Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.710
Filter
1.
Neurology ; 102(10): e209386, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710005

ABSTRACT

BACKGROUND AND OBJECTIVES: Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without symptomatic intracerebral hemorrhage (ICH) presentations is less defined. We aimed to assess the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals ranging from cognitively normal to dementia in the community and memory clinic settings. METHODS: Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared with v1.5 using histopathologically verified CAA as the reference standard. RESULTS: The median age at MRI was 75 years (interquartile range 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95% CI 13.2%-48.7%) and 65.3% (95% CI 44.3%-82.8%) for probable CAA diagnosis (area under the receiver operating characteristic curve [AUC] 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC 0.57), respectively. The v2.0 Boston criteria were not superior in performance compared with the prior v1.5 criteria for either CAA diagnostic category. DISCUSSION: The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.


Subject(s)
Cerebral Amyloid Angiopathy , Magnetic Resonance Imaging , Humans , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Aged , Female , Male , Magnetic Resonance Imaging/standards , Aged, 80 and over , Sensitivity and Specificity , Brain/diagnostic imaging , Brain/pathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology
2.
Sci Rep ; 14(1): 11690, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778144

ABSTRACT

This study explores the progression of intracerebral hemorrhage (ICH) in patients with mild to moderate traumatic brain injury (TBI). It aims to predict the risk of ICH progression using initial CT scans and identify clinical factors associated with this progression. A retrospective analysis of TBI patients between January 2010 and December 2021 was performed, focusing on initial CT evaluations and demographic, comorbid, and medical history data. ICH was categorized into intraparenchymal hemorrhage (IPH), petechial hemorrhage (PH), and subarachnoid hemorrhage (SAH). Within our study cohort, we identified a 22.2% progression rate of ICH among 650 TBI patients. The Random Forest algorithm identified variables such as petechial hemorrhage (PH) and countercoup injury as significant predictors of ICH progression. The XGBoost algorithm, incorporating key variables identified through SHAP values, demonstrated robust performance, achieving an AUC of 0.9. Additionally, an individual risk assessment diagram, utilizing significant SHAP values, visually represented the impact of each variable on the risk of ICH progression, providing personalized risk profiles. This approach, highlighted by an AUC of 0.913, underscores the model's precision in predicting ICH progression, marking a significant step towards enhancing TBI patient management through early identification of ICH progression risks.


Subject(s)
Brain Injuries, Traumatic , Disease Progression , Machine Learning , Humans , Male , Female , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Middle Aged , Retrospective Studies , Adult , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Tomography, X-Ray Computed , Aged , Risk Assessment/methods
3.
J Neuroinflammation ; 21(1): 140, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807233

ABSTRACT

BACKGROUND: Perihematomal edema (PHE) after post-intracerebral hemorrhage (ICH) has complex pathophysiological mechanisms that are poorly understood. The complicated immune response in the post-ICH brain constitutes a crucial component of PHE pathophysiology. In this study, we aimed to characterize the transcriptional profiles of immune cell populations in human PHE tissue and explore the microscopic differences between different types of immune cells. METHODS: 9 patients with basal ganglia intracerebral hemorrhage (hematoma volume 50-100 ml) were enrolled in this study. A multi-stage profile was developed, comprising Group1 (n = 3, 0-6 h post-ICH, G1), Group2 (n = 3, 6-24 h post-ICH, G2), and Group3 (n = 3, 24-48 h post-ICH, G3). A minimal quantity of edematous tissue surrounding the hematoma was preserved during hematoma evacuation. Single cell RNA sequencing (scRNA-seq) was used to map immune cell populations within comprehensively resected PHE samples collected from patients at different stages after ICH. RESULTS: We established, for the first time, a comprehensive landscape of diverse immune cell populations in human PHE tissue at a single-cell level. Our study identified 12 microglia subsets and 5 neutrophil subsets in human PHE tissue. What's more, we discovered that the secreted phosphoprotein-1 (SPP1) pathway served as the basis for self-communication between microglia subclusters during the progression of PHE. Additionally, we traced the trajectory branches of different neutrophil subtypes. Finally, we also demonstrated that microglia-produced osteopontin (OPN) could regulate the immune environment in PHE tissue by interacting with CD44-positive cells. CONCLUSIONS: As a result of our research, we have gained valuable insight into the immune-microenvironment within PHE tissue, which could potentially be used to develop novel treatment modalities for ICH.


