Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.151
Filter
1.
Food Res Int ; 195: 114958, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277232

ABSTRACT

Utilizing different chymosin and pepsin ratios in cheesemaking may represent a potential strategy to shape the sensory profile of hard cheeses. This study investigated the impact of rennet with varying chymosin and pepsin ratios on the chemical profile and sensory attributes of Grana Padano PDO cheese at different ripening times (10 to 20 months). The research involved the analysis of hard cheese manufactured with distinct calf chymosin percentages (99 %, 95 %, and 83 %), exploiting sensory analyses and untargeted metabolomics to identify marker compounds correlating with specific sensory traits. The results demonstrated that varying the rennet composition significantly affected sensory profile; in particular, the rennet made by 83 % chymosin and 17 % pepsin generated a more complex sensory profile starting from 12 months. AMOPLS and ASCA analysis on untargeted metabolomics signatures revealed that ripening time was the only significant factor when compared with rennet type and the interaction ripening x rennet. Finally, at more advanced ripening times, 3-methylbutanoic acid and homoethone were significantly up-accumulated in cheese samples manufactured with higher pepsin percentages, likely explaining sensory outcomes. This study provides valuable insights into using rennet to tailor the sensory qualities of hard cheeses, underscoring the importance of enzyme selection in cheese manufacturing to drive innovation in the dairy industry.


Subject(s)
Cheese , Chymosin , Food Handling , Metabolomics , Pepsin A , Taste , Cheese/analysis , Chymosin/metabolism , Pepsin A/metabolism , Metabolomics/methods , Food Handling/methods , Animals , Cattle , Humans
2.
Food Res Int ; 194: 114876, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232514

ABSTRACT

This review aims to provide an overview of artisanal Mexican cheeses microbiota focused on microbiological quality and safety, as well as native Lactic acid Bacteria (LAB) diversity. For the search, key words of artisanal Mexican cheeses varieties was carried out through several online databases and original articles were screened and data about populations of indicator microorganisms, presence of pathogens, and native LAB identified were extracted. Several artisanal Mexican cheeses exceeded the permissible limit established in Mexican regulation (NOM-243-SSA1-2010) for indicator microorganisms, as well as in some types of cheese, the presence of pathogens was confirmed. However, other varieties of artisanal Mexican cheeses possess unique physicochemical characteristics, and during their manufacturing particular steps are used that contribute to ensuring their quality and safety. Additionally, strains able to control the growth of pathogenic and spoilage bacteria are part of the microbiota of some artisanal Mexican cheeses. About native LAB diversity, it is composed by species of Lactobacillus, Enterococcus, Streptococcus, Leuconostoc, Weisella, Lactococcus, Pediococus, Aerococus, Carnobacterium, Tetragenococus, among others genera. Otherwise, artisanal Mexican cheeses represent an important source of specific LAB with several approaches within human health because they showed potential for the development of functional foods, nutraceutical, and bioprotective cultures.


Subject(s)
Cheese , Food Microbiology , Lactobacillales , Cheese/microbiology , Lactobacillales/isolation & purification , Mexico , Biodiversity , Microbiota
3.
Food Res Int ; 194: 114902, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232528

ABSTRACT

The purpose of this study was to understand the role of "dominance" definitions in the results of TDS applied to consumers. This study compared two temporal dominance of sensations (TDS) approaches - TDS-I - that attracts the most attention and TDS-II - most intense/strongest sensation - in the context of evaluating artisanal Minas cheeses from the Serra da Canastra and chocolate with different cocoa concentrations samples. TDS curves were constructed and a trajectory-based principal component analysis (PCA) was performed dominance rates at ten equally spaced time points. Additionally, difference curves, multiple factor analysis (MFA) and regression vector coefficient (RV coefficient) were performed to compare the two approaches. The findings showed that the two approaches produced similar results, suggesting that consumers interpret the terms dominant and intense in a similar way during TDS evaluations, the results were even closer at the chocolate study than at the cheese study. However, in both approaches were observed low dominance rates and differences between the sensation perception time, mainly in the evaluation of cheese flavor. This variability may be attributed to the complexity of the cheese's flavor and the varied interpretations of dominance among evaluators. Despite these differences, the approaches showed similar characterizations across the same samples, demonstrating high reproducibility and a strong ability to differentiate between samples. This study demonstrates that the choice between the terms dominant (which captures more attention) or intense (stronger) to guide consumers in performing the sensory test does not significantly influence the results. Consequently, it is possible to adopt greater freedom and flexibility in the terminology used to instruct participants in conducting the test.


