Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Physiol Plant ; 176(3): e14393, 2024.
Article in English | MEDLINE | ID: mdl-38923555

ABSTRACT

An urgent challenge within crop production is to maintain productivity in a world plagued by climate change and its associated plant stresses, such as heat, drought and salinity. A key factor in this endeavor is to understand the dynamics of root suberization, and its role in plant-water relations and nutrient transport. This study focuses on the hypothesis that endodermal suberin, acts as a physical barrier preventing radial potassium (K) movement out of the vascular tissues during translocation. Previous attempts to experimentally support this idea have produced inconsistent results. We developed a Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) method, allowing us to visualize the distribution of mineral elements and track K movement. Cesium (Cs), dosed in optimized concentrations, was found to be an ideal tracer for K, due to its low background and similar chemical/biological properties. In suberin mutants of Arabidopsis thaliana, we observed a positive correlation between suberin levels and K translocation efficiency, indicating that suberin enhances the plant's ability to retain K within the vascular tissues during translocation from root to shoot. In barley (Hordeum vulgare), fully suberized seminal roots maintained higher K concentrations in the stele compared to younger, less suberized root zones. This suggests that suberization increases with root maturity, enhancing the barrier against K leakage. In nodal roots, suberin was scattered towards the phloem in mature root zones. Despite this incomplete suberization, nodal roots still restrict outward K movement, demonstrating that even partial suberin barriers can significantly reduce K loss. Our findings provide evidence that suberin is a barrier to K leakage during root-to-shoot translocation. This understanding is crucial to maintain crop productivity in the face of climate change.


Subject(s)
Arabidopsis , Cesium , Hordeum , Lipids , Plant Roots , Potassium , Potassium/metabolism , Plant Roots/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Cesium/metabolism , Hordeum/metabolism , Lipids/analysis , Biological Transport
2.
Chemosphere ; 359: 142273, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750727

ABSTRACT

This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.


Subject(s)
Biodegradation, Environmental , Cesium Radioisotopes , Soil Pollutants, Radioactive , Strontium Radioisotopes , Strontium Radioisotopes/metabolism , Strontium Radioisotopes/analysis , Soil Pollutants, Radioactive/metabolism , Soil Pollutants, Radioactive/analysis , Cesium Radioisotopes/metabolism , Cesium Radioisotopes/analysis , Soil/chemistry , Plants/metabolism , Strontium/metabolism , Strontium/analysis , Cesium/metabolism
3.
Planta ; 259(2): 36, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38221596

ABSTRACT

MAIN CONCLUSION: This is the first report on the involvement of abscisic acid signaling in regulating post-germination growth under Cs stress, not related to potassium deficiency. Cesium (Cs) is known to exert toxicity in plants by competition and interference with the transport of potassium (K). However, the precise mechanism of how Cs mediates its damaging effect is still unclear. This fact is mainly attributed to the large effects of lower K uptake in the presence of Cs that shadow other crucial effects by Cs that were not related to K. RNA-seq was conducted on Arabidopsis roots grown to identify putative genes that are functionally involved to investigate the difference between Cs stress and low K stress. Our transcriptome data demonstrated Cs-regulated genes only partially overlap to low K-regulated genes. In addition, the divergent expression trend of High-affinity K+ Transporter (HAK5) from D4 to D7 growth stage suggested participation of other molecular events besides low K uptake under Cs stress. Potassium deficiency triggers expression level change of the extracellular matrix, transfer/carrier, cell adhesion, calcium-binding, and DNA metabolism genes. Under Cs stress, genes encoding translational proteins, chromatin regulatory proteins, membrane trafficking proteins and defense immunity proteins were found to be primarily regulated. Pathway enrichment and protein network analyses of transcriptome data exhibit that Cs availability are associated with alteration of abscisic acid (ABA) signaling, photosynthesis activities and nitrogen metabolism. The phenotype response of ABA signaling mutants supported the observation and revealed Cs inhibition of root growth involved in ABA signaling pathway. The rather contrary response of loss-of-function mutant of Late Embryogenesis Abundant 7 (LEA7) and Translocator Protein (TSPO) further suggested low K stress and Cs stress may activate different salt tolerance responses. Further investigation on the crosstalk between K transport, signaling, and salt stress-responsive signal transduction will provide a deeper understanding of the mechanisms and molecular regulation underlying Cs toxicity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Potassium Deficiency , Arabidopsis/metabolism , Abscisic Acid/metabolism , Cesium/metabolism , Cesium/pharmacology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant
4.
Environ Monit Assess ; 195(6): 703, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37212912