Subject(s)
Brain Edema , Cerebral Hemorrhage , Disease Progression , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Brain Edema/immunology , Brain Edema/pathology , Brain Edema/genetics , Brain Edema/metabolism , Brain Edema/etiology , Cerebral Hemorrhage/immunology , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/genetics , Male , Female , Middle Aged , Sequence Analysis, RNA/methods , Aged , Hematoma/pathology , Hematoma/immunology , Hematoma/genetics
4.
Ann Clin Lab Sci ; 54(2): 179-189, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38802152

ABSTRACT

OBJECTIVE: Cerebral microbleeds (CMBs) are punctate hemorrhagic lesions within the brain parenchyma and are a classic manifestation of cerebral small vessel disease (CSVD). The primary objective of this study is to investigate the potential role of miR-4685-3p and underlying mechanisms by which miR-4685-3p modulates matrix metalloproteinase-9 (MMP9) in cerebral microvascular endothelial cell injury. METHODS: We employed high-throughput sequencing to screen for differentially expressed miRNAs in the peripheral blood of patients with CMBs and healthy controls. Employing lipopolysaccharide (LPS) to induce cellular damage, we aim to establish a model of human brain microvascular endothelial cells (hCMEC/D3) injury. We also had cells transfected with miR-4685-3p mimic and MMP9 overexpression plasmid. We utilized quantitative polymerase chain reaction (qPCR) to assess the expression levels of miR-4685-3p and performed Western blot analysis to examine MMP9 expression levels in the cells. We employed the CCK-8 assay, TUNEL assay, and tube formation assay to evaluate cellular viability, apoptotic rates, and angiogenic capabilities. Furthermore, dual-luciferase reporter assay analysis was conducted to confirm the relationship between miR-4685-3p and MMP9. RESULTS: The sequencing results indicated a downregulation of miR-4685-3p in the peripheral blood of patients with CMBs. Within the context of LPS-induced injury to hCMEC/D3 cells, miR-4685-3p exhibits reduced expression, whereas MMP9 expression levels are elevated. The elevation of miR-4685-3p expression levels attenuates LPS-induced cellular apoptosis and enhances the viability and tube-forming capacity of hCMEC/D3 cells. Concomitant transfection with MMP9 overexpression constructs effectively reversed the detrimental effects of LPS on hCMEC/D3 cell integrity. We further confirmed that miR-4685-3p overexpression directly targets MMP9, leading to negative regulation of MMP9 expression. CONCLUSION: Upregulating miR-4685-3p, which targets the MMP9 axis, mitigated LPS-induced cerebral microvascular endothelial cell injury, potentially playing a protective role in the progression of CMBs.


Subject(s)
Brain , Endothelial Cells , Matrix Metalloproteinase 9 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Endothelial Cells/metabolism , Brain/pathology , Brain/blood supply , Brain/metabolism , Male , Apoptosis/genetics , Microvessels/pathology , Lipopolysaccharides/pharmacology , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/metabolism , Female , Middle Aged , Cell Line
5.
J Stroke Cerebrovasc Dis ; 33(7): 107738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701940

ABSTRACT

OBJECTIVES: Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS: Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS: Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS: Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.


Subject(s)
Brain Edema , Disease Models, Animal , Edaravone , Interleukin-1beta , Neuroprotective Agents , Rats, Sprague-Dawley , Animals , Edaravone/pharmacology , Male , Neuroprotective Agents/pharmacology , Interleukin-1beta/metabolism , Brain Edema/pathology , Brain Edema/drug therapy , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/prevention & control , 4-Aminobutyrate Transaminase/metabolism , 4-Aminobutyrate Transaminase/antagonists & inhibitors , Behavior, Animal/drug effects , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/enzymology , Anti-Inflammatory Agents/pharmacology , Cognition/drug effects , Brain/drug effects , Brain/pathology , Brain/metabolism , Brain/enzymology , Nitric Oxide Synthase Type II/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Inflammation Mediators/metabolism
6.
CNS Neurosci Ther ; 30(4): e14685, 2024 04.
Article in English | MEDLINE | ID: mdl-38634270

ABSTRACT

OBJECTIVE: Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS: Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.