Subject(s)
Cheese , Chocolate , Taste , Humans , Cheese/analysis , Male , Adult , Female , Young Adult , Consumer Behavior , Principal Component Analysis , Taste Perception , Middle Aged , Time Factors , Food Preferences/physiology , Reproducibility of Results
4.
J Texture Stud ; 55(5): e12865, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39245871

ABSTRACT

The objective of this study was to study the impact of pressing time on the microstructure of goat cheese and its relationship with sensory attributes. The microstructure of the artisanal cheeses was performed by scanning electron microscopy and image analysis. The validation of the microstructural complexity was carried out experimentally with sensory attributes. The pressing time influenced the microstructural parameters Feretmax, Geodiam, and τ and the cheese type influenced the parameters Feretmax, Geodiam, and Geoelong. The correlation values between microstructural complexity and sensory attributes were 0.85 and 0.84 for fresh cheeses and matured cheeses, respectively. The pressure times of 12 and 18 h resulted in cheese microstructures with the highest complexity in terms of Feretmax, Geodiam, Geoelong, and τ parameters. The obtained results are supported by the correlation values between microstructural complexity and sensory attributes.


Subject(s)
Cheese , Food Handling , Goats , Microscopy, Electron, Scanning , Taste , Cheese/analysis , Animals , Humans , Time Factors , Pressure
5.
Food Microbiol ; 124: 104619, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244371

ABSTRACT

Tick-borne encephalitis outbreaks have been reported in Europe after consumption of raw milk products from infected animals. While molecular methods are commonly used in viral foodborne outbreak investigations due to their sensitivity, specificity and rapidity, there are very few methods to detect infectious tick-borne encephalitis virus (TBEV) in milk products for routine use/analyses. To address this gap, we developed a cell culture-based method to detect infectious TBEV in artificially contaminated raw goat milk and raw goat cheese, and evaluated the sensitivity of TBEV infectivity assays. Raw goat milk samples were spiked with TBEV to achieve inoculation levels ranging from 106 to 100 TCID50/mL, and Faisselle and Tomme cheese samples were spiked so their TBEV concentrations ranged from 9.28 × 105 to 9.28 × 101 TCID50 per 2.5g. To detect infectious TBEV, Vero cells were infected by raw goat milk. For cheese samples, after homogenisation and membrane filtration, Vero cells were infected with samples adsorbed on the filter (method A) or with samples eluted from the filter (method B). After 5 days, cytopathic effects (CPEs) were observed and TBEV replication in Vero cells was confirmed by an increase in the number of genome copies/mL that were detected in cell supernatant. Infected Vero cells exhibited CPEs for both milk and cheese samples. Infectious TBEV was detected to 103 TCID50/mL in raw milk samples and to 9.28 × 101 TCID50 from Faisselle samples using both methods A and B. For Tomme samples, method A was able to detect TBEV to 9.28 × 102 TCID50/2.5g and method B to 9.28 × 103 TCID50/2.5g. The number of positive samples detected was slightly higher with method A than with method B. To conclude, this qualitative cell culture-based method can detect infectious TBEV artificially inoculated into raw milk and cheese; it should be further evaluated during foodborne outbreak investigations to detect infectious TBEV from naturally contaminated milk and cheese.


