Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.179
Filter
1.
Sci Rep ; 14(1): 15050, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951205

ABSTRACT

Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-ß-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.


Subject(s)
Anti-Infective Agents , Biotransformation , Chalcones , Chlorine , Microbial Sensitivity Tests , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis , Chlorine/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Beauveria/metabolism , Fungi/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development
2.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38955844

ABSTRACT

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Subject(s)
Chalcones , Cobalt , Electrochemical Techniques , Electrodes , Limit of Detection , Metal-Organic Frameworks , Cobalt/chemistry , Metal-Organic Frameworks/chemistry , Chalcones/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Hesperidin/analogs & derivatives , Hesperidin/analysis , Hesperidin/chemistry , Fluorocarbon Polymers/chemistry , Oxidation-Reduction , Carbon/chemistry , Reproducibility of Results , Iron/chemistry
3.
Curr Microbiol ; 81(8): 258, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960917

ABSTRACT

Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 µg/mL and 125 µg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.


Subject(s)
Drug Synergism , Imidazoles , Microbial Sensitivity Tests , Probiotics , Probiotics/pharmacology , Imidazoles/pharmacology , Imidazoles/chemistry , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chalcones/pharmacology , Chalcones/chemistry , Gastrointestinal Tract/microbiology , Humans , Bacteria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
4.
Chem Pharm Bull (Tokyo) ; 72(7): 648-657, 2024.
Article in English | MEDLINE | ID: mdl-38972722

ABSTRACT

Butin and butein are significant bioactive flavanones derived from plants, existing as tautomers of each other. However, their physicochemical attributes, such as their spectral profiles under varying experimental conditions in aqueous solutions and established chromatographic methods for distinguishing between them, remain undetermined. In this study, we determined the basic properties of butin and butein using conventional spectroscopic, reversed-phase, and chiral HPLC analyses. The spectra of the synthesized butin and butein were analyzed using a UV-Vis spectrophotometer in several solvents with different polarities as well as in aqueous solutions at various pH values. Furthermore, the behavior of the measured spectra was reproduced by calculations to reveal the effects of the solvent and pH on the spectra of butin and butein in organic and aqueous solutions. Subsequently, we assessed the structural stability of butin and butein using reversed-phase HPLC, which revealed that butein is unstable compared with butin in a general culture medium. The synthesized butin was effectively separated into R- and S-isomers with positive and negative Cotton effects, respectively, via HPLC using a chiral column. These findings will aid in uncovering the individual properties of both butin and butein that may have been concealed by their tautomerism and enable the synthesis of S-butin, which is typically challenging and time-consuming to isolate.


Subject(s)
Chalcones , Chromatography, High Pressure Liquid , Chalcones/chemistry , Chalcones/chemical synthesis , Spectrophotometry, Ultraviolet , Molecular Structure , Hydrogen-Ion Concentration , Flavanones/chemistry , Flavanones/chemical synthesis , Flavanones/analysis , Stereoisomerism , Solvents/chemistry
5.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000394

ABSTRACT

A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone ß-carbon with the furanyl moiety and structural modification of the α,ß-unsaturated carbonyl system. The potential antitumor activity of these hybrids was evaluated in vivo on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, demonstrating cytotoxic activity with IC50 values ranging from 28.8 to 124.6 µM. The incorporation of furan and pyrazoline groups significantly enhanced antiproliferative properties compared to their analogues and precursors (VII-X), which were inactive against both neoplastic cell lines. Compounds 4, 5, and 6 exhibited enhanced cytotoxicity against both cell lines, whereas compound 8 showed higher cytotoxic activity against HT-29 cells. Molecular docking studies revealed superior free-energy values (ΔGbin) for carcinogenic pathway-involved kinase proteins, with our in silico data suggesting that these derivatives could be promising chemotherapeutic agents targeting kinase pathways. Among all the synthesized PIBHQ compounds, derivatives 7 and 8 exhibited the best drug-likeness properties, with values of 0.53 and 0.83, respectively. ADME results collectively suggest that most of these compounds hold promise as potential candidates for preclinical assays.


