Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 76(6): 1813-21, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20097811

ABSTRACT

In addition to the benthic and pelagic habitats, the epiphytic compartment of submerged macrophytes in shallow freshwater lakes offers a niche to bacterial ammonia-oxidizing communities. However, the diversity, numbers, and activity of epiphytic ammonia-oxidizing bacteria have long been overlooked. In the present study, we analyzed quantitatively the epiphytic communities of three shallow lakes by a potential nitrification assay and by quantitative PCR of 16S rRNA genes. On the basis of the m(2) of the lake surface, the gene copy numbers of epiphytic ammonia oxidizers were not significantly different from those in the benthic and pelagic compartments. The potential ammonia-oxidizing activities measured in the epiphytic compartment were also not significantly different from the activities determined in the benthic compartment. No potential ammonia-oxidizing activities were observed in the pelagic compartment. No activity was detected in the epiphyton of Chara aspera, the dominant submerged macrophyte in Lake Nuldernauw in The Netherlands. The presence of ammonia-oxidizing bacterial cells in the epiphyton of Potamogeton pectinatus was also demonstrated by fluorescent in situ hybridization microscopy images. By comparing the community composition as assessed by the 16S rRNA gene PCR-denaturing gradient gel electrophoresis approach, it was concluded that the epiphytic ammonia-oxidizing communities consisted of cells that were also present in the benthic and pelagic compartments. Of the environmental parameters examined, only the water retention time, the Kjeldahl nitrogen content, and the total phosphorus content correlated with potential ammonia-oxidizing activities. None of these parameters correlated with the numbers of gene copies related to ammonia-oxidizing betaproteobacteria.


Subject(s)
Ammonia/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Chara/microbiology , Polymerase Chain Reaction/methods , Potamogetonaceae/microbiology , Bacteria/classification , Cluster Analysis , Colony Count, Microbial/methods , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel , Fresh Water , Molecular Sequence Data , Netherlands , Nucleic Acid Denaturation , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
BMC Microbiol ; 8: 58, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18402668

ABSTRACT

BACKGROUND: Plants and their heterotrophic bacterial biofilm communities possibly strongly interact, especially in aquatic systems. We aimed to ascertain whether different macrophytes or their habitats determine bacterial community composition. We compared the composition of epiphytic bacteria on two common aquatic macrophytes, the macroalga Chara aspera Willd. and the angiosperm Myriophyllum spicatum L., in two habitats, freshwater (Lake Constance) and brackish water (Schaproder Bodden), using fluorescence in situ hybridization. The bacterial community composition was analysed based on habitat, plant species, and plant part. RESULTS: The bacterial abundance was higher on plants from brackish water [5.3 x 10(7) cells (g dry mass)-1] than on plants from freshwater [1.3 x 10(7) cells (g dry mass)-1], with older shoots having a higher abundance. The organic content of freshwater plants was lower than that of brackish water plants (35 vs. 58%), and lower in C. aspera than in M. spicatum (41 vs. 52%). The content of nutrients, chlorophyll, total phenolic compounds, and anthocyanin differed in the plants and habitats. Especially the content of total phenolic compounds and anthocyanin was higher in M. spicatum, and in general higher in the freshwater than in the brackish water habitat. Members of the Cytophaga-Flavobacteria-Bacteroidetes group were abundant in all samples (5-35% of the total cell counts) and were especially dominant in M. spicatum samples. Alphaproteobacteria were the second major group (3-17% of the total cell counts). Betaproteobacteria, gammaproteobacteria, and actinomycetes were present in all samples (5 or 10% of the total cell counts). Planctomycetes were almost absent on M. spicatum in freshwater, but present on C. aspera in freshwater and on both plants in brackish water. CONCLUSION: Bacterial biofilm communities on the surface of aquatic plants might be influenced by the host plant and environmental factors. Distinct plant species, plant part and habitat specific differences in total cell counts and two bacterial groups (CFB, planctomycetes) support the combined impact of substrate (plant) and habitat on epiphytic bacterial community composition. The presence of polyphenols might explain the distinct bacterial community on freshwater M. spicatum compared to that of M. spicatum in brackish water and of C. aspera in both habitats.


Subject(s)
Bacteria/isolation & purification , Chara/microbiology , Fresh Water/microbiology , Magnoliopsida/microbiology , Water Microbiology , Bacteria/growth & development , Bacterial Physiological Phenomena , Biofilms/growth & development , Biomass , Chara/chemistry , Colony Count, Microbial , In Situ Hybridization, Fluorescence , Magnoliopsida/chemistry
3.
Appl Environ Microbiol ; 70(9): 5391-7, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15345425

ABSTRACT

The distribution of nitrogenase activity in the rice-soil system and the possible contribution of epiphytic cyanobacteria on rice plants and other macrophytes to this activity were studied in two locations in the rice fields of Valencia, Spain, in two consecutive crop seasons. The largest proportion of photodependent N(2) fixation was associated with the macrophyte Chara vulgaris in both years and at both locations. The nitrogen fixation rate associated with Chara always represented more than 45% of the global nitrogenase activity measured in the rice field. The estimated average N(2) fixation rate associated with Chara was 27.53 kg of N ha(-1) crop(-1). The mean estimated N(2) fixation rates for the other parts of the system for all sampling periods were as follows: soil, 4.07 kg of N ha(-1) crop(-1); submerged parts of rice plants, 3.93 kg of N ha(-1) crop(-1); and roots, 0.28 kg of N ha(-1) crop(-1). Micrographic studies revealed the presence of epiphytic cyanobacteria on the surface of Chara. Three-dimensional reconstructions by confocal scanning laser microscopy revealed no cyanobacterial cells inside the Chara structures. Quantification of epiphytic cyanobacteria by image analysis revealed that cyanobacteria were more abundant in nodes than in internodes (on average, cyanobacteria covered 8.4% +/- 4.4% and 6.2% +/- 5.0% of the surface area in the nodes and internodes, respectively). Epiphytic cyanobacteria were also quantified by using a fluorometer. This made it possible to discriminate which algal groups were the source of chlorophyll a. Chlorophyll a measurements confirmed that cyanobacteria were more abundant in nodes than in internodes (on average, the chlorophyll a concentrations were 17.2 +/- 28.0 and 4.0 +/- 3.8 microg mg [dry weight] of Chara(-1) in the nodes and internodes, respectively). These results indicate that this macrophyte, which is usually considered a weed in the context of rice cultivation, may help maintain soil N fertility in the rice field ecosystem.


Subject(s)
Chara/microbiology , Cyanobacteria/growth & development , Nitrogen Fixation , Oryza/microbiology , Chara/ultrastructure , Microscopy, Electron, Scanning , Oryza/growth & development , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...