Subject(s)
Cation Transport Proteins , Cerebral Hemorrhage , Ferroptosis , Nedd4 Ubiquitin Protein Ligases , Animals , Male , Mice , Brain/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Ferroptosis/genetics , Mice, Inbred C57BL , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Cation Transport Proteins/metabolism
7.
Exp Neurol ; 377: 114803, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679281

ABSTRACT

Disruption of corticospinal tracts (CST) is a leading factor for motor impairments following intracerebral hemorrhage (ICH) in the striatum. Previous studies have shown that therapeutic hypothermia (HT) improves outcomes of ICH patients. However, whether HT has a direct protection effect on the CST integrity and the underlying mechanisms remain largely unknown. In this study, we employed a chemogenetics approach to selectively activate bilateral warm-sensitive neurons in the preoptic areas to induce a hypothermia-like state. We then assessed effects of HT treatment on the integrity of CST and motor functional recovery after ICH. Our results showed that HT treatment significantly alleviated axonal degeneration around the hematoma and the CST axons at remote midbrain region, ultimately promoted skilled motor function recovery. Anterograde and retrograde tracing revealed that HT treatment protected the integrity of the CST over an extended period. Mechanistically, HT treatment prevented mitochondrial swelling in degenerated axons around the hematoma, alleviated mitochondrial impairment by reducing mitochondrial ROS accumulation and improving mitochondrial membrane potential in primarily cultured cortical neurons with oxyhemoglobin treatment. Serving as a proof of principle, our study provided novel insights into the application of HT to improve functional recovery after ICH.


Subject(s)
Cerebral Hemorrhage , Hypothermia, Induced , Mitochondria , Pyramidal Tracts , Animals , Pyramidal Tracts/pathology , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/metabolism , Mice , Mitochondria/metabolism , Mitochondria/pathology , Male , Hypothermia, Induced/methods , Mice, Inbred C57BL , Recovery of Function/physiology , Cells, Cultured
8.
J Forensic Leg Med ; 103: 102672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484485

ABSTRACT

A male in his late 30s was found dead in his home. He was diagnosed with human immunodeficiency virus (HIV) about six years prior. The HIV infection was well controlled before his death. He was 166 cm in height and 75 kg in weight. Aside from discoloration of the skin on the right lower patellar, there were no obvious injuries. His brain weighed 1456 g. A cut surface of the brain revealed left thalamic hemorrhage. Histologically, infiltration of phagocytic cells was observed in the bleeding site. Thalamic hemorrhage was considered to be his cause of death in this case. Due to the effects of anti-HIV therapy, the mortality rate from HIV infection has decreased and the causes of death of HIV-infected persons have changed. HIV-infected persons have been suggested to be associated with cerebrovascular disease, especially juvenile ischemic stroke. Patients with acquired immunodeficiency syndrome (AIDS) have an increased risk of cerebrovascular disease. Possible mechanisms of cerebrovascular disease in HIV-infected individuals include coagulopathy, secondary effects of embolism and central nervous system infection, and direct vascular disease due to HIV. At the time of autopsy, his post-mortem interval was estimated to be approximately two weeks. Therefore, it was difficult to clarify histologically the cerebrovascular disorder that caused his cerebral hemorrhage. In recent years, anti-HIV therapy has reduced the number of AIDS-related deaths, but deaths in HIV-infected people from cardiovascular disease are increasing. This case is considered to be a valuable forensic autopsy case of an HIV-infected patient who actually died due to cerebral hemorrhage in Japan.


Subject(s)
Cerebral Hemorrhage , HIV Infections , Humans , Male , HIV Infections/complications , Cerebral Hemorrhage/pathology , Adult , Forensic Pathology , Thalamus/pathology
9.
Cell Signal ; 119: 111146, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38499232

ABSTRACT

Intracerebral hemorrhage (ICH) is associated with secondary neuroinflammation, leading to severe central nervous system damage. Exosomes derived from human adipose-derived mesenchymal stem cells (hADSCs-Exo) have shown potential therapeutic effects in regulating inflammatory responses in ICH. This study aims to investigate the role of hADSCs-Exo in ICH and its underlying mechanism involving miRNA-mediated regulation of formyl peptide receptor 1 (FPR1). Flow cytometry was used to identify hADSCs and extract exosomes. Transmission electron microscopy and Western blot were performed to confirm the characteristics of the exosomes. In vitro experiments were conducted to explore the uptake of hADSCs-Exo by microglia cells and their impact on inflammatory responses. In vivo, an ICH mouse model was established, and the therapeutic effects of hADSCs-Exo were evaluated through neurological function scoring, histological staining, and immunofluorescence. Bioinformatics tools and experimental validation were employed to identify miRNAs targeting FPR1. hADSCs-Exo were efficiently taken up by microglia cells and exhibited anti-inflammatory effects by suppressing the release of inflammatory factors and promoting M1 to M2 transition. In the ICH mouse model, hADSCs-Exo significantly improved neurological function, reduced hemorrhage volume, decreased neuronal apoptosis, and regulated microglia polarization. miR-342-3p was identified as a potential regulator of FPR1 involved in the neuroprotective effects of hADSCs-Exo in ICH. hADSCs-Exo alleviate neuroinflammation in ICH through miR-342-3p-dependent targeting of FPR1, providing a new therapeutic strategy for ICH.