Subject(s)
Antineoplastic Agents , Hydroquinones , Molecular Docking Simulation , Pyrazoles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Hydroquinones/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemical synthesis , MCF-7 Cells , Cell Proliferation/drug effects , Chalcone/chemistry , Chalcone/pharmacology , HT29 Cells , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis , Structure-Activity Relationship , Cell Line, Tumor , Animals
6.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000255

ABSTRACT

4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,ß-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.


Subject(s)
Chalcones , Deep Eutectic Solvents , Oxidation-Reduction , Rhodotorula , Rhodotorula/metabolism , Chalcones/metabolism , Chalcones/chemistry , Deep Eutectic Solvents/metabolism , Deep Eutectic Solvents/chemistry , Yarrowia/metabolism , Yeasts/metabolism , Temperature , Biocatalysis
7.
J Agric Food Chem ; 72(28): 15715-15724, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38961631

ABSTRACT

Neohesperidin dihydrochalcone (NHDC) is a citrus-originated, seminatural sweetener. There is no investigation concerning the effect of NHDC on ulcerative colitis. The purpose of this study was to determine the therapeutic and protective effects of NHDC in Wistar Albino rats. NHDC was given for 7 days after or before colitis induction. The results showed that NHDC significantly reduced the interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) levels. Catalase levels did not show a significant difference between the groups. NHDC provided a remarkable decrease in the expression levels of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB). Total antioxidant status (TAS) levels were significantly elevated in NHDC treatment groups, while total oxidant status (TOS) and oxidative stress index (OSI) levels were significantly decreased. NHDC provided remarkable improvement in histological symptoms such as epithelial erosion, edema, mucosal necrosis, inflammatory cell infiltration, and hemorrhage. Also, caspase-3 expression levels were statistically decreased in NHDC treatment groups. The results indicated that NHDC might be a protection or alternative treatment for ulcerative colitis.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Apoptosis , Chalcones , Hesperidin , NF-kappa B , Rats, Wistar , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Rats , Antioxidants/pharmacology , Male , Apoptosis/drug effects , Chalcones/pharmacology , Chalcones/administration & dosage , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Hesperidin/administration & dosage , NF-kappa B/genetics , NF-kappa B/metabolism , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Oxidative Stress/drug effects , Interleukin-6/genetics , Interleukin-6/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Malondialdehyde/metabolism , Peroxidase/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics
8.
Drug Des Devel Ther ; 18: 2905-2917, 2024.
Article in English | MEDLINE | ID: mdl-39011542

ABSTRACT

Background: Our previous studies in vitro and in vivo have shown anti-severe acute respiratory syndrome coronavirus 2 activity of fingerroot extract (Boesenbergia rotunda) and its phytochemical panduratin A. Aim of Study: Therefore, the objective of this study was to determine the pharmacokinetic profiles of panduratin A, as a pure compound and in fingerroot extract, in rats. Materials and Methods: Male rats were randomly divided into four groups. Rats underwent intravenous administration of 4.5 mg/kg panduratin A, a single oral administration of 45 mg/kg panduratin A, or a multiple oral administration of 45 mg/kg panduratin A-consisted fingerroot extract for 7 consecutive days. The concentrations of panduratin A in plasma, tissues, and excreta were measured by using LCMS with a validated method. Results: The rats showed no change in health status after receiving all test preparations. The absolute oral bioavailability of panduratin A administered as pure panduratin A and fingerroot extract were approximately 9% and 6%, respectively. The peak concentrations for the single oral doses of 45 mg/kg panduratin A and fingerroot extract, were 4833 ± 659 and 3269 ± 819 µg/L, respectively. Panduratin A was mostly distributed in gastrointestinal organs, with the highest tissue-to-plasma ratio in the stomach. Approximately 20-30% of unchanged panduratin A from the administered dose was detected in feces while a negligible amount was found in urine. The major metabolites of administered panduratin A were identified in feces as oxidation and dioxidation products. Conclusion: Panduratin A from fingerroot extract showed low oral bioavailability, good tissue distribution, and partially biotransformed before excretion via feces. These findings will assist in developing fingerroot extract as a phytopharmaceutical product for COVID-19 treatment.