Subject(s)
Cheese , Encephalitis Viruses, Tick-Borne , Food Contamination , Goats , Milk , Animals , Milk/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Vero Cells , Chlorocebus aethiops , Cheese/virology , Food Contamination/analysis , Encephalitis, Tick-Borne/virology , Cell Culture Techniques
6.
Compr Rev Food Sci Food Saf ; 23(5): e13420, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39217506

ABSTRACT

Flavor is a major sensory attribute affecting consumers' preference for cheese products. Differences in cheesemaking change the cheese microenvironment, thereby affecting cheese flavor profiles. A framework for tuning cheese flavor is proposed in this study, which depicts the full picture of flavor development and modulation, from manufacturing and ripening factors through the main biochemical pathways to flavor compounds and flavor notes. Taking semi-hard and hard cheeses as examples, this review describes how cheese flavor profiles are affected by milk type and applied treatment, fat and salt content, microbiota composition and microbial interactions, ripening time, temperature, and environmental humidity, together with packaging method and material. Moreover, these factors are linked to flavor profiles through their effects on proteolysis, the further catabolism of amino acids, and lipolysis. Acids, alcohols, ketones, esters, aldehydes, lactones, and sulfur compounds are key volatiles, which elicit fruity, sweet, rancid, green, creamy, pungent, alcoholic, nutty, fatty, and sweaty flavor notes, contributing to the overall flavor profiles. Additionally, this review demonstrates how data-driven modeling techniques can link these influencing factors to resulting flavor profiles. This is done by providing a comprehensive review on the (i) identification of key factors and flavor compounds, (ii) discrimination of cheeses, and (iii) prediction of flavor notes. Overall, this review provides knowledge tools for cheese flavor modulation and sheds light on using data-driven modeling techniques to aid cheese flavor analysis and flavor prediction.


Subject(s)
Cheese , Taste , Cheese/analysis , Cheese/microbiology , Food Handling/methods , Animals , Milk/chemistry , Humans
7.
J Texture Stud ; 55(4): e12863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39192308

ABSTRACT

With growing consumer demand for plant-based products that mimic the eating experience of animal-based products, there is a need for improvement in instrumental measurements of sensory texture. This study aimed to characterize textural differences between dairy and non-dairy cheeses, and to investigate whether Large Amplitude Oscillatory Shear (LAOS) rheometry could discriminate sensory texture better than Texture profile analysis. Commercial dairy and non-dairy cheddar, mozzarella, and cream cheese were selected to provide a wide range of textures. Sensory evaluation used the check-all-that-apply methodology with 73 consumers. Texture profile analysis force-distance data were analyzed empirically, and also converted to stress and strain (see https://shiny.csiro.au/texture_dash). The major textural differences between dairy and non-dairy cheddar were related to structural cohesion, according to both instrumental measures (dairy cheddar had 1.5-fold higher failure stress and 2.2-fold higher failure strain) and sensory measurements (dairy cheddar was more chewy and less crumbly). In contrast, cream cheeses showed similar textural properties using sensory testing but significant instrumental differences (non-dairy cream cheese had 5.7-fold higher modulus of deformability, 4.7-fold higher failure stress). For mozzarella, there were large differences in both sensory attributes (chewy, crumbly, jelly-like, stretchy) and instrumental parameters (13.6-fold difference in modulus, 2.7-fold difference in failure stress). LAOS rheometry gave insights into the mechanisms by which samples absorbed or dissipated mechanical energy at nonlinear strains. The LAOS parameter G 3 ' / G 1 ' $$ {G}_3^{\prime }/{G}_1^{\prime } $$ correlated well with sensory attributes creamy, fatty/oily, and moist, indicating the potential of this technique to measure structural phenomena linked to sensory attributes that resonate with consumers.


Subject(s)
Cheese , Rheology , Taste , Cheese/analysis , Humans , Female , Adult , Male , Consumer Behavior , Middle Aged , Dairy Products/analysis , Animals , Young Adult , Sensation
8.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125035

ABSTRACT

In this study, the protein and salts distribution (Ca, P, Na and Mg) in processed cheese (PC) samples prepared with 180 or 360 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), disodium pyrophosphate (DSPP), sodium hexametaphosphate (SHMP) and trisodium citrate (TSC) was studied. For this purpose, a water-soluble extract (WSE) of PC samples was prepared. All PC samples contained 45-46% moisture, 26-27% fat and 20-21% protein and had a pH of 5.2 or 5.7. Ultracentrifugation slightly reduced the protein content of the WSE of PC, indicating that most protein in the WSE was non-sedimentable. At equal concentration of CSS, the protein content of the WSE was higher for PC at pH 5.7 compared to PC at pH 5.2. Approximately 55-85% of the Ca and P in the WSE of samples was 10 kDa-permeable for PC prepared with DSPP and SHMP. This suggests that the formation of non-permeable Ca-polyphosphate-casein complexes. For PC prepared with TSC, >90% of Ca in the WSE was 10 kDa-permeable, indicating that micellar disruption arises from sequestration of micellar Ca. These results indicate that the WSE method is an appropriate method to understand how salts present in PC are distributed. However, the WSE and ultracentrifugal supernatant of the WSE can include both soluble and protein-associated salts. Therefore, determining levels of salts in 10 kDa permeate of ultracentrifugal supernatant of the WSE is most appropriate.