Subject(s)
Cerebral Hemorrhage , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Microglia , Neuroinflammatory Diseases , Animals , Microglia/metabolism , Microglia/pathology , Mice , Humans , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Neuroinflammatory Diseases/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Receptors, Formyl Peptide/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Inflammation/metabolism , Inflammation/pathology
10.
Neuroscience ; 545: 16-30, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38431041

ABSTRACT

Neuregulin receptor degradation protein 1 (Nrdp1) is a ring finger E3 ubiquitin ligase involved in some inflammation through ubiquitination, including macrophage polarization following cerebral hemorrhage. However, there is limited understanding regarding the mechanisms through which Nrdp1 modulates macrophage polarization and the potential impact of this modulation on neurological function. Using stereotactic injection and adenoviral transfection techniques, the corresponding animal models were constructed through injecting adenovirus, saline, or blood into the mouse striatum at different periods of time in this research. The alteration in the ratio of various M1/M2 phenotype-associated markers (e.g., CD86, CD206, IL-6, IL-10, etc.) was evaluated through immunohistochemistry, immunofluorescence, western blotting, and elisa assays. Additionally, neurological function scores and behavioral tests were utilized to evaluate changes in neurological function in mice after cerebral hemorrhage. Our results show that overexpression of Nrdp1 promotes the expression of a variety of M2 macrophage-associated markers and enhance transcriptional activity of arginase-1 (Arg1) protein through ubiquitination for early regulation M2 macrophage polarization. Additionally, Nrdp1 promotes hematoma absorption, increases IL-10 expression, inhibits inducible nitric oxide synthase (iNOS), IL-6, and TNF-α production, alleviates neurological impairment and brain edema, and accelerates functional recovery. These findings suggest that modulating macrophage polarization through Nrdp1 could be a therapeutic strategy for neurofunctional impairment in cerebral hemorrhage.


Subject(s)
Cerebral Hemorrhage , Macrophages , Recovery of Function , Ubiquitin-Protein Ligases , Animals , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Macrophages/metabolism , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Recovery of Function/physiology , Mice, Inbred C57BL , Arginase/metabolism , Arginase/genetics , Phenotype , Disease Models, Animal , Ubiquitination , Macrophage Activation/physiology
11.
Neuroscience ; 545: 158-170, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38513765

ABSTRACT

Thioredoxin-reductase 2 (Txnrd2) belongs to the thioredoxin-reductase family of selenoproteins and is a key antioxidant enzyme in mammalian cells to regulate redox homeostasis. Here, we reported that Txnrd2 exerted a major influence in brain damage caused by Intracerebral hemorrhage (ICH) by suppressing endoplasmic reticulum (ER) stress oxidative stress and via Trx2/Prx3 pathway. Furthermore, we demonstrated that pharmacological selenium (Se) rescued the brain damage after ICH by enhancing Txnrd2 expression. Primarily, expression and localization of Txnrd2, Trx2 and Prx3 were determined in collagenase IV-induced ICH model. Txnrd2 was then knocked down using siRNA interference in rats which were found to develop more severe encephaledema and neurological deficits. Mechanistically, we observed that loss of Txnrd2 leads to increased lipid peroxidation levels and ER stress protein expression in neurons and astrocytes. Additionally, it was revealed that Se effectively restored the expression of Txnrd2 in brain and inhibited both the activity of ER stress protein activity and the generation of reactive oxygen species (ROS) by promoting Trx2/Prx3 kilter when administrating sodium selenite in lateral ventricle. This study shed light on the effect of Txnrd2 in regulating oxidative stress and ER stress via Trx2/Prx3 pathway upon ICH and its promising potential as an ICH therapeutic target.