Subject(s)
Biological Availability , Plant Extracts , Rats, Sprague-Dawley , Zingiberaceae , Animals , Male , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Administration, Oral , Rats , Zingiberaceae/chemistry , Tissue Distribution , Chalcones
9.
Luminescence ; 39(7): e4823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965884

ABSTRACT

A highly selective bis thiophene-based chalcone as a chemosensor for detecting Fe3+ metal ions in DMF: H2O (9:1). This sensor was selective toward ferric ions over other metal ions with a detection limit in micromolar range.


Subject(s)
Spectrometry, Fluorescence , Thiophenes , Thiophenes/chemistry , Iron/analysis , Iron/chemistry , Molecular Structure , Ferric Compounds/chemistry , Ferric Compounds/analysis , Chalcones/chemistry , Chalcones/analysis , Chalcone/chemistry , Fluorescent Dyes/chemistry
10.
Drug Discov Ther ; 18(3): 199-206, 2024.
Article in English | MEDLINE | ID: mdl-38987208

ABSTRACT

Senolytics are drugs that specifically target senescent cells. Flavonoids such as quercetin and fisetin possess selective senolytic activities. This study aims to investigate if chalcones exhibit anti-senescence activities. Anti-senescence effect of 11 chalcone derivatives on the replicative senescence human aortic endothelial cells (HAEC) and human fetal lung fibroblasts (IMR90) was evaluated. Compound 2 (4-methoxychalcone) and compound 4 (4-bromo-4'-methoxychalcone) demonstrated increased cytotoxicity in senescent HAEC compared to young HAEC, with significant differences on IC50 values. Their anti-senescence effects on HAEC exceeded fisetin. Higher selectivity of compound 4 toward HAEC over IMR90 could be attributed to 4-methoxy (4-OMe) substitution at ring A (R1). Chalcone derivatives have potentials as senolytics in mitigating replicative senescence, warranting further research and development on chalcones as anti-senescent agent.


Subject(s)
Cellular Senescence , Chalcones , Endothelial Cells , Fibroblasts , Humans , Cellular Senescence/drug effects , Endothelial Cells/drug effects , Chalcones/pharmacology , Fibroblasts/drug effects , Cells, Cultured , Senotherapeutics/pharmacology , Inhibitory Concentration 50 , Aorta/drug effects , Aorta/cytology , Structure-Activity Relationship , Cell Line
11.
Chem Biol Interact ; 398: 111115, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38908811

ABSTRACT

In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5ß1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.


Subject(s)
Cell Adhesion , Cell Movement , Chalcone , Molecular Docking Simulation , Sulfonamides , Cell Movement/drug effects , Cell Adhesion/drug effects , Sulfonamides/pharmacology , Sulfonamides/chemistry , Mice , Animals , Cell Line, Tumor , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/analogs & derivatives , Matrix Metalloproteinase 2/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Microscopy, Atomic Force , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chalcones/pharmacology , Chalcones/chemistry , Humans
12.
Chem Biol Interact ; 398: 111082, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38825055

