we included 64 patients who were divided in two ways: in two groups with (CI) or without (NCI) impaired cognitive function and in three groups with normal (NC), moderate (MPG) and low (LPG) cognitive performance according to MoCA scores. Scans with a 3T MRI scanner were carried out, and cortical thickness data was acquired using Freesurfer 7.2.0 software. Results: By analyzing differences between the NCI and CI groups cortical thickness of BA3a in left hemisphere (U = 241.000, p = 0.016), BA4a in right hemisphere (U = 269.000, p = 0.048) and BA28 in left hemisphere (U = 584.000, p = 0.005) showed significant differences. In the LPG, MPG and NC cortical thickness in BA3a in left hemisphere (H (2) = 6.268, p = 0.044), in V2 in right hemisphere (H (2) = 6.339, p = 0.042), in BA28 in left hemisphere (H (2) = 23.195, p < 0.001) and in BA28 in right hemisphere (H (2) = 10.015, p = 0.007) showed significant differences. Conclusions: Our study found that cortical thickness in specific Brodmann Areas-BA3a and BA28 in the left hemisphere, and BA4a in the right-differ significantly between NCI and CI groups. Significant differences were also observed in BA3a (left), V2 (right), and BA28 (both hemispheres) across LPG, MPG, NC groups. Despite a small sample size, these findings suggest cortical thickness measurements can serve as effective biomarkers for cognitive impairment diagnosis, warranting further validation with a larger cohort.


Subject(s)
Cerebral Cortex , Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Male , Female , Cognitive Dysfunction/diagnosis , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Aged , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Mental Status and Dementia Tests/statistics & numerical data , Brain Cortical Thickness
19.
Sci Rep ; 14(1): 9848, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684744

ABSTRACT

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.


Subject(s)
Multiple Sclerosis , Humans , Female , Adult , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Diffusion Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Biomarkers , Neurites/pathology , Inflammation/pathology , Inflammation/diagnostic imaging
20.
PLoS One ; 19(4): e0301355, 2024.
Article in English | MEDLINE | ID: mdl-38683825

ABSTRACT

Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3ß and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1ß, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3ß, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.


Subject(s)
Cerebral Cortex , Diabetes Mellitus, Experimental , Glycogen Synthase Kinase 3 beta , Nanoparticles , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin , Trifolium , Animals , Male , Rats , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Glycogen Synthase Kinase 3 beta/metabolism , Nanoparticles/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/administration & dosage , Rats, Wistar , Signal Transduction/drug effects , Trifolium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...