Subject(s)
Cerebral Hemorrhage , Endoplasmic Reticulum Stress , Oxidative Stress , Rats, Sprague-Dawley , Thioredoxin Reductase 2 , Thioredoxins , Animals , Male , Rats , Astrocytes/metabolism , Astrocytes/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Brain Injuries/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Disease Models, Animal , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Peroxiredoxin III/metabolism , Reactive Oxygen Species/metabolism , Selenium/pharmacology , Signal Transduction/physiology , Signal Transduction/drug effects , Thioredoxin Reductase 2/metabolism , Thioredoxins/metabolism
12.
J Stroke Cerebrovasc Dis ; 33(7): 107699, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552890

ABSTRACT

BACKGROUND: Radiation treatment for diseases of the brain can result in hemorrhagic adverse radiation effects. The underlying pathologic substrate of brain bleeding after irradiation has not been elucidated, nor potential associations with induced somatic mutations. METHODS: We retrospectively reviewed our department's pathology database over 5 years and identified 5 biopsy specimens (4 patients) for hemorrhagic lesions after brain irradiation. Tissues with active malignancy were excluded. Samples were characterized using H&E, Perl's Prussian Blue, and Masson's Trichrome; immunostaining for B-cells (anti-CD20), T-cells (anti-CD3), endothelium (anti-CD31), macrophages (anti-CD163), α-smooth muscle actin, and TUNEL. DNA analysis was done by two panels of next-generation sequencing for somatic mutations associated with known cerebrovascular anomalies. RESULTS: One lesion involved hemorrhagic expansion among multifocal microbleeds that had developed after craniospinal irradiation for distant medulloblastoma treatment. Three bleeds arose in the bed of focally irradiated arteriovenous malformations (AVM) after confirmed obliteration. A fifth specimen involved the radiation field distinct from an irradiated AVM bed. From these, 2 patterns of hemorrhagic vascular pathology were identified: encapsulated hematomas and cavernous-like malformations. All lesions included telangiectasias with dysmorphic endothelium, consistent with primordial cavernous malformations with an associated inflammatory response. DNA analysis demonstrated genetic variants in PIK3CA and/or PTEN genes but excluded mutations in CCM genes. CONCLUSIONS: Despite pathologic heterogeneity, brain bleeding after irradiation is uniformly associated with primordial cavernous-like telangiectasias and disruption of genes implicated in dysangiogenesis but not genes implicated as causative of cerebral cavernous malformations. This may implicate a novel signaling axis as an area for future study.


Subject(s)
Mutation , Radiation Injuries , Humans , Retrospective Studies , Radiation Injuries/genetics , Radiation Injuries/pathology , Radiation Injuries/etiology , Male , Female , DNA Mutational Analysis , Adult , Cranial Irradiation/adverse effects , Genetic Predisposition to Disease , Class I Phosphatidylinositol 3-Kinases/genetics , PTEN Phosphohydrolase/genetics , Middle Aged , Biopsy , Young Adult , Intracranial Arteriovenous Malformations/genetics , Intracranial Arteriovenous Malformations/radiotherapy , Intracranial Arteriovenous Malformations/pathology , Risk Factors , Phenotype , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/pathology , High-Throughput Nucleotide Sequencing , Intracranial Hemorrhages/genetics , Intracranial Hemorrhages/etiology , Intracranial Hemorrhages/pathology , Databases, Factual
13.
Genet Med ; 26(6): 101105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430071

ABSTRACT

PURPOSE: To describe a recessively inherited cerebral small vessel disease, caused by loss-of-function variants in Nitrilase1 (NIT1). METHODS: We performed exome sequencing, brain magnetic resonance imaging, neuropathology, electron microscopy, western blotting, and transcriptomic and metabolic analyses in 7 NIT1-small vessel disease patients from 5 unrelated pedigrees. RESULTS: The first identified patients were 3 siblings, compound heterozygous for the NIT1 c.727C>T; (p.Arg243Trp) variant and the NIT1 c.198_199del; p.(Ala68∗) variant. The 4 additional patients were single cases from 4 unrelated pedigrees and were all homozygous for the NIT1 c.727C>T; p.(Arg243Trp) variant. Patients presented in mid-adulthood with movement disorders. All patients had striking abnormalities on brain magnetic resonance imaging, with numerous and massively dilated basal ganglia perivascular spaces. Three patients had non-lobar intracerebral hemorrhage between age 45 and 60, which was fatal in 2 cases. Western blotting on patient fibroblasts showed absence of NIT1 protein, and metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Brain autopsy revealed large electron-dense deposits in the vessel walls of small and medium sized cerebral arteries. CONCLUSION: NIT1-small vessel disease is a novel, autosomal recessively inherited cerebral small vessel disease characterized by a triad of movement disorders, massively dilated basal ganglia perivascular spaces, and intracerebral hemorrhage.