ABSTRACT

The study investigates the effect of the presence of a chlorine atom in the 2'-hydroxychalcone molecule on its interaction with model lipid membranes, in order to discern its potential pharmacological activity. Five chlorine derivatives of 2'-hydroxychalcone were synthesized and evaluated against liposomes composed of POPC and enriched with cationic (DOTAP) or anionic (POPG) lipids. The physicochemical properties of the compounds were initially simulated using SwissAdame software, revealing high lipophilicity (ilogP values: 2.79-2.90). The dynamic light scattering analysis of liposomes showed that chloro chalcones induce minor changes in the diameter of liposomes of different surface charges. Fluorescence quenching assays with a TMA-DPH probe demonstrated the strong ability of the compounds to interact with the lipid bilayer, with varying quenching capacities based on chlorine atom position. FTIR studies indicated alterations in carbonyl, phosphate, and choline groups, suggesting a transition area localization rather than deep penetration into the hydrocarbon chains. Additionally, dipole potential reduction was observed in POPC and POPC-POPG membranes, particularly pronounced by derivatives with a chlorine atom in the B ring. Antibacterial and antibiofilm assays revealed enhanced activity of derivatives with a chlorine atom compared to 2'-hydroxychalcone, especially against Gram-positive bacteria. The MIC and MBIC50 values showed increased efficacy in the presence of chlorine with 3'-5'-dichloro-2'-hydroxychalcone demonstrating optimal antimicrobial and antibiofilm activity. Furthermore, antiproliferative assays against breast cancer cell lines indicated higher activity of B-ring chlorine derivatives, particularly against MDA-MB-231 cells. In general, the presence of a chlorine atom in 2'-hydroxychalcone improves its pharmacological potential, with derivatives showing improved antimicrobial, antibiofilm, and antiproliferative activities, especially against aggressive breast cancer cell lines. These findings underscore the importance of molecular structure in modulating biological activity and highlight chalcones with a chlorine as promising candidates for further drug development studies.


Subject(s)
Antineoplastic Agents , Chalcones , Chlorine , Liposomes , Humans , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Liposomes/chemistry , Chlorine/chemistry , Cell Line, Tumor , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Cell Membrane/drug effects , Phosphatidylcholines/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
13.
Top Curr Chem (Cham) ; 382(3): 22, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937401

ABSTRACT

Chalcone is a simple naturally occurring α,ß-unsaturated ketone with biological importance, which can also be easily synthesized in laboratories by reaction between two aromatic scaffolds. In plants, chalcones occur as polyphenolic compounds of different frameworks which are bioactive molecules that have been in traditional medicinal practice for many years. Chalcone-based lead molecules have been developed, possessing varied potentials such as antimicrobial, antiviral, anti-inflammatory, anticancer, anti-oxidant, antidiabetic, antihyperurecemic, and anti-ulcer effects. Chalcones contribute considerable fragments to give important heterocyclic molecules with therapeutic utilities targeting various diseases. These characteristic features have made chalcone a topic of interest among researchers and have attracted investigations into this widely applicable structure. This review highlights the extensive exploration carried out on the synthesis, biotransformations, chemical reactions, hybridization, and pharmacological potentials of chalcones, and aims to provide an extensive, thorough, and critical review of their importance, with emphasis on their properties, chemistry, and biomedical applications to boost future investigations into this potential scaffold in medicinal chemistry.


Subject(s)
Chalcone , Chemistry, Pharmaceutical , Chalcone/chemistry , Chalcone/pharmacology , Humans , Chalcones/chemistry , Chalcones/pharmacology , Molecular Structure , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
14.
Phytochemistry ; 225: 114197, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38945281

ABSTRACT

Five undescribed monoterpene-chalcone conjugates (1-5), one undescribed hypothetical precursor of diarylheptanoid (6), two undescribed diarylheptanoids (7-8), and fourteen known compounds (9-22) were isolated from the seeds of Alpinia katsumadai. Their structures were elucidated through the interpretation of HRESIMS, NMR, ECD, and X-ray diffraction data. MTT assays on human cancer cell lines (HepG2, A549, SGC7901, and SW480) revealed that compounds 3-8, 11, and 13 exhibited broad-spectrum antiproliferative activities with IC50 values ranging from 3.59 to 21.78 µM. B cell lymphoma 2 was predicted as the target of sumadain C (11) by network pharmacology and verified by homogeneous time-resolved fluorescence assay and molecular docking.


