Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.061
Filter
1.
Environ Monit Assess ; 196(6): 552, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755295

ABSTRACT

The TiO2 nanocomposite efficiency was determined under optimized conditions with activated carbon to remove ammoniacal nitrogen (NH3-N) from the leachate sample. In this work, the facile impregnation and pyrolysis synthesis method was employed to prepare the nanocomposite, and their formation was confirmed using the FESEM, FTIR, XRD, and Raman studies. In contrast, Raman phonon mode intensity ratio ID/IG increases from 2.094 to 2.311, indicating the increase of electronic conductivity and defects with the loading of TiO2 nanoparticles. The experimental optimal conditions for achieving maximum NH3-N removal of 75.8% were found to be a pH of 7, an adsorbent mass of 1.75 mg/L, and a temperature of 30 °C, with a corresponding time of 160 min. The experimental data were effectively fitted with several isotherms (Freundlich, Hill, Khan, Redlich-Peterson, Toth, and Koble-Corrigan). The notably elevated R2 value of 0.99 and a lower ARE % of 14.61 strongly support the assertion that the pseudo-second-order model compromises a superior depiction of the NH3-N reduction process. Furthermore, an effective central composite design (CCD) of response surface methodology (RSM) was employed, and the lower RMSE value, precisely 0.45, demonstrated minimal disparity between the experimentally determined NH3-N removal percentages and those predicted by the model. The subsequent utilization of the desirability function allowed us to attain actual variable experimental conditions.


Subject(s)
Charcoal , Nitrogen , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Ammonia/chemistry , Adsorption , Models, Chemical , Waste Disposal, Fluid/methods , Nanocomposites/chemistry
2.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731553

ABSTRACT

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Norfloxacin , Water Pollutants, Chemical , Norfloxacin/chemistry , Charcoal/chemistry , Adsorption , Drugs, Chinese Herbal/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Kinetics , Thermodynamics , Water Purification/methods , Hydrogen-Ion Concentration
3.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731581

ABSTRACT

In this study, TiO2/P, K-containing grapefruit peel biochar (TiO2/P, K-PC) composites were synthesized in situ biomimetically using grapefruit peel as the bio-template and carbon source and tetrabutyl titanate as the titanium source. This was achieved using the two-step rotary impregnation-calcination method. Adjusting the calcination temperature of the sample in an air atmosphere could regulate the mass ratio of TiO2 to carbon. The prepared samples were subjected to an analysis of their compositions, structures, morphologies, and properties. It demonstrated that the prepared samples were complexes of anatase TiO2 and P, K-containing carbon, with the presence of graphitic carbon. They possessed a unique morphological structure with abundant pores and a large surface area. The grapefruit peel powder played a crucial role in the induction and assembly of TiO2/P, K-PC composites. The sample PCT-400-550 had the best photocatalytic activity, with the degradation rate of RhB, MO, and MB dye solutions reaching more than 99% within 30 min, with satisfactory cyclic stability. The outstanding photocatalytic activity can be credited to its unique morphology and the efficient collaboration between TiO2 and P, K-containing biochar.


Subject(s)
Charcoal , Citrus paradisi , Titanium , Titanium/chemistry , Citrus paradisi/chemistry , Charcoal/chemistry , Catalysis , Biomass
4.
Sci Rep ; 14(1): 10391, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710729

ABSTRACT

Colombia has great potential to produce clean energy through the use of residual biomass from the agricultural sector, such as residues obtained from the life cycle of rice production. This document presents a mixed approach methodology study to examine the combustion of rice husks as a possible energy alternative in the Tolima department of Colombia. First, the physicochemical characteristics of the rice husk were analyzed to characterize the raw material. Next, System Advisor Model (SAM) software was used to model a bioenergy plant to obtain biochar, bio-oil, and biogas from the combustion of rice husks and generate performance matrices, such as thermal efficiency, heat rate, and capacity factor. Then, the project was evaluated for financial feasibility using a mathematical model of net present value (NPV) with a planning horizon of 5 years. Finally, a subset of the local population was surveyed to assess perspectives on the project in the region. The results of the rice husk physicochemical analysis were the following: nitrogen content (0.74%), organic carbon (38.04%), silica (18.39%), humidity determination (7.68%), ash (19.4%), presence of carbonates (< 0.01%), and pH (6.41). These properties are adequate for the combustion process. The SAM simulation showed that the heat transferred in the boiler was 3180 kW, maintaining an efficiency between 50 and 52% throughout the 12 months of the year, meaning that the rice husk can generate electricity and thermal energy. The financial analysis showed that the internal rate of return (IRR) was 6% higher than the opportunity interest rate (OIR), demonstrating economic feasibility of the project. The design and creation of a rice husk processing plant is socially and environmentally viable and has the potential to contribute to the economic development of the Tolima community and reduce greenhouse gases. Likewise, this activity has the potential to promote energy security for consumers and environmental sustainability while at the same time being economically competitive.