ABSTRACT

The habitation and environment are affected by the stable isotopes of caesium (Cs) and strontium (Sr), as well as by their radioactive isotopes. The current work gives insight on Alstonia scholaris' capacity to phytoextract stable caesium (Cs) and strontium (Sr), as well as the plant's ability to protect against the toxicity of both elements. Experiments with Cs [0-5 mM (CsCl)] and Sr [0-3 mM (SrCl2. 6H2O)] dosing in controlled light, temperature, and humidity condition in greenhouse for 21 days were undertaken. Cs and Sr accumulation in different plant parts was quantified with atomic absorption spectroscopy (AAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) respectively. Hyper-accumulation capacity for Cs and Sr was estimated with indices like transfer factor (TF) and translocation factors (TrF). The uptake pattern of caesium in Alstonia scholaris is 5452.8-24,771.4 mg/kg DW (TF = 85.2-57.6) and in the case of Sr is 1307.4-8705.7 mg/kg DW (TF = 85.3-1.46). The findings demonstrated the plant's ability to transfer Cs and Sr to aboveground biomass on the basis of dry weight, with the majority of the metals being deposited in the shoot rather than the root portion of the plant. For Cs and Sr, with increasing concentration, the plants exhibited the enzymatic expression for defence against metal toxicity by free radicals compared to control. Field emission electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) was employed to assess the spatial distribution of Cs and Sr in plant leaf, indicating the accumulation of Cs, Sr, and their homologous components.


Subject(s)
Alstonia , Strontium , Strontium/toxicity , Alstonia/metabolism , Hydroponics , Environmental Monitoring , Cesium/metabolism , Strontium Radioisotopes
5.
Environ Pollut ; 316(Pt 1): 120458, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36270569

ABSTRACT

The toxic effects of cesium (Cs) on the blue mussel Mytilus edulis were experimentally investigated to assess the potential environmental consequences of the discharge of nuclear wastewater containing radionuclides. A simulated experimental system of stable cesium (133Cs) was set up to mimic the impacts of radiocesium, and its heavy metal property was emphasized. The mussels were exposed to a concentration gradient of 133Cs for 21 days, followed by another 21-day elimination period. 133Cs exposure resulted in effective bioaccumulation with distinct features of concentration dependence and tissue specificity, and hemolymph, gills and digestive glands were recognized as the most target tissues for accumulation. Although the elimination period was helpful in reducing the accumulated 133Cs, the remaining concentrations of tissues were still significant. 133Cs exposure presented little effect on growth status at the individual level but had distinct interference on feeding and metabolism indicated by the oxygen consumption rate, ammonia-N excretion rate and O:N ratio, simultaneously with the impairment of digestive glands. Regarding hemocytes in the hemolymph, the cell mortality increment, micronucleus promotion, lysosomal membrane stability disruption and phagocytic ability inhibition suggested that the immune function was injured. The cooccurrence of reactive oxygen species overproduction had a close relationship with the observed damages and was thought to be the possible explanation for the immune toxicity. The assay based integrated biomarker response (IBR) presented a good linear relation with the exposure concentrations, suggesting that it was a promising method for assessing the risk of 133Cs. The results indicated that 133Cs exposure damaged M. edulis at the tissue and cell before at the macroscopic individual, evidencing the potentially detrimental impacts of nuclear wastewater discharge on marine ecosystems.