Subject(s)
Alpinia , Antineoplastic Agents, Phytogenic , Cell Proliferation , Diarylheptanoids , Drug Screening Assays, Antitumor , Monoterpenes , Seeds , Alpinia/chemistry , Humans , Diarylheptanoids/chemistry , Diarylheptanoids/pharmacology , Diarylheptanoids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Seeds/chemistry , Molecular Structure , Cell Proliferation/drug effects , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Structure-Activity Relationship , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/isolation & purification , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/isolation & purification , Cell Line, Tumor , Dose-Response Relationship, Drug , Molecular Docking Simulation
15.
Bioorg Med Chem ; 109: 117778, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38870714

ABSTRACT

Indole based glycosides belong to the class of pharmacologically active molecules and found in diverse natural compounds. Herein, we report the synthesis of 1,2,3-triazole bridged chirally enriched diverse indole-chalcones based glycohybrids. Three series of glycohybrids were designed and efficiently synthesized using d-glucose, d-galactose and d-mannose derived 1-azido glycosides. The reactions sequence involved were, the synthesis of indole derived chalcones which were formed via Claisen-Schmidt condensation reaction and subsequently N-propargylation which leads to the production of N-propargylated indole-chalcones. The N-propargylated indole-chalcones get transformed into 1,2,3-triazole bridged indole-chalcone based glycohybrids by reacting with 1-azido sugar glycosides under click-chemistry reaction conditions. Further, the biological activity of synthesized glycohybrids (n = 27) was assessed in-vitro against MDA-MB231, MCF-7, MDA-MB453 cancer, and MCF-10A normal cell lines. The selected compounds showed potent anti-oncogenic properties against MCF-7 and MDA-MB231 breast cancer cell line with IC50 values of 1.05 µM and 11.40 µM respectively, with very good selectivity index (SI > 161). The active compounds show better binding affinity as compared to co-crystallized inhibitor 1-(tert-butyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) with HCK (PTKs) proteins in molecular docking studies.


Subject(s)
Antineoplastic Agents , Chalcones , Drug Screening Assays, Antitumor , Indoles , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cell Line, Tumor , Molecular Structure , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosides/pharmacology , Molecular Docking Simulation , Dose-Response Relationship, Drug
16.
Mol Pharm ; 21(7): 3330-3342, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38875185

ABSTRACT

The aberrant assembly of amyloid-ß (Aß) is implicated in Alzheimer's disease (AD). Recent clinical outcomes of Aß-targeted immunotherapy reinforce the notion that clearing Aß burden is a potential therapeutic approach for AD. Herein, to develop drug candidates for chemically driven clearance of Aß aggregates, we synthesized 51 novel polyfunctionalized furo[2,3-b:4,5-b']dipyridine-chalcone hybrid compounds. After conducting two types of cell-free anti-Aß functional assays, Aß aggregation prevention and Aß aggregate clearance, we selected YIAD-0336, (E)-8-((1H-pyrrol-2-yl)methylene)-10-(4-chlorophenyl)-2,4-dimethyl-7,8-dihydropyrido[3',2':4,5]furo[3,2-b]quinolin-9(6H)-one, for further in vivo investigations. As YIAD-0336 exhibited a low blood-brain barrier penetration profile, it was injected along with aggregated Aß directly into the intracerebroventricular region of ICR mice and ameliorated spatial memory in Y-maze tests. Next, YIAD-0336 was orally administered to 5XFAD transgenic mice with intravenous injections of mannitol, and YIAD-0336 significantly removed Aß plaques from the brains of 5XFAD mice. Collectively, YIAD-0336 dissociated toxic aggregates in the mouse brain and hence alleviated cognitive deterioration. Our findings indicate that chemically driven clearance of Aß aggregates is a promising therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mice , Amyloid beta-Peptides/metabolism , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/analogs & derivatives , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/administration & dosage , Male , Brain/drug effects , Brain/metabolism , Humans , Memory/drug effects , Protein Aggregates/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Maze Learning/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/administration & dosage
17.
Phytomedicine ; 130: 155789, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38824826

