Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.628
Filter
1.
Vet Parasitol Reg Stud Reports ; 51: 101031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772647

ABSTRACT

The Mexican free-tailed bat (Tadarida brasiliensis) is one of the most abundant mammals in North America. Mexican free-tailed bats have a wide geographic range stretching from northern South America to the western United States. Bats are theorized to be the original hosts for Trypanosoma cruzi -the causative agent of Chagas disease- and can serve as a source of infection to triatomine insect vectors that feed upon them. Chagas disease is a neglected tropical disease across the Americas where triatomines are present, including the southern United States, where Texas reports this highest number of locally-acquired human cases. To learn more about the role of bats in the ecology of Chagas disease in Texas, we surveyed a colony of Mexican free-tailed bats from Brazos County, Texas, for T. cruzi using carcasses salvaged after an extreme weather event. A total of 283 Mexican free-tailed bats collected in February 2021 were dissected and DNA from the hearts and kidneys was used for T. cruzi detection via qPCR. None of the bat hearts or kidneys tested positive for T. cruzi; this sample size affords 95% confidence that the true prevalence of T. cruzi in this population does not exceed 1%. Future sampling of multiple bat species as well as migrant and resident colonies of Mexican free-tailed bats across different times of the year over a broader geographic range would be useful in learning more about the role of bats in the ecology of Chagas disease in Texas.


Subject(s)
Chagas Disease , Chiroptera , Trypanosoma cruzi , Animals , Chiroptera/parasitology , Texas/epidemiology , Trypanosoma cruzi/isolation & purification , Chagas Disease/veterinary , Chagas Disease/epidemiology , Chagas Disease/parasitology , Male , Female
2.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791565

ABSTRACT

Currently, approximately 70% of new cases of Chagas disease (CD) in Brazil are attributed to oral transmission, particularly through foods such as açaí, bacaba, and sugarcane juice, primarily in the northern and northeastern regions of the country. This underscores the imperative need to control the spread of the disease. The methods utilized to conduct quality control for food associated with outbreaks and to assess the potential for the oral transmission of CD through consuming açaí primarily rely on isolating the parasite or inoculating food into experimental animals, restricting the analyses to major research centers. While there are existing studies in the literature on the detection and quantification of T. cruzi DNA in açaí, the evaluation of parasites' viability using molecular methods in this type of sample and differentiating between live and dead parasites in açaí pulp remain challenging. Consequently, we developed a molecular methodology based on RT-qPCR for detecting and quantifying viable T. cruzi in açaí pulp samples. This protocol enables the stabilization and preservation of nucleic acids in açaí, along with incorporating an exogenous internal amplification control. The standardization of the RNA extraction method involved a simple and reproducible approach, coupled with a one-step RT-qPCR assay. The assay underwent validation with various T. cruzi DTUs and demonstrated sensitivity in detecting up to 0.1 viable parasite equivalents/mL in açaí samples. Furthermore, we investigated the effectiveness of a bleaching method in eliminating viable parasites in açaí samples contaminated with T. cruzi by comparing the detection of DNA versus RNA. Finally, we validated this methodology using açaí pulp samples positive for T. cruzi DNA, which were collected in a municipality with a history of oral CD outbreaks (Coari-AM). This validation involved comparing the detection and quantification of total versus viable T. cruzi. Collectively, our findings demonstrate the feasibility of this methodology in detecting viable forms of T. cruzi in açaí pulp samples, emerging as a crucial tool for monitoring oral outbreaks of Chagas disease resulting from açaí consumption.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification , Chagas Disease/epidemiology , Chagas Disease/parasitology , Chagas Disease/transmission , Chagas Disease/diagnosis , Animals , Real-Time Polymerase Chain Reaction/methods , Euterpe , Brazil/epidemiology , Humans , DNA, Protozoan/genetics
3.
Parasit Vectors ; 17(1): 240, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802953