Subject(s)
Mytilus edulis , Mytilus , Water Pollutants, Chemical , Animals , Wastewater/toxicity , Ecosystem , Water Pollutants, Chemical/analysis , Mytilus edulis/metabolism , Cesium/metabolism , Mytilus/metabolism
6.
Biosci Biotechnol Biochem ; 86(11): 1599-1604, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36085524

ABSTRACT

Cesium (Cs) in the environment is primarily absorbed by a potassium (K) transporter. OsHAK5 is a KT/HAK/KUP family K-transporter showing a high affinity for K. We created cultured rice cells whose OsHAK5 was knocked down by RNAi (named KD). In the medium containing 1.0 m m and less K, the growth of KD was significantly suppressed, suggesting that OsHAK5 greatly contributed to K absorption under limited K conditions. Although Cs suppressed the growth of KD and WT, stronger inhibition was observed on KD. Both KD and WT accumulated similar amounts of Cs when they were cultured in a medium containing Cs, whereas lower amounts of K were detected in KD. These results suggest that OsHAK5 was less involved in the absorption of Cs, although it was essential to K absorption under limited K conditions. In contrast, this means that another transporter may contribute to cesium uptake in rice.


Subject(s)
Cation Transport Proteins , Oryza , Oryza/genetics , Oryza/metabolism , Potassium , Cesium/metabolism , Ion Transport , Cation Transport Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
7.
Physiol Rep ; 10(16): e15401, 2022 08.
Article in English | MEDLINE | ID: mdl-35980021

ABSTRACT

Spontaneous action potentials precede phasic contractile activity in human collecting lymphatic vessels. In this study, we investigated the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in human collecting lymphatics and by pharmacological inhibition ex vivo tested their potential role in controlling contractile function. Spontaneous and agonist-evoked tension changes of isolated thoracic duct and mesenteric lymphatic vessels-obtained from surgical patients with informed consent-were investigated by isometric myography, and ivabradine, ZD7288 or cesium were used to inhibit HCN. Analysis of HCN isoforms by RT-PCR and immunofluorescence revealed HCN2 to be the predominantly expressed mRNA isoform in human thoracic duct and mesenteric lymphatic vessels and HCN2-immunoreactivity confirmed protein expression in both vessel types. However, in functional experiments ex vivo the HCN inhibitors ivabradine, ZD7288, and cesium failed to lower contraction frequency: conversely, all three antagonists induced a positive chronotropic effect with concurrent negative inotropic action, though these effects first occurred at concentrations regarded as supramaximal for HCN inhibition. Based on these results, we conclude that human collecting vessels express HCN channel proteins but under the ex vivo experimental conditions described here HCN channels have little involvement in regulating contraction frequency in human collecting lymphatic vessels. Furthermore, HCN antagonists can produce concentration-dependent positive chronotropic and negative inotropic effects, which are apparently unrelated to HCN antagonism.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Lymphatic Vessels , Cesium/metabolism , Cesium/pharmacology , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ivabradine , Muscle Contraction
8.
Int Microbiol ; 25(4): 745-758, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35768673

ABSTRACT

Cesium (Cs+) enters environments largely because of global release into the environment from weapons testing and accidents such as Fukushima Daiichi and Chernobyl nuclear waste. Even at low concentrations, Cs+ is highly toxic to ecological receptors because of its physicochemical similarity to macronutrient potassium (K+). We investigated the uptake and accumulation of Cs+ by Arthrobacter globiformis strain 151B in reference to three similar alkali metal cations rubidium (Rb+), sodium (Na+), and potassium (K+). The impact of hexavalent chromium (Cr+6) as a co-contaminant was also evaluated. A. globiformis 151B accumulated Cs+ and Cr6+ in a time-dependent fashion. In contrast, the uptake and accumulation of Rb+ did not exhibit any trends. An exposure to Cs+, Rb+, and Cr+6 triggered a drastic increase in K+ and Na+ uptake by the bacterial cells. That was followed by the efflux of K+ and Na+, suggesting a Cs+ "substitution." Two-dimensional gel-electrophoresis of bacterial cell proteomes with the following mass-spectrometry of differentially expressed bands revealed that incubation of bacterial cells with Cs+ induced changes in the expression of proteins involved in the maintenance of cellular homeostasis and reactive oxygen species removal. The ability of A. globiformis 151B to mediate the uptake and accumulation of cesium and hexavalent chromium suggests that it possesses wide-range bioremediation potential.