Subject(s)
Cheese , Diphosphates , Phosphates , Salts , Solubility , Cheese/analysis , Phosphates/chemistry , Salts/chemistry , Diphosphates/chemistry , Calcium/chemistry , Citrates/chemistry , Hydrogen-Ion Concentration , Food Handling/methods
9.
Appl Environ Microbiol ; 90(9): e0124424, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39150265

ABSTRACT

The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.


Subject(s)
Bifidobacterium , Cheese , Gastrointestinal Microbiome , Milk , Cheese/microbiology , Bifidobacterium/genetics , Bifidobacterium/metabolism , Bifidobacterium/growth & development , Humans , Milk/microbiology , Animals , Italy
10.
Int J Food Microbiol ; 425: 110859, 2024 Dec 02.
Article in English | MEDLINE | ID: mdl-39173289

ABSTRACT

This study aimed to assess the efficacy of a multi-hurdle process combining mild High Hydrostatic Pressure (HHP) treatments and Thyme Oil (TO) edible films as a non-thermal method to combat pathogenic E. coli (aEPEC and STEC) in raw cow's-milk cheese stored at 7 °C and packaged under modified atmosphere. Changes in headspace atmosphere of cheese packs and treatment effects on Lactic Acid Bacteria (LAB) counts and diarrheagenic E. coli strains (aEPEC and STEC) were evaluated over a 28 d storage period. The results demonstrated that the combined treatment exhibited the most significant antimicrobial effect against both strains compared to individual treatments, achieving reductions of 4.30 and 4.80 log cfu/g after 28 d of storage for aEPEC and STEC, respectively. Notably, the synergistic effect of the combination treatment resulted in the complete inactivation of intact cells for STEC and nearly completed inactivation for aEPEC by the end of the storage period. These findings suggest that the combination of HHP with selected hurdles could effectively enhance microbial inactivation capacity, offering promising alternatives for improving cheese safety without affecting the starter microbiota.


Subject(s)
Cheese , Thymus Plant , Cheese/microbiology , Animals , Thymus Plant/chemistry , Hydrostatic Pressure , Food Microbiology , Colony Count, Microbial , Food Preservation/methods , Escherichia coli/drug effects , Escherichia coli/growth & development , Cattle , Milk/microbiology
11.
Int J Food Microbiol ; 425: 110873, 2024 Dec 02.
Article in English | MEDLINE | ID: mdl-39182346

ABSTRACT

The aim of the research was to examine the antimicrobial and antibiofilm effects of angelica, immortelle, laurel, hyssop, and sage plant dust essential oils (EOs) against isolated strains of Staphylococcus spp. from cheeses, in vitro and in the model of white cheese. MALDI-TOF MS analysis confirmed two Staphylococcus aureus strains and two coagulase-negative, identified as S. saprophyticus and S. warneri. All isolates produce biofilm, where the strains of S. aureus showed slightly better adherence. The main component of angelica EO was ß-phellandrene (48.19 %), while α-pinene (20.33 %) were dominant in immortelle EO, in hyssop EO cis-pinocamphone (37.25 %), in laurel EO 1,8-cineole (43.15 %) and in sage EO epirosmanol (26.25 %). The sage EO exhibited the strongest antistaphylococcal activity against all isolates. Synergism was also detected in combination of sage with hyssop or laurel EO. Better antibiofilm activity was confirmed for sage EO compared to hyssop EO. The mixture of sage/laurel EOs reduced the total number of staphylococci in the cheese after 4 days. Results indicate that in vitro applied EOs showed significant antistaphylococcal and antibiofilm activity, while the oil mixture reduced the initial total number of staphylococci.


