Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.215
Filter
1.
Bioorg Med Chem Lett ; 107: 129795, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750906

ABSTRACT

Chalcones are chemical scaffolds found in natural products, particularly in plants, and are considered for structural diversity in medicinal chemistry for drug development. Herein, we designed and synthesised novel acetamide derivatives of chalcone, characterizing them using 1H NMR, 13C NMR, HRMS, and IR spectroscopic methods. These derivatives were then screened against human cancer cells for cytotoxicity using the SRB assay. Among the tested derivatives, 7g, with a pyrrolidine group, exhibited better cell growth inhibition activity against triple-negative breast cancer (TNBC) cells. Further assays, including SRB, colony formation, and fluorescent dye-based microscopic analysis, confirmed that 7g significantly inhibited MDA-MB-231 cell proliferation. Furthermore, 7g promoted apoptosis by upregulating cellular reactive oxygen species (ROS) levels and disrupting mitochondrial membrane potential (MMP). Elevated expression of pro-apoptotic proteins (Bax and caspase-3) and a higher Bax/Bcl-2 ratio with downregulation of anti-apoptotic (Bcl-2) protein levels were observed in TNBC cells. The above results suggest that 7g can promote cellular death through apoptotic mechanisms in TNBC cells.


Subject(s)
Acetamides , Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Acetamides/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Apoptosis/drug effects , Molecular Structure , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Dose-Response Relationship, Drug , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
2.
Drug Des Devel Ther ; 18: 1531-1546, 2024.
Article in English | MEDLINE | ID: mdl-38737331

ABSTRACT

Purpose: Lung adenocarcinoma currently ranks the leading causes of cancer-related mortality worldwide. Many anti-inflammation herbs, like tetramethylpyrazine, have shown their anti-tumor potentials. Here, we evaluated the role of a novel chalcone derivative of tetramethylpyrazine ((E) -1- (E) -1- (2-hydroxy-5-chlorophenyl) -3- (3,5,6-trimethylpyrazin-2-yl) -2-propen-1, HCTMPPK) in lung adenocarcinoma. Methods: The effects of HCTMPPK on cell proliferation, apoptosis, and invasion were investigated by in-vitro assays, including CCK-8, colony formation assay, flow cytometry, transwell assay, and wound-healing assay. The therapeutic potential of HCTMPPK in vivo was evaluated in xenograft mice. To figure out the target molecules of HCTMPPK, a network pharmacology approach and molecular docking studies were employed, and subsequent experiments were conducted to confirm these candidate molecules. Results: HCTMPPK effectively suppressed the proliferative activity and migration, as well as enhanced the apoptosis of A549 cells in a concentration-dependent manner. Consistent with this, tumor growth was inhibited by HCTMPPK significantly in vivo. Regarding the mechanisms, HCTMPPK down-regulated Bcl-2 and MMP-9 and up-regulating Bax and cleaved-caspase-3. Subsequently, we identified 601 overlapping DEGs from LUAD patients in TCGA and GEO database. Then, 15 hub genes were identified by PPI network and CytoHubba. Finally, MELK was verified to be the HCTMPPK targeted site, through the molecular docking studies and validation experiments. Conclusion: Overall, our study indicates HCTMPPK as a potential MELK inhibitor and may be a promising candidate for the therapy of lung cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Down-Regulation , Drug Screening Assays, Antitumor , Lung Neoplasms , Pyrazines , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Pyrazines/pharmacology , Pyrazines/chemistry , Cell Proliferation/drug effects , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Down-Regulation/drug effects , Chalcone/pharmacology , Chalcone/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Molecular Docking Simulation , Mice, Nude , Mice, Inbred BALB C , A549 Cells , Cell Movement/drug effects , Chalcones/pharmacology , Chalcones/chemistry , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Tumor Cells, Cultured
3.
Oncol Res ; 32(5): 899-910, 2024.
Article in English | MEDLINE | ID: mdl-38686047

ABSTRACT

Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.