Subject(s)
Cerebral Hemorrhage , Cerebral Small Vessel Diseases , Movement Disorders , Pedigree , Humans , Female , Male , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Middle Aged , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/diagnostic imaging , Movement Disorders/genetics , Movement Disorders/pathology , Movement Disorders/diagnostic imaging , Magnetic Resonance Imaging , Alleles , Adult , Aged , Glymphatic System/pathology , Glymphatic System/diagnostic imaging , Exome Sequencing , Brain/pathology , Brain/diagnostic imaging , Aminohydrolases/genetics
14.
Neurobiol Dis ; 194: 106468, 2024 May.
Article in English | MEDLINE | ID: mdl-38460801

ABSTRACT

Intracerebral hemorrhage (ICH) is a subtype of stroke marked by elevated mortality and disability rates. Recently, mounting evidence suggests a significant role of ferroptosis in the pathogenesis of ICH. Through a combination of bioinformatics analysis and basic experiments, our goal is to identify the primary cell types and key molecules implicated in ferroptosis post-ICH. This aims to propel the advancement of ferroptosis research, offering potential therapeutic targets for ICH treatment. Our study reveals pronounced ferroptosis in microglia and identifies the target gene, cathepsin B (Ctsb), by analyzing differentially expressed genes following ICH. Ctsb, a cysteine protease primarily located in lysosomes, becomes a focal point in our investigation. Utilizing in vitro and in vivo models, we explore the correlation between Ctsb and ferroptosis in microglia post-ICH. Results demonstrate that ICH and hemin-induced ferroptosis in microglia coincide with elevated levels and activity of Ctsb protein. Effective alleviation of ferroptosis in microglia after ICH is achieved through the inhibition of Ctsb protease activity and protein levels using inhibitors and shRNA. Additionally, a notable increase in m6A methylation levels of Ctsb mRNA post-ICH is observed, suggesting a pivotal role of m6A methylation in regulating Ctsb translation. These research insights deepen our comprehension of the molecular pathways involved in ferroptosis after ICH, underscoring the potential of Ctsb as a promising target for mitigating brain damage resulting from ICH.


Subject(s)
Brain Injuries , Cathepsin B , Ferroptosis , Microglia , Humans , Brain Injuries/metabolism , Cathepsin B/genetics , Cathepsin B/metabolism , Cerebral Hemorrhage/pathology , Microglia/metabolism , Animals , Mice
15.
Int J Legal Med ; 138(4): 1391-1399, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38329584

ABSTRACT

During the last years, the detection of different causes of death based on postmortem imaging findings became more and more relevant. Especially postmortem computed tomography (PMCT) as a non-invasive, relatively cheap, and fast technique is progressively used as an important imaging tool for supporting autopsies. Additionally, previous works showed that deep learning applications yielded robust results for in vivo medical imaging interpretation. In this work, we propose a pipeline to identify fatal cerebral haemorrhage on three-dimensional PMCT data. We retrospectively selected 81 PMCT cases from the database of our institute, whereby 36 cases suffered from a fatal cerebral haemorrhage as confirmed by autopsy. The remaining 45 cases were considered as neurologically healthy. Based on these datasets, six machine learning classifiers (k-nearest neighbour, Gaussian naive Bayes, logistic regression, decision tree, linear discriminant analysis, and support vector machine) were executed and two deep learning models, namely a convolutional neural network (CNN) and a densely connected convolutional network (DenseNet), were trained. For all algorithms, 80% of the data was randomly selected for training and 20% for validation purposes and a five-fold cross-validation was executed. The best-performing classification algorithm for fatal cerebral haemorrhage was the artificial neural network CNN, which resulted in an accuracy of 0.94 for all folds. In the future, artificial neural network algorithms may be applied by forensic pathologists as a helpful computer-assisted diagnostics tool supporting PMCT-based evaluation of cause of death.