Subject(s)
Anti-Bacterial Agents , Biofilms , Cheese , Oils, Volatile , Staphylococcus , Cheese/microbiology , Biofilms/drug effects , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus/drug effects , Microbial Sensitivity Tests , Plant Oils/pharmacology
12.
NPJ Biofilms Microbiomes ; 10(1): 67, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095404

ABSTRACT

The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin.


Subject(s)
Cheese , Probiotics , Cheese/microbiology , Metagenome , Food Microbiology , Microbiota , Humans , Dairying/methods , Europe , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
13.
Food Res Int ; 192: 114756, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147486

ABSTRACT

The potential health risk of consuming dairy products made from milk processed in an artisanal manner was investigated due to possible contamination with Ptaquiloside (PTA), a carcinogenic compound found in the food chain of the bracken fern. The study aimed to assess the occurrence and stability of PTA across various processing stages, including pasteurization, cheese production, and yogurt production. Results indicated that pasteurization effectively converted all PTA to Pterosin (PTB), with PTB levels decreasing during refrigerated storage for up to two weeks. The stability and occurrence of initial PTA contamination remained unchanged in yogurt production. Biotoxin concentrations in soft cheeses decreased over time, independent of ionic strength; cheeses with low salt concentrations showed lower retention of the biotoxin within the cheese protein network. These findings offer valuable insights into the stability and occurrence of PTA, facilitating the monitoring and identification of potential adverse health effects.


Subject(s)
Food Contamination , Milk , Pteridium , Animals , Milk/chemistry , Pteridium/chemistry , Food Contamination/analysis , Cattle , Sesquiterpenes/analysis , Dairy Products/analysis , Pasteurization , Indans/analysis , Cheese/analysis , Food Handling/methods
14.
Food Res Int ; 192: 114798, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147499

ABSTRACT

Water Buffalo Mozzarella (BM) is a typical cheese from Southern Italy with unique flavor profile and texture. It is produced following a traditional back-slopping procedure and received the Protected Designation of Origin (PDO) label. To better understand the link between the production area, the microbiome composition and the flavor profile of the products, we performed a multiomic characterization of PDO BM collected from 57 different dairies located in the two main PDO production area, i.e. Caserta (n = 35) and Salerno (n = 22). Thus, we assessed the microbiome by high-throughput shotgun metagenomic sequencing and the Volatile Organic Compounds (VOCs) by gas chromatography/mass spectrometry (GC/MS). Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. delbrueckii were identified as the core microbiome present in all samples. However, the microbiome taxonomic profiles resulted in a clustering of the samples based on their geographical origin, also showing that BM from Caserta had a greater microbial diversity. Consistently, Caserta and Salerno samples also showed different VOC profiles. These results suggest that the microbiome and its specific metabolic activity are part of the terroir that shape BM specific features, linking this traditional product with the area of production, thus opening new clues for improving traceability and fraud protection of traditional products.


Subject(s)
Buffaloes , Cheese , Gas Chromatography-Mass Spectrometry , Microbiota , Taste , Volatile Organic Compounds , Cheese/microbiology , Cheese/analysis , Animals , Volatile Organic Compounds/analysis , Italy , Food Microbiology , Lactobacillus helveticus , Streptococcus thermophilus/classification
15.
Food Res Int ; 192: 114838, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147526