ABSTRACT

BACKGROUND: Chagas disease, caused by Trypanosoma cruzi, is still a public health problem in Latin America and in the Southern Cone countries, where Triatoma infestans is the main vector. We evaluated the relationships among the density of green vegetation around rural houses, sociodemographic characteristics, and domestic (re)infestation with T. infestans while accounting for their spatial dependence in the municipality of Pampa del Indio between 2007 and 2016. METHODS: The study comprised sociodemographic and ecological variables from 734 rural houses with no missing data. Green vegetation density surrounding houses was estimated by the normalized difference vegetation index (NDVI). We used a hierarchical Bayesian logistic regression composed of fixed effects and spatial random effects to estimate domestic infestation risk and quantile regressions to evaluate the association between surrounding NDVI and selected sociodemographic variables. RESULTS: Qom ethnicity and the number of poultry were negatively associated with surrounding NDVI, whereas overcrowding was positively associated with surrounding NDVI. Hierarchical Bayesian models identified that domestic infestation was positively associated with surrounding NDVI, suitable walls for triatomines, and overcrowding over both intervention periods. Preintervention domestic infestation also was positively associated with Qom ethnicity. Models with spatial random effects performed better than models without spatial effects. The former identified geographic areas with a domestic infestation risk not accounted for by fixed-effect variables. CONCLUSIONS: Domestic infestation with T. infestans was associated with the density of green vegetation surrounding rural houses and social vulnerability over a decade of sustained vector control interventions. High density of green vegetation surrounding rural houses was associated with households with more vulnerable social conditions. Evaluation of domestic infestation risk should simultaneously consider social, landscape and spatial effects to control for their mutual dependency. Hierarchical Bayesian models provided a proficient methodology to identify areas for targeted triatomine and disease surveillance and control.


Subject(s)
Chagas Disease , Insect Vectors , Triatoma , Triatoma/physiology , Triatoma/parasitology , Animals , Chagas Disease/transmission , Chagas Disease/epidemiology , Humans , Argentina/epidemiology , Insect Vectors/physiology , Bayes Theorem , Rural Population , Trypanosoma cruzi , Housing , Socioeconomic Factors , Risk Factors
4.
Traffic ; 25(4): e12935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629580

ABSTRACT

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Subject(s)
Chagas Disease , Extracellular Vesicles , Leishmania , Parasites , Trypanosoma cruzi , Animals , Humans , Chagas Disease/epidemiology , Chagas Disease/parasitology
5.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612650

ABSTRACT

Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.


Subject(s)
Animal Diseases , Chagas Disease , Dog Diseases , Trypanosoma cruzi , Humans , Dogs , Animals , Chagas Disease/epidemiology , Chagas Disease/veterinary , Animals, Domestic , Dog Diseases/epidemiology , Mammals
6.
PLoS Negl Trop Dis ; 18(4): e0012124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662649

ABSTRACT

Chagas disease (CD) is a neglected parasitic zoonotic disease that affects over 6 million people worldwide. We conducted a retrospective study to analyze the spatiotemporal trends and risk factors for hospitalization rates of CD with cardiac and digestive diagnoses in Chile. We used the Mann-Kendall analysis for temporal trends, Global Moran's Index, and Local Indicators of Spatial Association to identify spatial autocorrelation, and regression models to determine the risk factors associated with in-hospital mortality and surgical intervention. Between 2010 and 2020, a total of 654 hospitalizations were reported, corresponding to 527 individuals. The hospitalization rate steadily decreased over the years (t = -0.636; p = 0.009). The Global Moran's I for the study period showed a positive spatial autocorrelation for hospitalization municipality and for residence municipality of CD patients (I = 0.25, p<0.001 and I = 0.45, p<0.001 respectively), indicating a clustering of hospitalizations in northern municipalities. The most frequent diagnosis was a chronic CD with digestive system involvement (55.8%) followed by a chronic CD with heart involvement (44.2%). The highest percentage of hospital discharges was observed among males (56.9%) and in the 60-79 age group (52.7%). In-hospital mortality risk was higher with increasing age (OR = 1.04), and in patients with cardiac involvement (OR = 2.3), whereas factors associated with the risk of undergoing a surgical intervention were sex (OR = 1.6) and diagnosis of CD with digestive involvement (OR = 4.4). The findings of this study indicate that CD is still a significant public health burden in Chile. Efforts should focus on improving access to timely diagnoses and treatment, reducing disease progression and hospitalization burden, and supporting clinicians in preventing complications and deaths.