Subject(s)
Bone Neoplasms , Cell Proliferation , Chalcone , Ferroptosis , Osteosarcoma , Quinones , Humans , Amino Acid Transport System y+/drug effects , Amino Acid Transport System y+/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/pharmacology , Chalcone/analogs & derivatives , Ferroptosis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Quinones/pharmacology , Signal Transduction/drug effects , Hexokinase/drug effects , Hexokinase/metabolism
4.
Bioorg Chem ; 147: 107310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583249

ABSTRACT

Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 µM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/ß-tubulin in cancer cells, reduced the expression of polymerized α-/ß-tubulin, and increased the expression of depolymerized α-/ß-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cisplatin , Dose-Response Relationship, Drug , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Imidazoles , Uterine Cervical Neoplasms , Humans , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Structure-Activity Relationship , Cell Proliferation/drug effects , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Drug Resistance, Neoplasm/drug effects , Female , Molecular Structure , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Polymerization/drug effects , Apoptosis/drug effects , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Molecular Docking Simulation , Tubulin/metabolism , Cell Line, Tumor , Microtubules/drug effects , Microtubules/metabolism
5.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Article in English | MEDLINE | ID: mdl-38457745

ABSTRACT

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Subject(s)
Antitubercular Agents , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Triazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Structure-Activity Relationship , Enterococcus faecalis/drug effects , Molecular Structure , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis
6.
Drug Des Devel Ther ; 18: 475-491, 2024.
Article in English | MEDLINE | ID: mdl-38405578

ABSTRACT

Purpose: The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods: Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results: We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion: Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.


Subject(s)
Chalcone , Chalcone/analogs & derivatives , Drugs, Chinese Herbal , Pulmonary Arterial Hypertension , Quinones , Humans , Animals , Rats , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/drug therapy , Vascular Remodeling , Molecular Docking Simulation , Chalcone/pharmacology
7.
Chem Biodivers ; 21(5): e202301659, 2024 May.
Article in English | MEDLINE | ID: mdl-38407541

ABSTRACT

Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 µg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 µg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Microbial Sensitivity Tests , Streptococcus mutans , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Structure-Activity Relationship , Molecular Dynamics Simulation , Molecular Docking Simulation , Molecular Structure , Models, Molecular , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Dose-Response Relationship, Drug
8.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Article in English | MEDLINE | ID: mdl-38297894

ABSTRACT

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Chalcones , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Histone Deacetylase Inhibitors , Quinazolines , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemical synthesis , Chalcones/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Histone Deacetylases/metabolism , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis
9.
Biomolecules ; 14(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38397453

ABSTRACT

The purpose of the current investigation was to produce cinammaldehyde-based chalcone derivatives (3a-k) to evaluate their potential effectiveness as antioxidant and inhibitory agents versus human Caco-2 cancer cells. The findings obtained using the DPPH assay showed that compound 3e had the highest effective antioxidant activity with the best IC50 value compared with the other compounds. Moreover, the cytotoxic findings revealed that compound 3e was the best compound for inhibiting Caco-2 development in contrast to all other produced derivatives, with the lowest IC50 concentration (32.19 ± 3.92 µM), and it also had no detrimental effects on healthy human lung cells (wi38 cells). Exposure of Caco-2 cells with this IC50 value of compound 3e resulted in a substantial rise in the number of early and late cells that are apoptotic with a significant comet nucleus when compared with control cells employing the annexin V/PI and comet evaluations, respectively. Furthermore, qRT-PCR and ELISA examinations indicated that compound 3e significantly altered the expression of genes and their relative proteins related to apoptosis in the treated Caco-2 cells, thus significantly inhibiting Caco-2 growth through activating Caspase-3 via an intrinsic apoptotic pathway. As a result, compound 3e could serve as an effective therapy for human colon cancer.