Subject(s)
Metals, Alkali , Radioactive Waste , Alkalies , Arthrobacter , Biodegradation, Environmental , Cations/analysis , Cesium/analysis , Cesium/metabolism , Chromium , Potassium/analysis , Potassium/metabolism , Proteome , Radioactive Waste/analysis , Reactive Oxygen Species , Rubidium/analysis , Rubidium/metabolism , Sodium/metabolism
9.
Sci Rep ; 12(1): 5667, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440790

ABSTRACT

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, tissue samples from wild boar (Sus scrofa) outside the evacuation zone (difficult-to-return zone, DRZ) tended to show high activity concentrations of cesium-137 (137Cs). Understanding the 137Cs dynamics of wild boar populations inside the DRZ is necessary because they affect 137Cs dynamics and wild boar management in areas outside the DRZ. Since few detailed, long-term studies have been conducted inside the DRZ, we measured 137Cs activity concentrations in 221 wild boar muscle samples obtained from wild boar caught inside the DRZ and surrounding areas over a 5-year period. Our results showed that the 137Cs activity concentration in wild boar from inside the DRZ were higher than those in wild boar outside this zone. No significant difference was observed between muscle and soil 137Cs levels, but significant correlations were observed between muscle 137Cs activity concentrations and body length and body weight in the low-activity-concentration season, but not between all seasons and the high-activity-concentration seasons. It is considered that the size effects observed during the low-activity-concentration season may be due to factors related to metabolism and changes in food habit. This is the first long-term survey of 137Cs in wild boar inside the DRZ.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Radioactivity , Soil Pollutants, Radioactive , Animals , Cesium/metabolism , Cesium Radioisotopes/analysis , Japan , Muscles/metabolism , Radiation Monitoring/methods , Seasons , Soil Pollutants, Radioactive/metabolism , Sus scrofa/metabolism , Swine
10.
Sci Rep ; 11(1): 21109, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702872

ABSTRACT

Cesium (Cs) is found at low levels in nature but does not confer any known benefit to plants. Cs and K compete in cells due to the chemical similarity of Cs to potassium (K), and can induce K deficiency in cells. In previous studies, we identified chemicals that increase Cs tolerance in plants. Among them, a small chemical compound (C17H19F3N2O2), named CsToAcE1, was confirmed to enhance Cs tolerance while increasing Cs accumulation in plants. Treatment of plants with CsToAcE1 resulted in greater Cs and K accumulation and also alleviated Cs-induced growth retardation in Arabidopsis. In the present study, potential target proteins of CsToAcE1 were isolated from Arabidopsis to determine the mechanism by which CsToAcE1 alleviates Cs stress, while enhancing Cs accumulation. Our analysis identified one of the interacting target proteins of CsToAcE1 to be BETA-GLUCOSIDASE 23 (AtßGLU23). Interestingly, Arabidopsis atßglu23 mutants exhibited enhanced tolerance to Cs stress but did not respond to the application of CsToAcE1. Notably, application of CsToAcE1 resulted in a reduction of Cs-induced AtßGLU23 expression in wild-type plants, while this was not observed in a high affinity transporter mutant, athak5. Our data indicate that AtßGLU23 regulates plant response to Cs stress and that CsToAcE1 enhances Cs tolerance by repressing AtßGLU23. In addition, AtHAK5 also appears to be involved in this response.