Subject(s)
Chagas Disease , Hospital Mortality , Hospitalization , Spatio-Temporal Analysis , Humans , Chile/epidemiology , Male , Female , Chagas Disease/mortality , Chagas Disease/epidemiology , Hospitalization/statistics & numerical data , Risk Factors , Middle Aged , Retrospective Studies , Adult , Aged , Chronic Disease , Young Adult , Adolescent , Aged, 80 and over , Child
7.
Clin Infect Dis ; 78(Supplement_2): S175-S182, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662705

ABSTRACT

BACKGROUND: Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS: We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS: We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS: Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.


Subject(s)
Asymptomatic Infections , Chagas Disease , Leishmaniasis, Visceral , Models, Theoretical , Neglected Diseases , Humans , Neglected Diseases/prevention & control , Neglected Diseases/epidemiology , Chagas Disease/transmission , Chagas Disease/prevention & control , Chagas Disease/epidemiology , Chagas Disease/drug therapy , Asymptomatic Infections/epidemiology , Leishmaniasis, Visceral/prevention & control , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/transmission , Leishmaniasis, Visceral/drug therapy , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/transmission , Trypanosomiasis, African/drug therapy , India/epidemiology , Animals
8.
Biomedica ; 44(1): 92-101, 2024 03 31.
Article in English, Spanish | MEDLINE | ID: mdl-38648342

ABSTRACT

Introduction. In 2021, the Secretaría de Salud de México and the Pan American Health Organization launched an initiative to interrupt intra-domiciliary vector transmission of Trypanosoma cruzi based on the prevalence of Chagas disease in children. The Mexican State of Veracruz was leading this initiative. Objective. To estimate the seroprevalence of T. cruzi infection among children under 15 years of age from rural areas of Veracruz, México. Materials and methods. We identified eight localities of high priority from the Municipality of Tempoal, Veracruz, for baseline serology. Blood samples were collected on filter paper from 817 individuals between June and August 2017, for screening with a third-generation enzyme immunoassay. Reactive cases were confirmed by indirect hemagglutination, enzyme-linked immunosorbent assay, and indirect immunofluorescence tests on peripheral blood serum samples. We calculated seroprevalence and 95% confidence intervals (CI). Results. We confirmed Chagas disease cases in children under 15 years of age with a seroprevalence of 1,9% (95 % CI = 1,12-3,16) in the localities of Citlaltepetl, Cornizuelo, Cruz de Palma and Rancho Nuevo. Conclusions. These results indicate recent transmission of T. cruzi in these communities and allow to establish an epidemiological baseline for the design and implementation of a model focused on geographical areas with active transmission to advance toward the elimination of intra-domiciliary vector transmission of this parasite in Mexico.


Introducción. En el 2021, la Secretaría de Salud de México y la Organización Panamericana de la Salud lanzaron una iniciativa para interrumpir la transmisión vectorial intradomiciliaria de Trypanosoma cruzi, fundamentada en la prevalencia de la enfermedad de Chagas en la población infantil. El estado mexicano de Veracruz fue el pionero de esta iniciativa. Objetivo. Estimar la seroprevalencia de infección por T. cruzi en menores de 15 años de localidades rurales de Veracruz, México. Materiales y métodos. Se identificaron ocho localidades prioritarias para la serología basal del municipio de Tempoal, Veracruz. Entre junio y agosto de 2017, se recolectaron muestras de sangre en papel filtro de 817 individuos para su tamizaje mediante un inmunoensayo enzimático de tercera generación. Los casos reactivos del tamizaje se confirmaron mediante pruebas de hemaglutinación indirecta, ensayo de inmunoabsorción ligado a enzimas e inmunofluorescencia indirecta en muestras de suero. Se calculó la seroprevalencia y su intervalo de confianza (IC) del 95 %. Resultados. En las localidades de Citlaltépetl, Cornizuelo, Cruz de Palma y Rancho Nuevo se confirmaron casos de la enfermedad de Chagas en menores de 15 años con una seroprevalencia de 1,9 % (IC 95 % = 1,12-3,16). Conclusiones. Los resultados indican que estas comunidades presentan transmisión reciente de T. cruzi y permiten establecer una línea epidemiológica de base para el diseño e implementación de un modelo dirigido a aquellas áreas geográficas con transmisión activa. Se espera que dicho modelo contribuya a la eliminación de la transmisión vectorial intradomiciliaria del tripanosomátido en México.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Seroepidemiologic Studies , Chagas Disease/epidemiology , Chagas Disease/transmission , Chagas Disease/blood , Mexico/epidemiology , Child , Trypanosoma cruzi/immunology , Adolescent , Child, Preschool , Infant , Female , Male , Antibodies, Protozoan/blood , Animals
9.
PLoS Negl Trop Dis ; 18(4): e0012026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626209

ABSTRACT

INTRODUCTION: Chagas disease is a severe parasitic illness that is prevalent in Latin America and often goes unaddressed. Early detection and treatment are critical in preventing the progression of the illness and its associated life-threatening complications. In recent years, machine learning algorithms have emerged as powerful tools for disease prediction and diagnosis. METHODS: In this study, we developed machine learning algorithms to predict the risk of Chagas disease based on five general factors: age, gender, history of living in a mud or wooden house, history of being bitten by a triatomine bug, and family history of Chagas disease. We analyzed data from the Retrovirus Epidemiology Donor Study (REDS) to train five popular machine learning algorithms. The sample comprised 2,006 patients, divided into 75% for training and 25% for testing algorithm performance. We evaluated the model performance using precision, recall, and AUC-ROC metrics. RESULTS: The Adaboost algorithm yielded an AUC-ROC of 0.772, a precision of 0.199, and a recall of 0.612. We simulated the decision boundary using various thresholds and observed that in this dataset a threshold of 0.45 resulted in a 100% recall. This finding suggests that employing such a threshold could potentially save 22.5% of the cost associated with mass testing of Chagas disease. CONCLUSION: Our findings highlight the potential of applying machine learning to improve the sensitivity and effectiveness of Chagas disease diagnosis and prevention. Furthermore, we emphasize the importance of integrating socio-demographic and environmental factors into neglected disease prediction models to enhance their performance.


Subject(s)
Chagas Disease , Machine Learning , Rural Population , Humans , Chagas Disease/epidemiology , Chagas Disease/diagnosis , Brazil/epidemiology , Male , Female , Adult , Middle Aged , Young Adult , Adolescent , Algorithms , Child , Risk Factors , Aged , Child, Preschool
10.
Am J Trop Med Hyg ; 110(4): 663-668, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38452392

ABSTRACT

Bolivia has one of the highest burdens of Chagas disease in the world. Vertical transmission from mother to infant accounts for a growing number of cases. We performed a systematic review of articles assessing the prevalence of Chagas disease in pregnant women and rates of vertical transmission to infants in Bolivia. Studies were not excluded based on year of publication or language. Random-effects analyses were performed to estimate a pooled prevalence of maternal Chagas disease and pooled vertical transmission rate. Our search yielded 21 articles describing over 400,000 cases of Chagas disease among pregnant women in Bolivia. The reported prevalence of maternal Chagas disease ranged from 17.3% to 64.5%, with a pooled prevalence of 33.0% (95% CI, 27.4-38.7%). The prevalence of maternal Chagas disease trended down over time (P = 0.006), decreasing by approximately 25% to 30% over the last 40 years. Vertical transmission rates ranged from 2.0% to 13% with a pooled average of 6.2% (95% CI, 4.4-7.5%); rates did not significantly change over time. Our study is the first systematic review and meta-analysis of Chagas disease maternal prevalence and vertical transmission in Bolivia. Our findings indicate that maternal Chagas disease has fallen in prevalence but still affects 20% to 30% of pregnant women and poses a considerable risk of vertical transmission. Pregnant women and infants are an important target for public health interventions to limit the mortality and morbidity of Chagas disease and to reduce intergenerational spread.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Infant , Pregnancy , Humans , Female , Prevalence , Bolivia/epidemiology , Chagas Disease/epidemiology , Infectious Disease Transmission, Vertical , Mothers
11.
Am J Trop Med Hyg ; 110(5): 925-929, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38531096

ABSTRACT

In July and October 2023, two live triatomine bugs were found inside a home in New Castle County, Delaware. The bugs were identified as Triatoma sanguisuga, the most widespread triatomine bug species in the United States. Triatoma sanguisuga is a competent vector of Trypanosoma cruzi, the causative agent of Chagas disease. The two specimens were tested via real-time PCR (qPCR) for infection with T. cruzi, and one of the specimens was positive. Despite T. sanguisuga being endemic to the area, attainment of accurate species identification and T. cruzi testing of the bugs required multiple calls to federal, state, private, and academic institutions over several months. This constitutes the first report of T. sanguisuga infected with T. cruzi in Delaware. In addition, this is the first published report of T. sanguisuga in New Castle County, the northernmost and most densely populated county in Delaware. New Castle County still conforms to the described geographic range of T. sanguisuga, which spans from Texas to the East Coast of the United States. The T. cruzi infection prevalence of the species has not been studied in the northeastern United States, but collections in southern states have found prevalences as high as 60%. The Delaware homeowner's lengthy pursuit of accurate information about the vector highlights the need for more research on this important disease vector in Delaware.


Subject(s)
Chagas Disease , Insect Vectors , Triatoma , Trypanosoma cruzi , Animals , Triatoma/parasitology , Chagas Disease/epidemiology , Chagas Disease/transmission , Delaware/epidemiology , Trypanosoma cruzi/isolation & purification , Trypanosoma cruzi/genetics , Insect Vectors/parasitology , Humans
12.
Vet Parasitol Reg Stud Reports ; 49: 101003, 2024 04.
Article in English | MEDLINE | ID: mdl-38462304

ABSTRACT

Despite multiple screening efforts to identify exposures to Trypanosoma cruzi, in dogs across southern USA, no published studies could be found involving client owned dogs in the North Texas Metroplex area. Therefore, a limited screen was conducted for client owned dogs, seeking routine or preventative care, from participating veterinary practices in the greater Dallas-Fort Worth (DFW) Metroplex from 2019 to 2021. Participants, with owner consent, ranged in age, breed, and length of time at recorded residence. Ninety-nine samples were acquired from participating veterinary practices, initially assessed with the Chagas StatPak, and positive samples were confirmed with IFA (indirect fluorescent antibody test) at the Texas Veterinary Medical Diagnostic Lab (TVMDL), College Station, Texas. Six samples were positive with the StatPak and only two were confirmed positive with IFA. Both animals were senior (10 and 8 years) with no owner reports of previous cardiac issues. The results appear reasonable within the context of previous studies and the seropositivity rate of 2% (n = 99) for client owned dogs included in this study are lower than previously reported rates for shelter dogs from the North Texas area.


Subject(s)
Chagas Disease , Dog Diseases , Trypanosoma cruzi , Animals , Dogs , Chagas Disease/diagnosis , Chagas Disease/epidemiology , Chagas Disease/veterinary , Texas/epidemiology , Housing , Dog Diseases/diagnosis , Dog Diseases/epidemiology
13.
PLoS Negl Trop Dis ; 18(3): e0011997, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489395

ABSTRACT

BACKGROUND: Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is the most important endemic anthropozoonosis in Argentina. Since 2010, the World Health Organization has highlighted the urgent need to validate diagnostic systems that allow rapid detection of T. cruzi, infection in primary healthcare centers. Serological rapid diagnostic tests (RDTs) for T. cruzi, infection could be used to improve case management, as RDTs do not require specialized laboratories or highly trained staff to use them. We aimed to generate unbiased performance data of RDTs in Argentina, to evaluate their usefulness for improving T. cruzi, diagnosis rates. METHODS AND PRINCIPAL FINDINGS: This is a retrospective, laboratory-based, diagnostic evaluation study to estimate the clinical sensitivity/specificity of four commercially available RDTs for T. cruzi, using the Chagas disease diagnostic algorithm currently used in Argentina as the reference standard. In total, 400 serum samples were tested, 200 from individuals with chronic T. cruzi infection and 200 from individuals not infected with T. cruzi. All results were registered as the agreement of at least two operators who were blinded to the reference standard results. The sensitivity estimates ranged from 92.5-100% (95% confidence interval (CI) lower bound 87.9-98.2%); for specificity, the range was 76-96% (95% CI lower bound 69.5-92.3%). Most RDTs evaluated showed performances comparable with the reference standard method, showing almost perfect concordance (Kappa 0.76-0.92). CONCLUSIONS: Our study demonstrates that, under controlled laboratory conditions, commercially available RDTs for CD have a performance comparable to the Argentinian diagnostic algorithm, which is based on laboratory-based serological tests. For the next stage of our work, the RDTs will be evaluated in real-world settings.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Argentina/epidemiology , Retrospective Studies , Urban Population , Rapid Diagnostic Tests , Chagas Disease/diagnosis , Chagas Disease/epidemiology , Antibodies , Sensitivity and Specificity , Antibodies, Protozoan
14.
Travel Med Infect Dis ; 59: 102708, 2024.
Article in English | MEDLINE | ID: mdl-38467231