Subject(s)
Autopsy , Cerebral Hemorrhage , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Retrospective Studies , Autopsy/methods , Male , Female , Middle Aged , Machine Learning , Aged , Adult , Algorithms , Support Vector Machine , Imaging, Three-Dimensional , Postmortem Imaging
16.
Neurol Res ; 46(4): 346-355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402902

ABSTRACT

BACKGROUND: Neuroinflammation and oxidative stress are critical players in intracerebral hemorrhage (ICH). Geniposide is an active component of Gardenia that has anti-inflammatory effects. This study focused on the roles and mechanisms of geniposide in ICH. METHODS: ICH was established by injecting collagenase IV into C57BL/6 mice. To determine the functions of geniposide and NF-κB inhibition in ICH model mice, geniposide (1, 25, or 50 mg/kg) or PDTC (a NF-κB inhibitor) was administered. Neurological functions were assessed with the modified neurological severity score (mNSS) test. Hematoxylin and eosin staining were performed to identify pathological changes. IL-1ß and TNF-α levels were estimated with ELISA kits. NF-κB p65 localization was determined by immunofluorescence staining. Oxidative stress was analyzed by measuring ROS levels. RESULTS: Geniposide alleviated cerebral edema and neurological deficits. Geniposide inhibited neuroinflammation and oxidative stress after ICH, and the inhibitory effects were enhanced by NF-κB inhibition. Additionally, geniposide inhibited NF-κB signaling. CONCLUSION: Geniposide alleviates brain injury by suppressing inflammation and oxidative stress damage in experimental ICH models by inhibiting NF-κB signaling.


Subject(s)
Brain Injuries , Iridoids , NF-kappa B , Animals , Mice , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/pathology , Mice, Inbred C57BL , Neuroinflammatory Diseases , Signal Transduction
17.
J Cereb Blood Flow Metab ; 44(4): 611-623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38241459

ABSTRACT

Laminin, a major component of the basal lamina in the CNS, is also expressed in oligodendrocytes (OLs). However, the function of OL-derived laminin remains largely unknown. Here, we performed loss-of-function studies using two OL-specific laminin-α5 conditional knockout mouse lines. Both mutants were grossly normal and displayed intact blood-brain barrier (BBB) integrity. In a mouse model of intracerebral hemorrhage (ICH), control mice and both mutants exhibited comparable hematoma size and neurological dysfunction. In addition, similar levels of hemoglobin and IgG leakage were detected in the mutant brains compared to the controls, indicating comparable BBB damage. Consistent with this finding, subsequent studies revealed no differences in tight junction protein (TJP) and caveolin-1 expression among control and knockout mice, suggesting that neither paracellular nor transcellular mechanism was affected in the mutants. Furthermore, compared to the controls, both mutant lines showed comparable oligodendrocyte number, oligodendrocyte proliferation rate, MBP/MAG levels, and SMI-32 expression, highlighting a minimal role of OL-derived laminin-α5 in OL biology. Together, these findings highlight a dispensable role of OL-derived laminin-α5 in both brain homeostasis and ICH pathogenesis.


Subject(s)
Blood-Brain Barrier , Brain , Animals , Mice , Blood-Brain Barrier/metabolism , Brain/metabolism , Cerebral Hemorrhage/pathology , Homeostasis , Laminin/metabolism , Mice, Knockout , Oligodendroglia/metabolism
18.
Aging (Albany NY) ; 16(2): 1952-1967, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38271077

ABSTRACT

Intracerebral hemorrhage (ICH) has a high mortality and disability rate. Numerous basic studies on pathogenesis and therapeutics have been performed in mice. However, the consistency of the experimental mouse model and the human ICH patient remains unclear. This has slowed progress in translational medicine. Furthermore, effective therapeutic targets and reliable regulatory networks for ICH are needed. Therefore, we determined the differentially expressed (DE) messenger RNAs (mRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) before and after murine ICH and analyzed their regulatory relationships. Subsequently, data on mRNAs from human peripheral blood after ICH were obtained from the Gene Expression Omnibus database. The DE mRNAs after human ICH were compared with those of the mouse. Finally, we obtained seven genes with translational medicine research value and verified them in mice. Then the regulatory network of these genes was analyzed in humans. Similarly, species homologies of these regulatory pathways were identified. In conclusion, we found that the mouse ICH model mimics the human disease mainly in terms of chemokines and inflammatory factors. This has important implications for future research into the mechanisms of ICH injury and repair.