Subject(s)
Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis/enzymology , Cesium , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Plant/drug effects , beta-Glucosidase/antagonists & inhibitors , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cesium/metabolism , Cesium/pharmacology , beta-Glucosidase/genetics , beta-Glucosidase/metabolism
11.
Physiol Plant ; 173(3): 1230-1243, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34342899

ABSTRACT

Understanding the molecular mechanisms that underlie cesium (Cs+ ) transport in plants is important to limit the entry of its radioisotopes from contaminated areas into the food chain. The potentially toxic element Cs+ , which is not involved in any biological process, is chemically closed to the macronutrient potassium (K+ ). Among the multiple K+ carriers, the high-affinity K+ transporters family HAK/KT/KUP is thought to be relevant in mediating opportunistic Cs+ transport. Of the 13 KUP identified in A. thaliana, only HAK5, the major contributor to root K+ acquisition under low K+ supply, has been functionally demonstrated to be involved in Cs+ uptake in planta. In the present study, we showed that accumulation of Cs+ increased by up to 30% in two A. thaliana mutant lines lacking KUP9 and grown under low K+ supply. Since further experiments revealed that Cs+ release from contaminated plants to the external medium is proportionally lower in the two kup9 mutant alleles, we proposed that KUP9 disruption could impair Cs+ efflux. By contrast, K+ status in kup9 mutants is not affected, suggesting that KUP9 disruption does not alter substantially K+ transport in experimental conditions used. The putative primary role of KUP9 in plants is further discussed.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Biological Transport , Cesium/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Potassium/metabolism
12.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602810

ABSTRACT

Fast excitatory synaptic transmission in the central nervous system relies on the AMPA-type glutamate receptor (AMPAR). This receptor incorporates a nonselective cation channel, which is opened by the binding of glutamate. Although the open pore structure has recently became available from cryo-electron microscopy (Cryo-EM), the molecular mechanisms governing cation permeability in AMPA receptors are not understood. Here, we combined microsecond molecular dynamic (MD) simulations on a putative open-state structure of GluA2 with electrophysiology on cloned channels to elucidate ion permeation mechanisms. Na+, K+, and Cs+ permeated at physiological rates, consistent with a structure that represents a true open state. A single major ion binding site for Na+ and K+ in the pore represents the simplest selectivity filter (SF) structure for any tetrameric cation channel of known structure. The minimal SF comprised only Q586 and Q587, and other residues on the cytoplasmic side formed a water-filled cavity with a cone shape that lacked major interactions with ions. We observed that Cl- readily enters the upper pore, explaining anion permeation in the RNA-edited (Q586R) form of GluA2. A permissive architecture of the SF accommodated different alkali metals in distinct solvation states to allow rapid, nonselective cation permeation and copermeation by water. Simulations suggested Cs+ uses two equally populated ion binding sites in the filter, and we confirmed with electrophysiology of GluA2 that Cs+ is slightly more permeant than Na+, consistent with serial binding sites preferentially driving selectivity.


Subject(s)
Cesium/metabolism , Glutamic Acid/metabolism , Ion Channel Gating , Potassium/metabolism , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Sodium/metabolism , Binding Sites , Cell Membrane Permeability , Humans , Molecular Dynamics Simulation , Protein Conformation , Protein Domains
13.
Mol Plant ; 14(4): 664-678, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33588076

ABSTRACT

Radiocesium accumulated in the soil by nuclear accidents is a major environmental concern. The transport process of cesium (Cs+) is tightly linked to the indispensable plant nutrient potassium (K+) as they both belong to the group I alkali metals with similar chemical properties. Most of the transporters that had been characterized to date as Cs+ transporters are directly or indirectly linked to K+. Using a combinatorial approach of physiology, genetics, cell biology, and root uptake assay, here we identified two ATP-binding cassette (ABC) proteins, ABCG37 and ABCG33, as facilitators of Cs+ influx. A gain-of-function mutant of ABCG37 (abcg37-1) showed increased sensitivity to Cs+-induced root growth inhibition, while the double knockout mutant of ABCG33 and ABCG37 (abcg33-1abcg37-2) showed resistance, whereas the single loss-of-function mutants of ABCG33 and ABCG37 did not show any alteration in Cs+ response. In planta short-term radioactive Cs+-uptake assay along with growth and uptake assays in a heterologous system confirmed ABCG33 and ABCG37 as Cs+-uptake carriers. Potassium response and content were unaffected in the double-mutant background and yeast cells lacking potassium-uptake carriers transformed with ABCG33 and ABCG37 failed to grow in the absence of K+, confirming that Cs+ uptake by ABCG33 and ABCG37 is independent of K+. Collectively, this work identified two ABC proteins as new Cs+-influx carriers that act redundantly and independent of the K+-uptake pathway.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cesium/metabolism , Plant Roots/metabolism , Potassium/metabolism , ATP Binding Cassette Transporter, Subfamily G/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport , Plant Roots/genetics
14.
Sci Rep ; 10(1): 16055, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994421