ABSTRACT

INTRODUCTION: Detecting imported diseases by migrants and individuals visiting friends and relatives (VFR) is key in the prevention and management of emergent infectious diseases acquired abroad. METHODS: Retrospective descriptive study on migrants and VFR from Central and South America between 2017 and 2022 attended at a National Referral Centre for Tropical Diseases in Madrid, Spain. Demographic characteristics, syndromes and confirmed travel-related diagnoses were obtained from hospital patient medical records. RESULTS: 1654 cases were registered, median age of 42 years, 69.1% were female, and 55.2% were migrants. Most cases came from Bolivia (49.6%), followed by Ecuador (12.9%). Health screening while asymptomatic (31.6%) was the main reason for consultation, followed by Chagas disease follow-up (31%). Of those asymptomatic at screening, 47,2% were finally diagnosed of any disease, mainly Chagas disease (19,7%) and strongyloidiasis (10,2%) CONCLUSION: Our study emphasizes the importance of proactive health screening to detect asymptomatic conditions in migrants and VFR, enabling timely intervention and improved health outcomes. By understanding the unique health profiles of immigrant populations, targeted public health interventions can be devised to safeguard the well-being of these vulnerable groups.


Subject(s)
Communicable Diseases, Imported , Transients and Migrants , Humans , Retrospective Studies , Female , Male , Adult , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/prevention & control , Communicable Diseases, Imported/diagnosis , Spain/epidemiology , Transients and Migrants/statistics & numerical data , Middle Aged , Travel/statistics & numerical data , Adolescent , Latin America/epidemiology , Latin America/ethnology , Young Adult , Chagas Disease/diagnosis , Chagas Disease/epidemiology , Chagas Disease/prevention & control , Child , Aged , Tropical Medicine , Referral and Consultation/statistics & numerical data , Emigrants and Immigrants/statistics & numerical data
15.
Article in English | MEDLINE | ID: mdl-38324876

ABSTRACT

Multiple myeloma (MM) associated with Chagas disease is rarely described. This disease and its therapy suppress T cell and macrophage functions and increase regulatory T cell function, allowing the increase of parasitemia and the risk of Chagas Disease Reactivation (CDR). We aimed to analyze the role of conventional (cPCR) and quantitative Polymerase Chain Reaction (qPCR) for prospective monitoring of T. cruzi parasitemia, searching for markers of preemptive antiparasitic therapy in MM patients with Chagas disease. Moreover, we investigated the incidence and management of hematological diseases and CDR both inside and outside the transplant setting in the MEDLINE database. We found 293 studies and included 31 of them. Around 1.9-2.0% of patients with Chagas disease were reported in patients undergoing Stem Cell Transplantation. One case of CDR was described in eight cases of MM and Chagas disease. We monitored nine MM and Chagas disease patients, seven under Autologous Stem Cell Transplantation (ASCT), during 44.56±32.10 months (mean±SD) using parasitological methods, cPCR, and qPCR. From these patients, three had parasitemia. In the first, up to 256 par Eq/mL were detected, starting from 28 months after ASCT. The second patient dropped out and died soon after the detection of 161.0 par Eq/mL. The third patient had a positive blood culture. Benznidazole induced fast negativity in two cases; followed by notably lower levels in one of them. Increased T. cruzi parasitemia was related to the severity of the underlying disease. We recommend parasitemia monitoring by qPCR for early introduction of preemptive antiparasitic therapy to avoid CDR.