ABSTRACT

BACKGROUND: Bacteria within biofilms are thousand times more resistant to antibiotics. Neuraminidase is a crucial enzyme for bacterial adhesion and biofilm formation, it hydrolyzes glycosidic residue of glycoproteins, glycolipids, and oligosaccharides. Coreopsis lanceolata L. flowers may have a significant potential of bacterial neuraminidase (BNA) inhibition because of high natural abundance of chalcones. PURPOSE: The investigation of bacterial biofilm inhibitors has emerged as a novel therapeutic strategy against antibiotic resistance. Therefore, individual chalcones were isolated from C. lanceolata and their capacity to inhibit BNA and formation of Escherichia coli biofilm were evaluated. METHODS: Different chromatographic techniques were used to isolate the compounds (1-12). Enzyme inhibition and detailed kinetic behavior of compounds was determined by estimation of kinetic parameters (Michaelis-Menten constants (Km), maximum velocity (Vmax), dissociation constant for binding with the free enzyme (KI) and enzyme-substate complex (KIS)). Binding affinities (KSV) and binding modes of inhibitors were elucidated by fluorescence quenching and molecular docking, respectively. The natural abundance of chalcones was established through UPLC-Q-TOF/MS. The most potent inhibitor (1) was tested for its ability to inhibit the formation of E. coli biofilm, which was examined by crystal violet assay, scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). RESULTS: A series of eight chalcones (1-8) and four chalcone glucosides (9-12), inhibited BNA in a dose-dependent manner with IC50 of 8.3 ∼ 77.0 µM. The most potent chalcones were butein (1, IC50 = 8.3 µM) and its glucoside 9 (IC50 = 13.8 µM). The aglycones (1-8) showed non-competitive inhibition, while chalcone glucosides (9-12) displayed a mixed type I (KI < KIS). Inhibitory behaviors were doubly confirmed by KSV and matched with tendency of IC50. The functional group responsible for BNA inhibition were disclosed as 4'-hydroxyl group on B-ring by structure activity relationship (SAR) and molecular docking experiments. Butein (1) suppressed E. coli biofilm formation by > 50 % at 100 µM according to crystal violet assay, which was confirmed by SEM and CLSM imaging. CONCLUSION: The results showed that chalcones (1-8) and chalcone glucosides (9-12), metabolites isolated from the flowers of C. lanceolata, had BNA inhibitory and antibiofilm formation effect on E. coli.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chalcones , Coreopsis , Escherichia coli , Flowers , Neuraminidase , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Chalcones/pharmacology , Chalcones/chemistry , Coreopsis/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Flowers/chemistry , Kinetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Neuraminidase/antagonists & inhibitors , Plant Extracts/pharmacology , Plant Extracts/chemistry
18.
Int Immunopharmacol ; 137: 112418, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901244