Subject(s)
Oryza , Oryza/chemistry , Colombia , Biofuels/analysis , Biomass , Agriculture/methods , Charcoal/chemistry
5.
Sci Rep ; 14(1): 10684, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724636

ABSTRACT

Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.


Subject(s)
Charcoal , Lolium , Manganese Compounds , Metals, Heavy , Oxides , Soil Pollutants , Zinc Oxide , Lolium/metabolism , Lolium/growth & development , Charcoal/chemistry , Soil Pollutants/metabolism , Oxides/chemistry , Metals, Heavy/metabolism , Zinc Oxide/chemistry , Manganese Compounds/chemistry , Manganese Compounds/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Nanoparticles/chemistry , Biological Availability , Soil/chemistry
6.
Food Res Int ; 186: 114161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729685

ABSTRACT

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Subject(s)
Antioxidants , Caseins , Enzymes, Immobilized , Glutaral , Goats , Iridoids , Pepsin A , Peptides , Antioxidants/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Caseins/chemistry , Animals , Pepsin A/metabolism , Pepsin A/chemistry , Glutaral/chemistry , Peptides/chemistry , Iridoids/chemistry , Hydrolysis , Charcoal/chemistry
7.
Sci Rep ; 14(1): 11469, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769392

ABSTRACT

Large amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.


Subject(s)
Biomass , Charcoal , Pyrolysis , Charcoal/chemistry , Phosphorus/chemistry , Phosphorus/analysis , Wood/chemistry , Hydrogen-Ion Concentration , Soil/chemistry , Temperature , Acacia/chemistry , Carbon/chemistry , Carbon/analysis
8.
Environ Monit Assess ; 196(5): 492, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691228

ABSTRACT

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.


Subject(s)
Benzhydryl Compounds , Charcoal , Phenols , Wastewater , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Wastewater/chemistry , Waste Disposal, Fluid/methods
9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731960

ABSTRACT

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Subject(s)
Carbon , Charcoal , Water Purification , Wood , Water Purification/methods , Charcoal/chemistry , Catalysis , Wood/chemistry , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Adsorption
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731990

ABSTRACT

This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.


Subject(s)
Bayes Theorem , Charcoal , Congo Red , Machine Learning , Charcoal/chemistry , Adsorption , Congo Red/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
11.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690765

ABSTRACT

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Subject(s)
Colloids , Environmental Restoration and Remediation , Groundwater , Groundwater/chemistry , Colloids/chemistry , Environmental Restoration and Remediation/methods , Polymers/chemistry , Charcoal/chemistry , Sand/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry
12.
J Hazard Mater ; 471: 134467, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691930

ABSTRACT

The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.


Subject(s)
Hot Temperature , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Charcoal/chemistry , Zea mays , Soil/chemistry , Adsorption , Heating
13.
J Environ Manage ; 359: 120979, 2024 May.
Article in English | MEDLINE | ID: mdl-38692033

ABSTRACT

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Subject(s)
Charcoal , Iron , Reactive Oxygen Species , Tetracycline , Wastewater , Tetracycline/chemistry , Charcoal/chemistry , Reactive Oxygen Species/chemistry , Wastewater/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Electron Transport
14.
Sci Total Environ ; 931: 172899, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692328

ABSTRACT

Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.


Subject(s)
Agriculture , Charcoal , Environmental Restoration and Remediation , Soil Pollutants , Soil , Charcoal/chemistry , Soil Pollutants/analysis , Agriculture/methods , Environmental Restoration and Remediation/methods , Soil/chemistry , Metals, Heavy/analysis
15.
Chemosphere ; 358: 142196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692362