Subject(s)
Acrolein/analogs & derivatives , Antineoplastic Agents , Chalcone , Chalcones , Colonic Neoplasms , Humans , Structure-Activity Relationship , Antioxidants/pharmacology , Chalcones/pharmacology , Cell Line, Tumor , Caco-2 Cells , Chalcone/pharmacology , Chalcone/chemistry , Cell Proliferation , Antineoplastic Agents/chemistry , Colonic Neoplasms/drug therapy , Apoptosis , Molecular Structure
10.
J Microbiol ; 62(2): 75-89, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383881

ABSTRACT

The emergence of carbapenem-resistant Pseudomonas aeruginosa, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against P. aeruginosa. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against P. aeruginosa-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1ß, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against P. aeruginosa demonstrated both in vitro and in vivo.


Subject(s)
Chalcone , Chalcones , Adult , Animals , Humans , Zebrafish , Pseudomonas aeruginosa/metabolism , Chalcone/metabolism , Chalcone/pharmacology , Chalcones/metabolism , Chalcones/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria , Microbial Sensitivity Tests
11.
Chem Biodivers ; 21(4): e202301820, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372508

ABSTRACT

As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.


Subject(s)
Chalcone , Chalcones , Chalcone/pharmacology , Chalcones/pharmacology , Escherichia coli , Gallic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Membrane Transport Proteins , Microbial Sensitivity Tests , Bacterial Proteins/metabolism
12.
J Inorg Biochem ; 252: 112481, 2024 03.
Article in English | MEDLINE | ID: mdl-38215536

ABSTRACT

A bis(chalcone) molecule (H2L) was synthesized via Aldol's condensation from terephthalaldehyde and 2'-hydroxyacetophenone and it was used as bridging ligand for the preparation of five dinuclear copper(II) complexes of the composition [Cu(NN)(µ-L)Cu(NN)](NO3)2⋅nH2O (n = 0-2) (1-5), where NN stands for a bidentate N-donor ligand such as phen (1,10-phenanthroline, 1), bpy (2,2'-bipyridine, 2), mebpy (5,5'-dimethyl-2,2'-dipyridine, 3), bphen (bathophenanthroline, 4) and nphen (5-nitro-1,10-phenanthroline, 5). The compounds were characterized by different suitable techniques to confirm their purity, composition, and structure. Moreover, the products were evaluated for their in vitro cytotoxicity on a panel of human cancer cell lines: ovarian (A2780), ovarian resistant to cisplatin (A2780R), prostate (PC3), osteosarcoma (HOS), breast (MCF7) and lung (A549), and normal fibroblasts (MRC-5), showing significant cytotoxicity in most cases, with IC50 ≈ 0.35-7.8 µM. Additionally, the time-dependent cytotoxicity and cellular uptake of copper, together with flow cytometric studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production in A2780 cells, were also performed. The results of biological testing on A2780 cells pointed out a possible mechanism of action characterized by the G2/M cell cycle arrest and induction of apoptosis by triggering the intrinsic signalling pathway associated with the damage of mitochondrial structure and depletion of mitochondrial membrane potential. SYNOPSIS: Dinuclear Cu(II) complexes bearing a bridging bis(chalcone) ligand revealed high in vitro cytotoxicity, initiated A2780 cell arrest at G2/M phase and efficiently triggered intrinsic pathway of apoptosis.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Coordination Complexes , Ovarian Neoplasms , Humans , Female , Copper/chemistry , Chalcones/pharmacology , Cell Line, Tumor , Ligands , Chalcone/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis
13.
Arch Pharm (Weinheim) ; 357(5): e2300640, 2024 May.
Article in English | MEDLINE | ID: mdl-38227398

ABSTRACT

Breast cancer, an epithelial malignant tumor that occurs in the terminal ducts of the breast, is the most common female malignancy. Currently, approximately 70%-80% of breast cancer with early-stage, nonmetastatic disorder is curable, but the emergency of drug resistance often leads to treatment failure. Moreover, advanced breast cancer with distant organ metastases is incurable with the available therapeutics, creating an urgent demand to explore novel antibreast cancer agents. Chalcones, the precursors for flavonoids and isoflavonoids, exhibit promising activity against various breast cancer hallmarks, inclusive of proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics, representing useful scaffolds for the discovery of novel antibreast cancer chemotherapeutic candidates. In particular, chalcone hybrids could act on two or more different biological targets simultaneously with more efficacy, lower toxicity, and less susceptibility to resistance. Accordingly, there is a huge scope for application of chalcone hybrids to tackle the present difficulties in breast cancer therapy. This review outlines the chalcone hybrids with antibreast cancer potential developed from 2018. The structure-activity relationships as well as mechanisms of action are also discussed to shed light on the development of more effective and multitargeted chalcone candidates.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Chalcones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Structure-Activity Relationship , Chalcones/pharmacology , Chalcones/chemistry , Chalcone/pharmacology , Chalcone/chemistry , Animals , Cell Proliferation/drug effects , Molecular Structure
14.
Anticancer Agents Med Chem ; 24(7): 544-557, 2024.
Article in English | MEDLINE | ID: mdl-38204260

ABSTRACT

BACKGROUND: Extensive research has been conducted on aspirin, a widely recognized NSAID medication, regarding its potential as an anticancer agent. Studies have revealed its ability to trigger cell death in different types of cancer cells. METHODS: A set of aspirin-chalcone mimic conjugates 5a-k and 6a-d utilizing the freshly prepared acid chloride of aspirin moiety has been designed and synthesized. To evaluate the newly developed compounds, the NCI 60- cell line panel was employed to assess their anti-proliferative properties. Subsequently, cell cycle analysis was conducted along with an examination of the compounds' impact on the levels of p53, Bax, Bcl-2, active caspase- 3, and their inhibition mechanism of tubulin polymerization. RESULTS: Derivative 6c displayed the best anticancer activity among the tested series while 6d was the best against breast cancer MDA-MB-468, therefore both of them were selected for the 5-dose stage, however, targeting MDA-MB-468, PI-flow cytometry of compound 6d proved the triggered cell growth arrest at the G1/S phase avoiding the mitotic cycle in MDA-MB-468 cells. Similarly, the upregulation of oncogenic parameters such as caspase-3, p53, and Bax/Bcl-2, along with the inhibition of PARP-1 enzyme level, was observed with compound 6d. This compound also exhibited a significant ability to induce apoptosis and disrupt the intracellular microtubule network through a promising activity as a tubulin polymerization inhibitor with IC50 = 1.065 ± 0.024 ng/ml. Furthermore, to examine the manner in which compound 6d binds to the active pocket of the tubulin polymerization enzyme, a molecular docking study was conducted. CONCLUSION: The study indicated that compound 6d could be a powerful microtubule-destabilizing agent. Therefore, further research on 6d could be worthwhile.


Subject(s)
Antineoplastic Agents , Aspirin , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aspirin/pharmacology , Aspirin/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Apoptosis/drug effects , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Cell Cycle/drug effects
15.
Anticancer Agents Med Chem ; 24(6): 423-435, 2024.
Article in English | MEDLINE | ID: mdl-38204258

ABSTRACT

OBJECTIVE: Several novel fluorinated chalcone derivatives were synthesized, and their in vitro anticervical cancer activity and mechanism of action were investigated using the parent nucleus of licorice chalcone as the lead compound backbone and MDM2-p53 as the target. METHODS: In this study, 16 novel chalcone derivatives (3a-3r) were designed and synthesized by molecular docking technology based on the licorice chalcone parent nucleus as the lead compound scaffold and the cancer apoptosis regulatory target MDM2-p53. The structures of these compounds were confirmed by 1H-NMR, 13C-NMR, and HR-ESI-MS. The inhibitory effects of the compounds on the proliferation of three human cervical cancer cell lines (SiHa, HeLa, and C-33A) and two normal cell lines (H8 and HaCaT) were determined by MTT assay, and the initialstructure-activity relationship was analyzed. Transwell and flow cytometry were used to evaluate the effects of target compounds on the inhibition of cancer cell migration and invasion, apoptosis induction, and cell cycle arrest. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to detect the effects of candidate compounds on mRNA, p53, and Murine double minute 2 (MDM2) protein expression. The binding characteristics of the target compounds to the MDM2 protein target in the p53-MDM2 pathway were evaluated by molecular docking technology. RESULTS: The target compounds had considerable inhibitory activity on the proliferation of three cervical cancer cell lines. Among them, compound 3k (E)-3-(4-(dimethylamino)phenyl)-2-methyl-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one) showed the highest activity against HeLa cells (IC50=1.08 µmol/L), which was better than that of the lead compound Licochalcone B, and 3k showed lower toxicity to both normal cells. Compound 3k strongly inhibited the migration and invasion of HeLa cells and induced apoptosis and cell cycle arrest at the G0/G1 phase. Furthermore, compound 3k upregulated the expression of p53 and BAX and downregulated the expression of MDM2, MDMX, and BCL2. Moreover, molecular docking results showed that compound 3k could effectively bind to the MDM2 protein (binding energy: -9.0 kcal/mol). These results suggest that the compounds may activate the p53 signaling pathway by inhibiting MDM2 protein, which prevents cancer cell proliferation, migration, and invasion and induces apoptosis and cell cycle arrest in cancer cells. CONCLUSION: This study provides a new effective and low-toxicity drug candidate from licochalcone derivatives for treating cervical cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Uterine Cervical Neoplasms , Humans , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Molecular Structure , Apoptosis/drug effects , Female , Molecular Docking Simulation , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Cell Movement/drug effects , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis
16.
Mol Nutr Food Res ; 68(5): e2300538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38267744

ABSTRACT

SCOPE: Stimulation of glucose uptake in the skeletal muscle is crucial for the prevention of postprandial hyperglycemia. Insulin and certain polyphenols enhance glucose uptake through the translocation of glucose transporter 4 (GLUT4) in the skeletal muscle. The previous study reports that prenylated chalcones, 4-hydroxyderricin (4-HD), and xanthoangelol (XAG) promote glucose uptake and GLUT4 translocation in L6 myotubes, but their underlying molecular mechanism remains unclear. This study investigates the mechanism in L6 myotubes and confirms antihyperglycemia by 4-HD and XAG. METHODS AND RESULTS: In L6 myotubes, 4-HD and XAG promote glucose uptake and GLUT4 translocation through the activation of adenosine monophosphate-activated protein kinase (AMPK) and liver kinase B1 (LKB1) signaling pathway without activating phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and Janus kinases (JAKs)/signal transducers and activators of transcriptions (STATs) pathways. Moreover, Compound C, an AMPK-specific inhibitor, as well as siRNA targeting AMPK and LKB1 completely canceled 4-HD and XAG-increased glucose uptake. Consistently, oral administration of 4-HD and XAG to male ICR mice suppresses acute hyperglycemia in an oral glucose tolerance test. CONCLUSION: In conclusion, LKB1/AMPK pathway and subsequent GLUT4 translocation in skeletal muscle cells are involved in Ashitaba chalcone-suppressed acute hyperglycemia.


Subject(s)
Chalcone , Chalcone/analogs & derivatives , Chalcones , Hyperglycemia , Mice , Animals , Male , Chalcone/pharmacology , Chalcone/metabolism , Chalcones/pharmacology , AMP-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred ICR , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Muscle Fibers, Skeletal/metabolism , Hyperglycemia/prevention & control , Hyperglycemia/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism
17.
J Biomol Struct Dyn ; 42(3): 1381-1391, 2024.
Article in English | MEDLINE | ID: mdl-37071766

ABSTRACT

Four new hybrid compounds (H1-H4) bearing pyrazole (S1 and S2) and chalcone (P1 and P2) fragments were synthesized and characterized. Compounds were assayed for their ability to inhibit the proliferation of human lung (A549) and colon (Caco-2) cancer cell lines. Besides, toxicity against normal cells was determined using the human umbilical vein endothelial cells (HUVEC). In silico molecular docking, molecular dynamics (MD) simulation and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were carried out to predict the binding modes, protein stability, drug-likeness and toxicity of the reported compounds. The in vitro anticancer activity of the tested compounds revealed dose-dependent cell-specific cytotoxicity. In silico studies revealed that the compounds have a good binding affinity, possess appropriate drug-likeness properties and have low toxicity profiles.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Molecular Dynamics Simulation , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Chalcones/pharmacology , Cell Line, Tumor , Chalcone/pharmacology , Caco-2 Cells , Endothelial Cells , Antineoplastic Agents/chemistry , Drug Design , Cell Proliferation , Pyrazoles/pharmacology , Pyrazoles/chemistry
18.
Fitoterapia ; 172: 105739, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952763

ABSTRACT

In this study, 30 chalcone derivatives containing [1,2,4]-triazole-[4,3-a]-pyridine were designed and synthesized. The results of antibacterial activity showed that EC50 values of N26 against Xoo, Pcb was 36.41, 38.53 µg/mL, respectively, which were better than those of thiodiazole copper, whose EC50 values were 60.62, 106.75 µg/mL, respectively. The bacterial inhibitory activity of N26 against Xoo was verified by SEM. Antibacterial mechanism between N26 and Xoo was preliminarily explored, the experimental results showed that when the drug concentration was 100 mg/L, N26 had a good cell membrane permeability of Xoo, and it can inhibit the production of EPS content and extracellular enzyme content to disrupt the integrity of the Xoo biofilms achieving the effect of inhibiting Xoo. At 200 mg/L, N26 can protect and inhibit the lesions of post-harvested potatoes in vivo. The activities of N1-N30 against TMV were determined with half leaf dry spot method. The EC50 values of the curative and protective activity of N22 was 77.64 and 81.55 µg/mL, respectively, which were superior to those of NNM (294.27, 175.88 µg/mL, respectively). MST experiments demonstrated that N22 (Kd = 0.0076 ± 0.0007 µmol/L) had a stronger binding ability with TMV-CP, which was much higher than that of NNM (Kd = 0.7372 ± 0.2138 µmol/L). Molecular docking results showed that N22 had a significantly higher affinity with TMV-CP than NNM.


Subject(s)
Chalcone , Chalcones , Oryza , Xanthomonas , Chalcone/pharmacology , Chalcones/pharmacology , Molecular Structure , Molecular Docking Simulation , Triazoles/pharmacology , Microbial Sensitivity Tests , Pyridines/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Diseases , Oryza/microbiology , Structure-Activity Relationship , Drug Design
19.
J Biomol Struct Dyn ; 42(4): 1670-1691, 2024.
Article in English | MEDLINE | ID: mdl-37222682

ABSTRACT

Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-ß-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chalcone , Chalcones , Nitrophenols , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Norfloxacin/pharmacology , Norfloxacin/metabolism , Molecular Docking Simulation , Chalcone/pharmacology , Chalcones/pharmacology , Microbial Sensitivity Tests , Ethidium/metabolism , Bacterial Proteins/chemistry , Multidrug Resistance-Associated Proteins
20.
Mini Rev Med Chem ; 24(2): 176-195, 2024.
Article in English | MEDLINE | ID: mdl-37497710

ABSTRACT

Chalcones are flavonoid-related aromatic ketones and enones generated from plants. The chalcones have a wide range of biological activities, such as anti-tumor, calming, and antimicrobial activities. In the present review, we have focused on the recently published original research articles on chalcones as a unique antibacterial framework in medicinal chemistry. Chalcones are structurally diverse moieties and can be split into simple and hybrid chalcones, with both having core pharmacophore 1,3-diaryl-2-propen-1-one. Chalcones are isolated from natural sources and also synthesized by using various methods. Their structure-activity relationship, mechanisms, and list of patents are also summarized in this paper. This review article outlines the currently published antimicrobial chalcone hybrids and suggests that chalcone derivatives may be potential antimicrobial agents in the future.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Chalcone , Chalcones , Chalcone/pharmacology , Chalcones/pharmacology , Chemistry, Pharmaceutical , Anti-Infective Agents/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...