ABSTRACT

Acute lung injury (ALI) is a life-threatening disease characterized by severe lung inflammation and intestinal microbiota disorder. The GPR18 receptor has been demonstrated to be a potential therapeutic target against ALI. Extracting Naringin dihydrochalcone (NDC) from the life-sustaining orange peel is known for its diverse anti-inflammatory properties, yet the specific action target remains uncertain. In the present study, we identified NDC as a potential agonist of the GPR18 receptor using virtual screening and investigated the pharmacological effects of NDC on sepsis-induced acute lung injury in rats and explored underlying mechanisms. In in vivo experiments, CLP-induced ALI model was established by cecum puncture and treated with NDC gavage one hour prior to drug administration, lung histopathology and inflammatory cytokines were evaluated, and feces were subjected to 16s rRNA sequencing and untargeted metabolomics analysis. In in vitro experiments, the anti-inflammatory properties were exerted by evaluating NDC targeting the GPR18 receptor to inhibit lipopolysaccharide (LPS)-induced secretion of TNF-α, IL-6, IL-1ß and activation of inflammatory signaling pathways in MH-S cells. Our findings showed that NDC significantly ameliorated lung damage and pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1ß) in both cells and lung tissues via inhibiting the activation of STAT3, NF-κB, and NLRP3 inflammatory signaling pathways through GRP18 receptor activation. In addition, NDC can also partly reverse the imbalance of gut microbiota composition caused by CLP via increasing the proportion of Firmicutes/Bacteroidetes and Lactobacillus and decreasing the relative abundance of Proteobacteria. Meanwhile, the fecal metabolites in the NDC treatment group also significantly were changed, including decreased secretion of Phenylalanin, Glycine, and bile secretion, and increased secretion of Lysine. In conclusion, these findings suggest that NDC can alleviate sepsis-induced ALI via improving gut microbial homeostasis and metabolism and mitigate inflammation via activating GPR18 receptor. In conclusion, the results indicate that NDC, derived from the typical orange peel of food, could significantly contribute to development by enhancing intestinal microbial balance and metabolic processes, and reducing inflammation by activating the GPR18 receptor, thus mitigating sepsis-induced ALI and expanding the range of functional foods.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents , Chalcones , Cytokines , Gastrointestinal Microbiome , Receptors, G-Protein-Coupled , Sepsis , Animals , Receptors, G-Protein-Coupled/metabolism , Gastrointestinal Microbiome/drug effects , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Acute Lung Injury/etiology , Acute Lung Injury/microbiology , Acute Lung Injury/metabolism , Male , Sepsis/drug therapy , Sepsis/complications , Cytokines/metabolism , Rats , Chalcones/pharmacology , Chalcones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Rats, Sprague-Dawley , Homeostasis/drug effects , Cell Line , Lung/pathology , Lung/drug effects , Disease Models, Animal , Lipopolysaccharides , Humans , Flavanones
19.
ACS Appl Bio Mater ; 7(7): 4602-4610, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38869946

ABSTRACT

Biocompatible, industrially scalable, and opto/electrochemically active biomaterials are promising for biosensor platform design and application. Herein, cyclic oligosaccharide, ß-cyclodextrin (BCD), is conjugated with Butein, a chalcone-type polyphenol, via dehydration reaction of the hydroxyl groups of BCD and the benzoyl ring of Butein. Functional group changes in the conjugated BCD-Butein were comprehensively studied using UV-visible absorbance, Fourier transform-infrared, and X-ray photoelectron spectroscopic techniques. The electrochemical characteristics of BCD-Butein were explored using cyclic voltammetry, showing the reversible redox behavior (2e-/2H+) attributed to the catecholic OH group of Butein. The BCD-Butein-modified electrode exhibits a surface-confined redox process (R2 = 0.99, Ipa and Ipc) at the interface, suitable for external mediatorless sensor studies. An enzymatic biomolecular sensor has been constructed using BCD-Butein-modified glassy carbon and a screen-printed electrode targeting sialic acid as the model clinical biomarker. With the enzyme sialic acid aldolase, BCD-Butein-modified substrate exhibited a selective conversion of sialic acid to N-acetyl-d-mannosamine and pyruvate, with a wide linear detection range (1-100 nM), the lowest detection limit of 0.2 nM, and a quantification limit of 0.69 nM, convenient for clinical threshold diagnosis.


Subject(s)
Biocompatible Materials , Electrochemical Techniques , Materials Testing , N-Acetylneuraminic Acid , Oxidation-Reduction , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Biocompatible Materials/chemistry , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/analysis , Particle Size , Biosensing Techniques , Chalcones/chemistry , Molecular Structure
20.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38865941

ABSTRACT

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Subject(s)
Biofouling , Larva , Mytilus , Animals , Biofouling/prevention & control , Larva/drug effects , Mytilus/drug effects , Chalcones/pharmacology , Chalcones/chemistry , Structure-Activity Relationship , Chalcone/pharmacology , Chalcone/analogs & derivatives , Chalcone/chemistry , Disinfectants/toxicity , Disinfectants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...