Subject(s)
Gene Expression Profiling , MicroRNAs , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Circular , Gene Regulatory Networks
19.
Eur Stroke J ; 9(2): 383-390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38179883

ABSTRACT

INTRODUCTION: Perihematomal edema (PHE) represents secondary brain injury and a potential treatment target in intracerebral hemorrhage (ICH). However, studies differ on optimal PHE volume metrics as prognostic factor(s) after spontaneous, non-traumatic ICH. This study examines associations of baseline and 24-h PHE shape features with 3-month outcomes. PATIENTS AND METHODS: We included 796 patients from a multicentric trial dataset and manually segmented ICH and PHE on baseline and follow-up CTs, extracting 14 shape features. We explored the association of baseline, follow-up, difference (baseline/follow-up) and temporal rate (difference/time gap) of PHE shape changes with 3-month modified Rankin Score (mRS) - using Spearman correlation. Then, using multivariable analysis, we determined if PHE shape features independently predict outcome adjusting for patients' age, sex, NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), and hematoma volume. RESULTS: Baseline PHE maximum diameters across various planes, main axes, volume, surface, and sphericity correlated with 3-month mRS adjusting for multiple comparisons. The 24-h difference and temporal change rates of these features had significant association with outcome - but not the 24-h absolute values. In multivariable regression, baseline PHE shape sphericity (OR = 2.04, CI = 1.71-2.43) and volume (OR = 0.99, CI = 0. 98-1.0), alongside admission NIHSS (OR = 0.86, CI = 0.83-0.88), hematoma volume (OR = 0.99, CI = 0. 99-1.0), and age (OR = 0.96, CI = 0.95-0.97) were independent predictors of favorable outcomes. CONCLUSION: In acute ICH patients, PHE shape sphericity at baseline emerged as an independent prognostic factor, with a less spherical (more irregular) shape associated with worse outcome. The PHE shape features absolute values over the first 24 h provide no added prognostic value to baseline metrics.


Subject(s)
Brain Edema , Cerebral Hemorrhage , Humans , Male , Female , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/therapy , Cerebral Hemorrhage/pathology , Aged , Middle Aged , Brain Edema/diagnostic imaging , Brain Edema/etiology , Hematoma/diagnostic imaging , Hematoma/pathology , Prognosis , Glasgow Coma Scale , Tomography, X-Ray Computed
20.
J Neurosurg ; 140(1): 116-126, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37548577

ABSTRACT

OBJECTIVE: Postoperative intracerebral hemorrhages are significant complications following brain stereotactic biopsy. They can derive from anatomical structure (sulci, vessels) damage that is missed during stereotactic trajectory planning. In this study, the authors investigated the ability to detect contact between structures at risk and stereotactic trajectories using signal analysis from MRI obtained during clinical practice, with the aim to propose a visual tool to highlight areas with anatomical structures at risk of damage along the biopsy trajectory. METHODS: The authors retrospectively analyzed actual stereotactic trajectories using intraoperative imaging (intraoperative 2D radiographs in the exploratory data set and intraoperative 3D scans in the confirmatory data set). The MR signal variation along each biopsy trajectory was matched with the patient's anatomy. RESULTS: In the exploratory data set (n = 154 patients), 32 contacts between the actual biopsy trajectory and an anatomical structure at risk were identified along 28 (18.2%) biopsy trajectories, corresponding to 8 preventable intracerebral hemorrhages. Variations of the mean derivative of the MR signal intensity were significantly different between trajectories with and without contact (the pathological threshold of the mean derivative of the MR signal intensity was defined as ± 0.030 arbitrary units; p < 0.0001), with a sensitivity of 89.3% and specificity of 74.6% to detect a contact. In the confirmatory data set (n = 73 patients), the sensitivity and specificity of the 0.030 threshold to detect a contact between the actual stereotactic trajectory and an anatomical structure at risk were 81.3% and 68.4%, respectively. CONCLUSIONS: Variations of the mean derivative of the MR signal intensity can be converted into a green/red color code along the planned biopsy trajectory to highlight anatomical structures at risk, which can help neurosurgeons during the surgical planning of stereotactic procedures.


Subject(s)
Brain Neoplasms , Humans , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Biopsy , Stereotaxic Techniques , Magnetic Resonance Imaging/methods , Brain/surgery , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...