ABSTRACT

Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, morphological abnormalities in lepidopteran insects, such as shrinkage and/or aberration of wings, have been reported. Butterflies experimentally exposed to radiocesium also show such abnormalities. However, because of a lack of data on absorbed dose and dose-effect relationship, it is unclear whether these abnormalities are caused directly by radiation. We conducted a low dose-rate exposure experiment in silkworms reared from egg to fully developed larvae on a 137CsCl-supplemented artificial diet and estimated the absorbed dose to evaluate morphological abnormalities in pupal wings. We used 137CsCl at 1.3 × 103 Bq/g fresh weight to simulate 137Cs contamination around the FDNPP. Absorbed doses were estimated using a glass rod dosimeter and Monte Carlo particle transport simulation code PHITS. Average external absorbed doses were approximately 0.24 (on diet) and 0.016 mGy/day (near diet); the average internal absorbed dose was approximately 0.82 mGy/day. Pupal wing structure is sensitive to radiation exposure. However, no significant differences were observed in the wing-to-whole body ratio of pupae between the 137CsCl-exposure and control groups. These results suggest that silkworms are insensitive to low dose-rate exposure due to chronic ingestion of high 137Cs at a high concentration.


Subject(s)
Bombyx/metabolism , Cesium Radioisotopes/adverse effects , Radiation Exposure/adverse effects , Animals , Butterflies , Cesium/metabolism , Cesium Radioisotopes/metabolism , Chlorides/metabolism , Diet , Dietary Supplements , Fukushima Nuclear Accident , Insecta , Japan , Nuclear Power Plants , Pupa/metabolism , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis
15.
J Plant Physiol ; 252: 153208, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32688166

ABSTRACT

Arabidopsis thaliana BRANCHING ENZYME 1 (AtBE1) is a chloroplast-localized embryo-lethal gene previously identified in knockout mutants. AtBE1 is thought to function in carbohydrate metabolism; however, this has not been experimentally demonstrated. Chlorosis is a typical symptom of cesium (Cs) toxicity in plants. The genetic target of Cs toxicity is largely unknown. Here, we isolated a Cs+-tolerant and chlorophyll-defective Arabidopsis ethyl methanesulfonate (EMS) mutant, atbe1-5. Mapping by sequencing and genetic complementation confirmed that a single amino acid change (P749S) in a random coil motif of AtBE1 confers the mutant's Cs+-tolerant and chlorophyll-defective phenotype. An isothermal titration calorimetry assay determined that the 749th residue is the Cs+-binding site and hence likely the target of Cs+ toxicity. We hypothesized that binding of Cs+ to the 749th residue of AtBE1 inhibits the enzyme's activity and confers Cs+ toxicity, which in turn reduces photosynthetic efficiency. In support with this hypothesis, atbe1-5 leaves have a reduced photosynthetic efficiency, and their amylose and amylopectin contents are ∼60 % and ∼1%, respectively, of those in Col-0 ecotype leaves. Leaves of the mutant have a lower sucrose, but higher maltose, concentration than those of Col-0. This study demonstrated that AtBE1 is an essential gene for amylopectin and amylose biosynthesis, as well as the target of Cs+ toxicity; therefore, it can serve as a genetic locus for engineering plants to extract Cs+ from contaminated soil while maintaining growth.