ABSTRACT

In this study, for the very first time, aqueous extracts obtained from flowers of spontaneously grown or cultivated Onopordum platylepis (Murb.) Murb. thistles were used as coagulating agents for the pilot-scale manufacture of Caciofiore, a traditional Italian raw ewe's milk cheese. Cheese prototypes were compared to control cheeses curdled with a commercial thistle rennet obtained from flowers of Cynara cardunculus L. After 45 days of ripening under controlled conditions, both the experimental and control cheese prototypes were analyzed for: cheese yield, physico-chemical (pH, titratable acidity, aw, proximate composition), morpho-textural (color and texture), and microbiological parameters (viable cell counts and species composition assessed by Illumina sequencing), as well as volatile profile by SPME-GC-MS. Slight variations in titratable acidity, color, and texture were observed among samples. Based on the results overall collected, neither the yield nor the proximate composition was apparently affected by the type of thistle coagulant. However, the experimental cheese prototypes curdled with extracts from flowers of both spontaneous or cultivated thistles showed 10 % higher values of water-soluble nitrogen compared to the control prototypes. On the other hand, these latter showed slightly higher loads of presumptive lactococci, thermophilic cocci, coliforms, and eumycetes, but lower counts of Escherichia coli. No statistically significant differences were revealed by the metataxonomic analysis of the bacterial and fungal biota. Though most volatile organic compounds (VOCs) were consistent among the prototypes, significant variability was observed in the abundance of some key aroma compounds, such as butanoic, hexanoic, and octanoic acids, ethanol, propan-2-ol, isobutyl acetate, 2-methyl butanoic acid, and 3-methyl butanal. However, further investigations are required to attribute these differences to either the type of coagulant or the metabolic activity of the microorganisms occurring in the analyzed cheese samples. The results overall collected support the potential exploitation of O. platylepis as a novel source of thistle coagulant to produce ewe's milk cheeses.


Subject(s)
Cheese , Chymosin , Milk , Cheese/analysis , Cheese/microbiology , Animals , Italy , Sheep , Milk/chemistry , Milk/microbiology , Flowers/chemistry , Food Microbiology , Food Handling/methods , Hydrogen-Ion Concentration , Volatile Organic Compounds/analysis , Plant Extracts/chemistry
16.
Food Res Int ; 192: 114694, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147542

ABSTRACT

Pasta filata-style cheese products are among the world's most famous cheese varieties. Thermo-mechanical processing of cheese curd results in stringy, fibrous, and anisotropic structures with pleasing texture attributes. A recent area of research focuses on improving yield during the manufacturing of pasta filata-type cheese products by homogenizing the milk. This process reduces the size of fat droplets, leading to better retention of milk fat during curd plasticization. As this sometimes results in texture deficits, this study aims to investigate the impact of thermo-mechanical processing on curd from homogenized and non-homogenized milk. The hypothesis is that increased thermo-mechanical processing, leading to more anisotropic structural elements, may offset texture deficits caused by homogenization. To assess textural and structural changes due to homogenization and thermo-mechanical processing, mechanical tests including rheology and texture analysis were conducted, along with confocal-laser-scanning microscopy. Additionally, sensory evaluation involving panelists consuming the samples and recording mastication properties such as muscle activity and jaw movement was carried out. Dynamic data modeling was used to derive connections between structure and texture. Results showed that homogenization alone did not yield significant differences between the samples, but plasticization and texturization properties differed significantly. Non-homogenized samples developed a distinct fibrous structure, and muscle activities and jaw movements increased significantly (p < 0.01) with longer thermo-mechanical processing.


Subject(s)
Caseins , Cheese , Food Handling , Gels , Mastication , Milk , Cheese/analysis , Food Handling/methods , Animals , Mastication/physiology , Milk/chemistry , Gels/chemistry , Caseins/chemistry , Rheology , Humans , Hot Temperature
17.
Nutrients ; 16(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39203936

ABSTRACT

While many studies have described the association between cognitive decline and eating habits, little attention has been paid to its association with cheese intake. In this epidemiological study of 1035 community-dwelling women aged ≥ 65, we investigated the association between intake/type of cheese and cognitive function. The anthropometry, functional ability, and the frequency of food intake, including cheese, were assessed. The mini-mental state examination (MMSE) was used to assess cognitive function, and a score of 20-26 was operationally defined as mild cognitive decline. We found that the MMSE score was significantly different between the presence of cheese intake and not (cheese intake: 28.4 ± 1.9; non-cheese intake: 27.6 ± 2.4) and between those who consumed Camembert cheese and those who did not (Camembert cheese: 28.7 ± 1.4; others: 28.3 ± 2.0). After adjusting for confounders, multiple logistic regression identified four independent variables significantly associated with mild cognitive decline: Camembert cheese intake (odds ratio = 0.448, 95% confidence interval = 0.214-0.936), age, usual walking speed, and repetitive saliva swallowing test scores. Our results, while based on cross-sectional data from Japanese community-dwelling older women, identified the significant inverse association between Camembert cheese intake and mild cognitive decline.