ABSTRACT

Stormwater pollution is a key factor contributing to water quality degradation, posing substantial environmental and human health risks. Although stormwater retention ponds, also referred to as wet ponds, are commonly implemented to alleviate stormwater challenges by reducing peak flow and removing suspended solids, their effectiveness in removing heavy metals and nutrients is limited. This study evaluated the performance of floating treatment platforms (FTPs) featuring vetiver grass (Chrysopogon zizanioides), a non-invasive, nutrient- and metal-accumulating perennial grass, in removing heavy metals (Cu, Pb, and Zn) and nutrients (P and N) in stormwater retention ponds. Furthermore, the potential for utilizing the spent vetiver biomass for generating biochar and bioethanol was investigated. The study was conducted in a greenhouse setup under simulated wet and dry weather conditions using pond water collected from a retention pond in Stafford Township, New Jersey, USA. Two FTPs with vetiver (vegetated FTPs) were compared with two FTPs without vetiver (non-vegetated FTPs), which served as controls. Results showed that the removal of heavy metals and nutrients by the FTPs with vetiver was significantly higher (p < 0.05) than the FTPs without vetiver. Notably, vetiver showed resilience to stormwater pollutants and hydroponic conditions, displaying no visible stress symptoms. The biochar and bioethanol generated from the spent vetiver exhibited desirable yield and quality, without raising concerns regarding pollutant leaching, indicated by very low TCLP and SPLP concentrations. This study provides compelling evidence that the implementation of vetiver-based FTPs offers a cost-effective and environment-friendly solution for mitigating stormwater pollution in retention ponds. Furthermore, the utilization of vetiver biomass for biofuel and biochar production supports clean production and fostering circular economy efforts.


Subject(s)
Biomass , Charcoal , Ethanol , Metals, Heavy , Water Pollutants, Chemical , Charcoal/chemistry , Metals, Heavy/analysis , Ethanol/chemistry , Water Pollutants, Chemical/analysis , Chrysopogon , Poaceae , Waste Disposal, Fluid/methods , Water Purification/methods , Rain
16.
Chemosphere ; 358: 142193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697562

ABSTRACT

Biochar has been utilized to reduce ciprofloxacin (CIP) residues in soil. However, little is known about the effect of biochar-derived dissolved organic matter (DOM) on residual CIP transformation. Thus, we analyzed the residual soil CIP as influenced by biochar generated from rice straw (RS3 and RS6), pig manure (PM3 and PM6), and cockroach shell (CS3 and CS6) at 300 °C and 600 °C. The three-dimensional excitation-emission matrix (3D-EEM), parallel factor analysis (PARAFAC) and two-dimensional correlation spectral analysis (2D-COS) were used to describe the potential variation in the DOM-CIP interaction. Compared with CK, biochar amendment increased the water-soluble CIP content by 160.7% (RS3), 55.2% (RS6), 534.1% (PM3), 277.5% (PM6), 1160.6% (CS3) and 703.9% (CS6), indicating that the biochar feedstock controlled the soil CIP release. The content of water-soluble CIP was positively correlated with the content of dissolved organic carbon (r = 0.922, p < 0.01) and dissolved organic nitrogen (r = 0.898, p < 0.01), suggesting that the major influence of the water-soluble CIP increase was DOM. The fluorescence quenching experiment showed that the interaction between DOM and CIP triggered static quenching and the creation of a DOM complex. The mean log K of protein-like material (4.977) was higher than that of terrestrial humus-like material (3.491), suggesting that the protein-like material complexed CIP was more stable than the humus-like material. Compared with pyrolysis at 300 °C, pyrolysis at 600 °C decreased the stability of the complex of protein-like material and CIP by 0.44 (RS), 1.689 (PM) and 0.548 (CS). This result suggested that the influence of temperature change was more profound on PM biochar-derived DOM than on RS and CS. These insights are essential for understanding CIP transportation in soil and controlling CIP contamination with biochar.


Subject(s)
Charcoal , Ciprofloxacin , Soil Pollutants , Soil , Charcoal/chemistry , Soil/chemistry , Ciprofloxacin/chemistry , Ciprofloxacin/analysis , Soil Pollutants/chemistry , Soil Pollutants/analysis , Animals , Manure/analysis , Oryza/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Swine
17.
J Environ Manage ; 359: 121042, 2024 May.
Article in English | MEDLINE | ID: mdl-38703652

ABSTRACT

Soil aggregates play pivotal roles in soil organic carbon (SOC) preservation and climate change. Biochar has been widely applied in agricultural ecosystems to improve soil physicochemical properties. However, the underlying mechanisms of SOC sequestration by soil aggregation with biochar addition are not well understood at a large scale. Here, we conducted a meta-analysis of 2335 pairwise data from 45 studies to explore how soil aggregation sequestrated SOC after biochar addition in agricultural ecosystems of China. Biochar addition markedly enhanced the proportions of macro-aggregates and aggregate stability, and the production of organic binding agents positively facilitated the formation of macro-aggregates and aggregate stability. Soil aggregate-associated organic carbon (OC) indicated a significantly increasement by biochar addition, which was attributed to direct and indirect inputs of OC from biochar and organic residues, respectively. Biochar stimulated SOC sequestration dominantly contributed by macro-aggregates, and it could be interpreted by a greater improvement in proportions and OC protection of macro-aggregates. Furthermore, the SOC sequestration of soil aggregation with biochar addition was regulated by climate conditions (mean annual temperature and precipitation), biochar attributes (biochar C/N ratio and pH), experimental practices (biochar addition level and duration), and agronomic managements (land type, cropping intensity, fertilization condition, and crop type). Collectively, our synthetic analysis emphasized that biochar promoted the SOC sequestration by improving soil aggregation in agricultural ecosystems of China.