Subject(s)
Amylopectin/biosynthesis , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cesium/metabolism , Photosynthesis/drug effects , Plant Necrosis and Chlorosis/chemically induced , alpha-Amylases/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , alpha-Amylases/metabolism
16.
PLoS One ; 15(4): e0232139, 2020.
Article in English | MEDLINE | ID: mdl-32330181

ABSTRACT

Countermeasures to reduce radiocesium (134Cs and 137Cs) uptake by crops have been implemented in farmlands affected by the Fukushima nuclear accident in 2011. A widely practiced countermeasure is the application of potassium (K). Long-term soil K maintenance is a key issue due to the long physical half-life of 137Cs (30 years). Information on input and output pathways determining plant-available K budgets can provide a base for the development of maintenance strategies. Therefore, in this study we evaluated these pathways in paddy fields subjected to K fertilization as a countermeasure. We selected two fields with different soil textures and drainage conditions and quantified input and output via fertilization, irrigation, precipitation, straw return to soil, plant harvesting, surface runoff, and percolation during the cropping period in 2018. The major input pathways were fertilization, straw return, and irrigation due to a large inflow volume with spill-over irrigation. The major output pathways consisted of plant harvesting, surface runoff, and percolation. However, 85% of K in harvested plants was brought back by straw return; in practice, harvesting was a minor pathway. The K budgets during the study period were negative (-20 and -289 kg ha-1) and especially severe in clay loam soil with high output via percolation. This could probably be attributed to the low cation exchange capacity and high permeability from the low total C and clay contents. Losses via surface runoff stemmed from excessive irrigation volumes in both fields. Around 70% of the total K output via surface runoff and percolation was discharged before mid-summer drainage. Accordingly, controlling the irrigation volume during this period in addition to increasing cation exchange capacity and decreasing permeability may improve the negative budgets.


Subject(s)
Cesium Radioisotopes/analysis , Oryza/radiation effects , Radiation Monitoring/methods , Agriculture , Cesium/metabolism , Fukushima Nuclear Accident , Japan , Potassium/metabolism , Soil , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis
17.
Plant Cell Environ ; 43(7): 1707-1721, 2020 07.
Article in English | MEDLINE | ID: mdl-32275780

ABSTRACT

Root K+ acquisition is a key process for plant growth and development, extensively studied in the model plant Arabidopsis thaliana. Because important differences may exist among species, translational research supported by specific studies is needed in crops such as tomato. Here we present a reverse genetics study to demonstrate the role of the SlHAK5 K+ transporter in tomato K+ nutrition, Cs+ accumulation and its fertility. slhak5 KO lines, generated by CRISPR-Cas edition, were characterized in growth experiments, Rb+ and Cs+ uptake tests and root cells K+ -induced plasma membrane depolarizations. Pollen viability and its K+ accumulation capacity were estimated by using the K+ -sensitive dye Ion Potassium Green 4. SlHAK5 is the major system for high-affinity root K+ uptake required for plant growth at low K+ , even in the presence of salinity. It also constitutes a pathway for Cs+ entry in tomato plants with a strong impact on fruit Cs+ accumulation. SlHAK5 also contributes to pollen K+ uptake and viability and its absence produces almost seedless fruits. Knowledge gained into SlHAK5 can serve as a model for other crops with fleshy fruits and it can help to generate tools to develop low Cs+ or seedless fruits crops.


Subject(s)
Cesium/metabolism , Plant Proteins/physiology , Plant Roots/metabolism , Potassium Channels/physiology , Potassium/metabolism , Solanum lycopersicum/metabolism , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Flowers/metabolism , Fruit/growth & development , Gene Editing , Solanum lycopersicum/physiology , Plant Proteins/metabolism , Plants, Genetically Modified , Pollen Tube/growth & development , Potassium Channels/metabolism , Reproduction , Seeds/growth & development
18.
Chemosphere ; 252: 126482, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32222520

ABSTRACT

This study investigated the feasibility of using photoheterotrophic microalga, Desmodesmus armatus SCK, for removal of cesium (Cs+) followed by recovery process using magnetic nanoparticles. The comparison of three microalgae results indicated that D. armatus SCK removed the most Cs+ at both 25 °C and 10 °C. The results also revealed that the use of microalga grown in potassium (K+)-starved condition improves the accumulation of Cs+. Heterotrophic mode with addition of volatile fatty acids (VFAs), especially acetic acids (HAc), also enhanced removal of Cs+ by K+-starved D. armatus SCK; maximum removal efficiency of Cs+ was almost 2-fold higher than that of cells grown without organic carbon source. The Cs+ taken up by this microalga was efficiently harvested using magnetic nanoparticles, polydiallyldimethylammonium (PDDA)-FeO3. Finally, this strain eliminated more than 99% of radioactive 137Cs from solutions of 10, 100, and 1000 Bq mL-1. Therefore, use of K+-starved microalga, D. armatus SCK, with VFAs could be promising means to remove the Cs from the liquid wastes.


Subject(s)
Cesium/metabolism , Microalgae/metabolism , Water Pollutants, Chemical/metabolism , Cesium/analysis , Cesium Radioisotopes , Fatty Acids, Volatile , Heterotrophic Processes , Magnetic Phenomena , Potassium , Water Pollutants, Chemical/analysis
19.
Sci Rep ; 9(1): 19726, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873230

ABSTRACT

Transmembrane flux of Cs+ (a K+ congener) was measured in human red blood cells (RBCs; erythrocytes) on the 10-s time scale. This is the first report on dissolution dynamic nuclear polarization (dDNP) nuclear magnetic resonance (NMR) spectroscopy with this nuclide in mammalian cells. Four technical developments regularized sample delivery and led to high quality NMR spectra. Cation-free media with the Piezo1 (mechanosensitive cation channel) activator yoda1 maximized the extent of membrane transport. First-order rate constants describing the fluxes were estimated using a combination of statistical methods in Mathematica, including the Markov chain Monte Carlo (MCMC) algorithm. Fluxes were in the range 4-70 µmol Cs+ (L RBC)-1 s-1; these are smaller than for urea, but comparable to glucose. Methodology and analytical procedures developed will be applicable to transmembrane cation transport studies in the presence of additional Piezo1 effectors, to other cellular systems, and potentially in vivo.


Subject(s)
Cesium/metabolism , Erythrocytes/metabolism , Magnetic Resonance Spectroscopy , Biological Transport , Computer Simulation , Humans , Kinetics , Membrane Potentials , Permeability , Reproducibility of Results , Time Factors
20.
Bull Exp Biol Med ; 168(2): 187-192, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31776956

ABSTRACT

The whole-cell patch-clamp technique was used to examine the effect of gadolinium Gd3+ (a non-specific blocker of mechanically gated current IMGCh, a component of late current IL) on ionic currents in insolated rat ventricular cardiomyocytes alone and in combination with the blockers of L-type calcium currents (ICaL) nifedipine (10 µM) or verapamil (1 µM). In K+in/K+out or Cs+in/Cs+out media, blockade of ICaL produced no effect on IL at negative potentials, but inhibited IL at positive ones. In K+in/K+out medium, Gd3+ (5 µM) decreased the net persistent current (Inp) at -45 mV from 198.6±6.4 to 96.7±9.5 pA over 15 min. Gd3+ alone or in combination with ICaL blockers shifted the reversal potential of IL to more negative values. At negative potentials, Gd3+ decreased IK1 and inward current including IMGCh. At positive potentials, Gd3+ alone or in combination with ICaL blockers decreased IL. When applied for 15 min in Cs+in/Cs+out medium at -45 mV, Gd3+ produced no effect on net current and inward and outward components of IL. Thus, Gd3+ can be viewed as a specific blocker of IMGCh only in Cs+ medium.


Subject(s)
Calcium Channel Blockers/pharmacology , Gadolinium/pharmacology , Ion Transport/drug effects , Membrane Potentials/drug effects , Myocytes, Cardiac/metabolism , Potassium Channel Blockers/pharmacology , Action Potentials/drug effects , Animals , Calcium Channels/metabolism , Cesium/metabolism , Heart Ventricles/cytology , Male , Nifedipine/pharmacology , Patch-Clamp Techniques , Potassium Channels/metabolism , Rats , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...