Subject(s)
Chagas Disease , Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Nitroimidazoles , Trypanosoma cruzi , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/complications , Antiparasitic Agents/therapeutic use , Parasitemia/drug therapy , Parasitemia/epidemiology , Parasitemia/parasitology , Prospective Studies , Transplantation, Autologous , Chagas Disease/drug therapy , Chagas Disease/epidemiology , Nitroimidazoles/therapeutic use
16.
Rev Soc Bras Med Trop ; 57: e007002023, 2024.
Article in English | MEDLINE | ID: mdl-38324807

ABSTRACT

BACKGROUND: We assessed the distribution of triatomines in an endemic area for Chagas disease. METHODS: This retrospective study used secondary data extracted from the Official System of the National Chagas Disease Control Program (Sistema Oficial do Programa Nacional de Controle da Doença de Chagas - SisPCDCh). RESULTS: A total of 7,257 (725.7 ± 221.7 per year) specimens were collected from 2013 to 2022. Most of them (6,792; 93.6%) were collected in the intradomicile and 465 (6.4%) in the peridomicile. A total of 513 (7.1%) triatomines tested positive for the presence of trypomastigote forms, similar to Trypanosoma cruzi. CONCLUSIONS: The spatial analysis revealed a heterogeneous distribution of triatomines across different municipalities.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Brazil/epidemiology , Retrospective Studies , Insect Vectors , Chagas Disease/epidemiology
17.
PLoS Negl Trop Dis ; 18(2): e0011898, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329945

ABSTRACT

Chagas disease (ChD), caused by infection with the flagellated protozoan, Trypanosoma cruzi, has a complicated transmission cycle with many infection routes. These include vector-borne (via the triatomine (reduviid bug) vector defecating into a skin abrasion, usually following a blood meal), transplacental transmission, blood transfusion, organ transplant, laboratory accident, and foodborne transmission. Foodborne transmission may occur due to ingestion of meat or blood from infected animals or from ingestion of other foods (often fruit juice) contaminated by infected vectors or secretions from reservoir hosts. Despite the high disease burden associated with ChD, it was omitted from the original World Health Organization estimates of foodborne disease burden that were published in 2015. As these estimates are currently being updated, this review presents arguments for including ChD in new estimates of the global burden of foodborne disease. Preliminary calculations suggest a burden of at least 137,000 Disability Adjusted Life Years, but this does not take into account the greater symptom severity associated with foodborne transmission. Thus, we also provide information regarding the greater health burden in endemic areas associated with foodborne infection compared with vector-borne infection, with higher mortality and more severe symptoms. We therefore suggest that it is insufficient to use source attribution alone to determine the foodborne proportion of current burden estimates, as this may underestimate the higher disability and mortality associated with the foodborne infection route.


Subject(s)
Chagas Disease , Foodborne Diseases , Triatoma , Trypanosoma cruzi , Animals , Chagas Disease/epidemiology , Foodborne Diseases/epidemiology , Cost of Illness
18.
Acta Trop ; 252: 107144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336343

ABSTRACT

Understanding the population dynamics of vectors is crucial for effective control of vector-borne diseases. In the Northeastern Brazilian semi-arid region, Triatoma brasiliensis persists as the most significant Chagas disease vector, frequently displaying recurrent domiciliary infestations. This situation raises relevant public health concerns in the municipality of Currais Novos in the state of Rio Grande do Norte. This area has experienced a high prevalence of peridomiciliary re-infestations by T. brasiliensis, coupled with elevated rates of Trypanosoma cruzi infection. Therefore, we assessed the distribution of genetic variation via mitochondrial Cytochrome b gene (MT-CYB) sequencing (n = 109) and single nucleotide polymorphisms (SNPs, n = 86) to assess the gene flow among distinct populations distributed in varied geographic spots and environments, mainly sylvatic and peridomiciliary. Insects were collected from rural communities at Currais Novos, enclosed within a 16 km radius. Sampling included 13 populations: one intradomiciliary, eight peridomiciliary, and four sylvatic. Furthermore, an external population located 220 km from Currais Novos was also included in the study. The method employed to obtain SNP information relied on ddRAD-seq genotyping-by-sequencing (GBS), enabling a genome-wide analysis to infer genetic variation. Through AMOVA analysis of MT-CYB gene variation, we identified four distinct population groups with statistical significance (FCT= 0.42; p<0.05). We identified a total of 3,013 SNPs through GBS, with 11 loci showing putative signs of being under selection. The variation based on 3,002 neutral loci evidenced low genetic structuration based on low FST values (p>0.05), indicating local panmixia. However, resampling algorithms pointed out that three samples from the external population were assigned (>98 %) in a cluster contrasting from the ones putatively under local panmixia - validating the newly applied genome-wide marker for studies on the population genetics at finer-scale resolution for T. brasiliensis. The presence of population structuring in some of the sampled points, as suggested by the mitochondrial marker, leads us to assume that infestations were probably initiated by small populations of females - demographic event poses a risk for rapid re-infestations. The local panmictic pattern revealed by the GBS marker poses a challenge for vector control measures, as re-infestation foci may be distributed over a wide geographical and ecological range. In such instances, vectors exhibit reduced susceptibility to conventional insecticide spraying operations since sylvatic populations are beyond the reach of these interventions. The pattern of infestation exhibited by T. brasiliensis necessitates integrating innovative strategies into the existing control framework, holding the potential to create a more resilient and adaptive vector control program. In our dataset, the results demonstrated that the genetic signals from both markers were complementary. Therefore, it is essential to consider the nature and inheritance pattern of each marker when inferring the pattern of re-infestations.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Female , Humans , Triatoma/genetics , Brazil/epidemiology , Trypanosoma cruzi/genetics , Chagas Disease/epidemiology , Genetics, Population , Genomics
19.
PLoS Negl Trop Dis ; 18(2): e0011981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377140

ABSTRACT

BACKGROUND: Chagas disease, affecting approximately eight million individuals in tropical regions, is primarily transmitted by vectors. Rhodnius prolixus, a triatomine vector, commonly inhabits in ecotopes with diverse palm tree species, creating optimal conditions for vector proliferation. This study aims to explore the transmission ecology of Trypanosoma cruzi, the causative parasite of Chagas disease, by investigating the feeding patterns and natural infection rates of R. prolixus specimens collected from various wild palm species in the Colombian Orinoco region. MATERIALS AND METHODS: To achieve this objective, we sampled 35 individuals from three palm species (Attalea butyracea, Acrocomia aculeata, and Mauritia flexuosa) in a riparian forest in the Casanare department of eastern Colombia, totaling 105 sampled palm trees. DNA was extracted and analyzed from 115 R. prolixus specimens at different developmental stages using quantitative PCR (qPCR) for T. cruzi detection and identification of discrete typing units. Feeding preferences were determined by sequencing the 12S rRNA gene amplicon through next-generation sequencing. RESULTS: A total of 676 R. prolixus specimens were collected from the sampled palms. The study revealed variation in population densities and developmental stages of R. prolixus among palm tree species, with higher densities observed in A. butyracea and lower densities in M. flexuosa. TcI was the exclusive T. cruzi discrete typing unit (DTU) found, with infection frequency positively correlated with R. prolixus abundance. Insects captured in A. butyracea exhibited higher abundance and infection rates than those from other palm species. The feeding sources comprised 13 mammal species, showing no significant differences between palm species in terms of blood sources. However, Didelphis marsupialis and Homo sapiens were present in all examined R. prolixus, and Dasypus novemcinctus was found in 89.47% of the insects. CONCLUSION: This study highlights the significance of wild palms, particularly A. butyracea, as a substantial risk factor for T. cruzi transmission to humans in these environments. High population densities and infection rates of R. prolixus were observed in each examined palm tree species.


Subject(s)
Chagas Disease , Rhodnius , Triatominae , Trypanosoma cruzi , Animals , Humans , Trees , Trypanosoma cruzi/genetics , Colombia/epidemiology , Chagas Disease/epidemiology , Armadillos
20.
Infect Genet Evol ; 118: 105563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301855

ABSTRACT

Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.


Subject(s)
Chagas Disease , Chiroptera , Leishmania infantum , Trypanosoma cruzi , Animals , Humans , Chiroptera/parasitology , Brazil/epidemiology , Trypanosoma cruzi/genetics , Chagas Disease/epidemiology , Chagas Disease/veterinary , Chagas Disease/parasitology , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...