Subject(s)
Agriculture , Carbon Sequestration , Carbon , Charcoal , Ecosystem , Soil , Soil/chemistry , China , Charcoal/chemistry , Carbon/chemistry
18.
Sci Total Environ ; 931: 172973, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705294

ABSTRACT

In this work, corn straw was used as raw material, Hummers method and activation were used to adjust the graphite structure in biochar, and preparing straw based biochar (H-BCS) with ultra-high specific surface area (3441.80 m2/g), highly total pore volume (1.9859 cm3/g), and further enhanced physicochemical properties. Compared with untreated straw biochar (BCS), the specific surface area and total pore volume of H-BCS were increased by 47.24 % and 55.85 %, respectively. H-BCS showed good removal ability in subsequent experiments by using chloramphenicol (CP), hexavalent chromium (Cr6+), and crystal violet (CV) as adsorption models. In addition, the adsorption capacities of H-BCS (CP: 1396.30 mg/g, Cr6+: 218.40 mg/g, and CV: 1246.24 mg/g) are not only higher than most adsorbents, even after undergoing 5 cycles of regeneration, its adsorption capacity remains above 80 %, indicating significant potential for practical applications. In addition, we also speculated and analyzed the conjecture about the "graphite-structure regulation" during the preparation process, and finally discussed the possible mechanism during the adsorption processes. We hope this work could provide a new strategy to solve the restriction of biochar performance by further exploring the regulation of graphite structure in carbon materials.


Subject(s)
Charcoal , Graphite , Water Pollutants, Chemical , Charcoal/chemistry , Graphite/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Adsorption , Waste Disposal, Fluid/methods , Chromium/chemistry , Water Pollution/prevention & control , Zea mays/chemistry , Water Purification/methods
19.
J Environ Manage ; 359: 121058, 2024 May.
Article in English | MEDLINE | ID: mdl-38714036

ABSTRACT

Water pollution remains a pressing environmental issue, with diverse pollutants such as heavy metals, pharmaceuticals, dyes, and aromatic hydrocarbon compounds posing a significant threat to clean water access. Historically, biomass-derived activated carbons (ACs) have served as effective adsorbents for water treatment, owing to their inherent porosity and expansive surface area. Nanocomposites have emerged as a means to enhance the absorption properties of ACs, surpassing conventional AC performance. Biomass-based activated carbon nanocomposites (ACNCs) hold promise due to their high surface area and cost-effectiveness. This review explores recent advancements in biomass-based ACNCs, emphasizing their remarkable adsorption efficiencies and paving the way for future research in developing efficient and affordable ACNCs. Leveraging real-time communication for ACNC applications presents a viable approach to addressing cost concerns.


Subject(s)
Charcoal , Fruit , Nanocomposites , Vegetables , Water Purification , Nanocomposites/chemistry , Charcoal/chemistry , Water Purification/methods , Fruit/chemistry , Adsorption , Vegetables/chemistry , Water Pollutants, Chemical/chemistry , Biomass
20.
J Environ Manage ; 359: 120947, 2024 May.
Article in English | MEDLINE | ID: mdl-38718599

ABSTRACT

This article presents ways of recovering waste in the form of anaerobically digested and dried sewage sludge (average humidity approx. 6 wt%) by carbonization at various temperatures in the range of 400-900 °C. The resulting products, biochars, are investigated in terms of yield, surface properties and Raman spectra analysis. The sorption capacity of biochars differs depending on the carbonization temperature. The experimental amount of adsorbed CO2 slowly increases with the carbonization temperature from 0.212 mmol/g at 400 °C to the highest value of 0.415 mmol/g, which is achieved at 900 °C by slow carbonization at a rate of 10 °C/min. Additionally, there is a strong positive dependence of the adsorption capacity on the micropore volume. Higher carbonization temperatures support the powerful formation of micropores and improve their sorption capacity.


Subject(s)
Charcoal , Sewage , Temperature , Sewage/chemistry , Adsorption , Charcoal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...