Subject(s)
Cheese , Cognition , Cognitive Dysfunction , Independent Living , Humans , Female , Cross-Sectional Studies , Japan/epidemiology , Aged , Cognition/physiology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Aged, 80 and over , Cohort Studies , Feeding Behavior , Mental Status and Dementia Tests , Diet/statistics & numerical data , Logistic Models
18.
Food Chem ; 460(Pt 3): 140713, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39116775

ABSTRACT

Chitosan, as a kind of naturally occurring green and degradable material for the preservation of perishable foods, was investigated in this study with the objective of enhancing its preservation performances. Herein, lignin was modified using the solvent fractionation method (modified lignin, ML, including ML1-ML3), while natural clinoptilolite zeolite was modified using the alkali modification method (modified clinoptilolite zeolite, MCZ, including MCZ1-MCZ5). After optimizing the conditions, it was discovered that incorporating both ML3 and MCZ3 into pure chitosan-based membranes might be conducive to fabricate chitosan-based composite membranes for the preservation of perishable foods. As-prepared composite membranes possessed better visible light transmittance, antioxidant activity, and carbon dioxide/oxygen selectivity, resulting in improved preservation effects on the model perishable foods such as bananas, cherry tomatoes, and cheeses. These findings might indicate promising applications for chitosan-based composite membranes with modified lignin and zeolite in the field of eco-friendly degradable materials for the preservation of perishable foods.


Subject(s)
Chitosan , Food Preservation , Lignin , Zeolites , Chitosan/chemistry , Zeolites/chemistry , Lignin/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Green Chemistry Technology , Cheese/analysis , Antioxidants/chemistry , Solanum lycopersicum/chemistry , Food Packaging/instrumentation
19.
Food Chem ; 460(Pt 3): 140760, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39137574

ABSTRACT

Cheesemaking with camel milk (CM) presents unique challenges and additional health benefits. This study involved preparing low-fat Cheddar cheese (LFCC) by blending bovine milk (BM) with varying levels of CM. Control cheese was made exclusively with BM. After 180 days of ripening, LFCC samples underwent in vitro digestion to determine antioxidant capacities, α-amylase and α-glucosidase inhibition, and angiotensin-converting enzyme inhibition. The peptide profile of LFCC treatments was analyzed using liquid chromatography-quadrupole-time of flight-mass spectrometry. Antioxidant and biological activities were influenced by BM-CM blends and digestion. At days 120 and 180, the number of αs1-casein-derived peptides increased in all samples except for LFCC made with 15% CM. Generally, 88 peptides exhibited ACE inhibition activity after 120 days of ripening, increasing to 114 by day 180. These findings suggest that ripening time positively affects the health-promoting aspects of functional cheese products.


Subject(s)
Camelus , Cheese , Digestion , Milk , Peptides , alpha-Amylases , Animals , Cheese/analysis , Cattle , Milk/chemistry , Milk/metabolism , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Peptides/chemistry , Peptides/metabolism , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Food Handling , Computer Simulation , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry
20.
Food Chem ; 460(Pt 2): 140622, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39089014

ABSTRACT

Tryptamine is a neuromodulator of the central nervous system. It is also a biogenic amine, formed by the microbial decarboxylation of L-tryptophan. Tryptamine accumulation in cheese has been scarcely examined. No studies are available regarding the factors that could influence its accumulation. Determining the tryptamine content and identifying the factors that influence its accumulation could help in the design of functional tryptamine-enriched cheeses without potentially toxic concentrations being reached. We report the tryptamine concentration of 300 cheese samples representing 201 varieties. 16% of the samples accumulated tryptamine, at between 3.20 mg kg-1 and 3012.14 mg kg-1 (mean of 29.21 mg kg-1). 4.7% of cheeses accumulated tryptamine at higher levels than those described as potentially toxic. Moreover, three technological/metabolic/environmental profiles associated with tryptamine-containing cheese were identified, as well as the hallmark varieties reflecting each. Such knowledge could be useful for the dairy industry to control the tryptamine content of their products.


Subject(s)
Cheese , Tryptamines , Cheese/analysis , Tryptamines/chemistry , Tryptamines/analysis , Tryptamines/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL