Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2566-2574, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812157

ABSTRACT

This study aims to investigate the mitigating effect and mechanism of Cichorium glandulosum n-butanol extraction site(CGE) on the disease in carbon tetrachloride(CCl_4)-induced chronic liver injury model in rats. A chronic liver injury model was constructed by subcutaneous injection of CCl_4 olive oil solution, and after four weeks of CGE treatment, serum levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(AKP), hydroxyproline(HYP), interleukin-4(IL-4), interleukin-6(IL-6), malondialdehyde(MDA), superoxide dismutase(SOD), and tumor necrosis factor-α(TNF-α) were detected. Liver tissue was processed by hematoxylin-eosin(HE) staining and Masson staining to observe the structure of the rat liver. qPCR and Western blot were used to examine the expression of transforming growth factor-ß1(TGF-ß1)/small mothers against decapentaplegic(Smad), Toll-like receptor 4(TLR4), α-smooth muscle actin(α-SMA), and fibronectin(Fn) in rat liver tissue and hepatic stellate-T6(HSC-T6) and evaluate the inhibitory effect of CGE on HSC activation. The results showed that CGE could significantly reduce the serum levels of AST, ALT, AKP, HYP, and affect the levels of related inflammatory indexes including IL-4, IL-6, and TNF-α, and MDA in CCl_4-induced chronic liver injury in rats and had no effect on SOD activity, which could delay the process of liver injury, alleviate the hepatic collagen deposition and inflammatory infiltration, and had significant efficacy in mitigating chronic liver injury in rats. CGE could inhibit α-SMA and TLR4 protein expression in the liver tissue and reverse the increased TGF-ß1/Smad, Fn, and TLR4-related expression in HSC-T6 in vitro. The above results indicated that CGE exerted hepatoprotective effects in rats by inhibiting HSC activation and alleviated CCl_4-induced chronic liver injury in rats and could ameliorate inflammatory response and slight liver fibrosis in rat liver tissue. Its pharmacodynamic mechanism might be related to TGF-ß1/Smad and TLR4-related expression.


Subject(s)
Carbon Tetrachloride , Liver , Rats, Sprague-Dawley , Animals , Rats , Carbon Tetrachloride/adverse effects , Male , Liver/metabolism , Liver/drug effects , Liver/injuries , 1-Butanol/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Malondialdehyde/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Interleukin-4/genetics , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/genetics
2.
J Agric Food Chem ; 72(15): 8476-8490, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588403

ABSTRACT

Melosira nummuloides is a microalga with a nutritionally favorable polyunsaturated fatty acid profile. In the present study, M. nummuloides ethanol extract (MNE) was administered to chronic-binge alcohol-fed mice and alcohol-treated HepG2 cells, and its hepatoprotective effects and underlying mechanisms were investigated. MNE administration reduced triglyceride (TG), total cholesterol (T-CHO), and liver injury markers, including aspartate transaminase (AST) and alanine transaminase (ALT), in the serum of chronic-binge alcohol-fed mice. However, MNE administration increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (P-AMPK/AMPK) and PPARα, which was accompanied by a decrease in SREBP-1; this indicates that MNE can inhibit adipogenesis and improve fatty acid oxidation. Moreover, MNE administration upregulated the expression of antioxidant enzymes, including SOD, NAD(P)H quinone dehydrogenase 1, and GPX, and ameliorated alcohol-induced inflammation by repressing the Akt/NFκB/COX-2 pathway. Metabolomic analysis revealed that MNE treatment modulated many lipid metabolites in alcohol-treated HepG2 cells. Our study findings provide evidence for the efficacy and mechanisms of MNE in ameliorating alcohol-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ethanol , Mice , Animals , Ethanol/adverse effects , Ethanol/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Lipid Metabolism , Metabolic Networks and Pathways , Mice, Inbred C57BL
3.
Int Immunopharmacol ; 131: 111861, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38484665

ABSTRACT

Glutathione (GSH) depletion, mitochondrial damage, and oxidative stress have been implicated in the pathogenesis of acetaminophen (APAP) hepatotoxicity. Here, we demonstrated that the expression of histone deacetylase 6 (HDAC6) is highly elevated, whereas malate dehydrogenase 1 (MDH1) is downregulated in liver tissues and AML-12 cells induced by APAP. The therapeutic benefits of LT-630, a novel HDAC6 inhibitor on APAP-induced liver injury, were also substantiated. On this basis, we demonstrated that LT-630 improved the protein expression and acetylation level of MDH1. Furthermore, after overexpression of MDH1, an upregulated NADPH/NADP+ ratio and GSH level and decreased cell apoptosis were observed in APAP-stimulated AML-12 cells. Importantly, MDH1 siRNA clearly reversed the protection of LT-630 on APAP-stimulated AML-12 cells. In conclusion, LT-630 could ameliorate liver injury by modulating MDH1-mediated oxidative stress induced by APAP.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Histone Deacetylase 6 , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Acetaminophen , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Glutathione/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Liver/pathology , Mice, Inbred C57BL , Oxidative Stress/drug effects
4.
Food Chem Toxicol ; 187: 114624, 2024 May.
Article in English | MEDLINE | ID: mdl-38556155

ABSTRACT

Diclofenac, a widely used non-steroidal anti-inflammatory drug, can cause liver damage via its metabolic activation by hepatic CYP450s and UGT2B7. Fasting can affect drug-induced liver injury by modulating the hepatic metabolism, but its influence on diclofenac hepatotoxicity is unknown. Thus, we investigated diclofenac-induced liver damage after fasting in mice, and the cellular events were examined. Male ICR mice fasted for 16 h showed the elevation of CYP3A11, but the decreases of UGT2B7, glutathione (GSH), and GSH S-transferase-µ/-π levels in the livers. Diclofenac (200 mg/kg) injection into the mice after 16-h fasting caused more significant liver damage compared to that in the diclofenac-treated fed mice, as shown by the higher serum ALT and AST activities. Diclofenac-promoted hepatic oxidative stress (oxidized proteins, 4-hydroxynonenal, and malondialdehyde), endoplasmic reticulum (ER) stress (BiP, ATF6, and CHOP), and apoptosis (cleaved caspase-3 and cleaved PARP) were enhanced by fasting. Autophagic degradation was inhibited in the diclofenac-treated fasting mice compared to that of the corresponding fed mice. The results suggest that fasting can make the liver more susceptible to diclofenac toxicity by lowering GSH-mediated detoxification; increased oxidative/ER stresses and apoptosis and suppressed autophagic degradation may be the cellular mechanisms of the aggravated diclofenac hepatotoxicity under fasting conditions.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Male , Animals , Diclofenac/toxicity , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Mice, Inbred ICR , Liver/metabolism , Endoplasmic Reticulum Stress , Apoptosis , Glutathione/metabolism , Oxidative Stress , Fasting , Autophagy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism
5.
Sci Total Environ ; 923: 171405, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38432385

ABSTRACT

Cadmium (Cd) is a toxic heavy metal that primarily targets the liver. Cd exposure disrupts specific lipid metabolic pathways; however, the underlying mechanisms remain unclear. This study aimed to investigate the lipidomic characteristics of rat livers after Cd exposure as well as the potential mechanisms of Cd-induced liver injury. Our analysis of established Cd-exposed rat and cell models showed that Cd exposure resulted in liver lipid deposition and hepatocyte damage. Lipidomic detection, transcriptome sequencing, and experimental analyses revealed that Cd mainly affects the sphingolipid metabolic pathway and that the changes in ceramide metabolism are the most significant. In vitro experiments revealed that the inhibition of ceramide synthetase activity or activation of ceramide decomposing enzymes ameliorated the proapoptotic and pro-oxidative stress effects of Cd, thereby alleviating liver injury. In contrast, the exogenous addition of ceramide aggravated liver injury. In summary, Cd increased ceramide levels by remodeling ceramide synthesis and catabolism, thereby promoting hepatocyte apoptosis and oxidative stress and ultimately aggravating liver injury. Reducing ceramide levels can serve as a potential protective strategy to mitigate the liver toxicity of Cd. This study provides new evidence for understanding Cd-induced liver injury at the lipidomic level and insights into the health risks and toxicological mechanisms associated with Cd.


Subject(s)
Cadmium , Chemical and Drug Induced Liver Injury, Chronic , Rats , Animals , Cadmium/metabolism , Multiomics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Oxidative Stress , Ceramides/metabolism , Ceramides/pharmacology
6.
Mol Nutr Food Res ; 68(7): e2300343, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501770

ABSTRACT

SCOPE: Iron deposition is frequently observed in alcoholic liver disease (ALD), which indicates a potential role of ferroptosis in its development. This study aims to explore the effects of quercetin on ferroptosis in ALD and elucidates the underlying mechanism involving the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs) mediated by protein kinase RNA-like endoplasmic reticulum kinase (PERK). METHODS AND RESULTS: C57BL/6J mice are fed either a regular or an ethanol-containing liquid diet (with 28% energy form ethanol) with or without quercetin supplementation (100 mg kg-1 BW) for 12 weeks. Ethanol feeding or treatment induced ferroptosis in mice and AML12 cells, which is associated with increased MAMs formation and PERK expression within MAMs. Quercetin attenuates these changes and protects against ethanol-induced liver injury. The antiferroptotic effect of quercetin is abolished by ferroptosis inducers, but mimicked by ferroptosis inhibitors and PERK knockdown. The study demonstrates that PERK structure, rather than its kinase activity (transfected with the K618A site mutation that inhibits kinase activity-ΔK plasmid or protein C terminal knockout-ΔC plasmid of PERK), mediates the enhanced MAMs formation and ferroptosis during the ethanol exposure. CONCLUSION: Quercetin ameliorates ethanol-induced liver injury by inhibiting ferroptosis via modulating PERK-dependent MAMs formation.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Mice , Animals , Ethanol/toxicity , Quercetin/pharmacology , Quercetin/metabolism , Protein Kinases , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Mice, Inbred C57BL , Endoplasmic Reticulum/metabolism
7.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 133-139, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38514262

ABSTRACT

Objective: To explore the association between aldehyde dehydrogenase 2 (ALDH2) gene polymorphisms and abnormal liver function-induced by acetaminophen (APAP) drugs. Methods: An ALDH2 gene knockout mouse model was constructed using CRISPR/Cas9 gene editing technology. The obtained heterozygous mice were mated with opposite sex of heterozygotes. Genomic DNA was extracted from the tail of the offspring mouse. The polymerase chain reaction (PCR) method was used to determine the ALDH2 genotype. APAP was further used to induce acute drug-induced liver injury models in wild-type and ALDH2 knockout mice. Blood and liver tissues of mice were collected for liver function index, HE staining, F4/80 immunohistochemistry, and other detections. The intergroup mean was compared using a one-way ANOVA. The LSD- t test was used for pairwise comparison. Results: ALDH2 knockout mice were bred successfully. The genotyping of the offspring was segregated into the wild-type (ALDH2(+/+)), heterozygous mutant (ALDH2(+/-)), and homozygous mutant (ALDH2(-/-)), respectively. Biochemical and histological results after APAP modeling showed that the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin (TBil) was not significantly increased in the blank control group (P < 0.05), while the ALT, AST,ALP, and TBil were all elevated in the APAP experimental group. The levels of ALT (P  = 0.004), AST (P = 0.002), and TBil (P = 0.012) were significantly elevated among the mutant group compared to those in the wild-type group, and the expression levels of these indicators were also significantly elevated among the homozygous mutant group compared to those in the heterozygous mutant group (P = 0.003, 0 and 0.006). In addition, the ALP levels were higher in the heterozygous mutation group than those in the homozygous mutant group (P = 0.085) and wild-type group mice, but the difference was only statistically significant compared to wild-type mice (P = 0.002). HE staining results showed that mice in the APAP experimental group had hepatocyte degeneration, necrosis, and increased inflammatory cell infiltration, which was mostly evident in mutant mice. Simultaneously, the F4/80 immunohistochemical staining results showed that brown granules were visible in the liver tissue of APAP experimental group mice, and its expression levels were significantly enhanced compared to the blank control group. Conclusion: APAP-induced liver function abnormalities were associated with the ALDH2 gene polymorphism. The liver injury symptoms were increased in ALDH2 mutant mice following APAP modeling, and the ALDH2 gene defect may alleviate, to some extent, APAP-induced liver function abnormalities.


Subject(s)
Aldehyde Oxidoreductases , Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Animals , Mice , Acetaminophen/adverse effects , Acetaminophen/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Liver/pathology , Mice, Knockout , Chemical and Drug Induced Liver Injury/pathology , Alanine Transaminase
8.
J Biochem Mol Toxicol ; 38(3): e23671, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38454809

ABSTRACT

Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Pyridostigmine Bromide/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Chemical and Drug Induced Liver Injury, Chronic/complications , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Liver/metabolism , Oxidative Stress , Liver Cirrhosis/metabolism , Obesity/drug therapy , Obesity/metabolism , Diet , Diet, High-Fat/adverse effects
9.
Redox Biol ; 71: 103088, 2024 May.
Article in English | MEDLINE | ID: mdl-38401290

ABSTRACT

Acetaminophen (APAP)-induced liver injury is one of the most prevalent causes of acute liver failure (ALF). We assessed the role of the bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 in APAP-induced hepatotoxicity. The molecular mechanisms that regulate the balance between cell death and survival and the response to oxidative stress induced by APAP was assessed in cultured human hepatocyte-derived (Huh7) cells treated with pharmacological inhibitors of ALK receptors and with modulated expression of ALK2 or ALK3 by lentiviral infection, and in a mouse model of APAP-induced hepatotoxicity. Inhibition of ALK3 signalling with the pharmacological inhibitor DMH2, or by silencing of ALK3, showed a decreased cell death both by necrosis and apoptosis after APAP treatment. Also, upon APAP challenge, ROS generation was ameliorated and, thus, ROS-mediated JNK and P38 MAPK phosphorylation was reduced in ALK3-inhibited cells compared to control cells. These results were also observed in an experimental model of APAP-induced ALF in which post-treatment with DMH2 after APAP administration significantly reduced liver tissue damage, apoptosis and oxidative stress. This study shows the protective effect of ALK3 receptor inhibition against APAP-induced hepatotoxicity. Furthermore, findings obtained from the animal model suggest that BMP signalling might be a new pharmacological target for the treatment of ALF.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Morpholines , Mice , Animals , Humans , Acetaminophen/adverse effects , Reactive Oxygen Species/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Hepatocytes/metabolism , Oxidative Stress , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Mice, Inbred C57BL
10.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338338

ABSTRACT

Liver damage caused by various factors results in fibrosis and inflammation, leading to cirrhosis and cancer. Fibrosis results in the accumulation of extracellular matrix components. The role of STAT proteins in mediating liver inflammation and fibrosis has been well documented; however, approved therapies targeting STAT3 inhibition against liver disease are lacking. This study investigated the anti-fibrotic and anti-inflammatory effects of STAT3 decoy oligodeoxynucleotides (ODN) in hepatocytes and liver fibrosis mouse models. STAT3 decoy ODN were delivered into cells using liposomes and hydrodynamic tail vein injection into 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice in which liver injury was induced. STAT3 target gene expression changes were verified using qPCR and Western blotting. Liver tissue fibrosis and bile duct proliferation were assessed in animal experiments using staining techniques, and macrophage and inflammatory cytokine distribution was verified using immunohistochemistry. STAT3 decoy ODN reduced fibrosis and inflammatory factors in liver cancer cell lines and DDC-induced liver injury mouse model. These results suggest that STAT3 decoy ODN may effectively treat liver fibrosis and must be clinically investigated.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hepatitis , Liver Neoplasms , Mice , Animals , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver , Fibrosis , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Cell Line , Oligonucleotides, Antisense/metabolism , Hepatitis/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism
11.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338766

ABSTRACT

Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Proline , Animals , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Extracellular Signal-Regulated MAP Kinases/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Liver/metabolism , Macrophages/metabolism , Oxidative Stress , Proline/analogs & derivatives , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Macrophage Colony-Stimulating Factor/drug effects , Macrophage Colony-Stimulating Factor/metabolism
12.
Int J Biol Macromol ; 261(Pt 2): 129863, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307425

ABSTRACT

This study aimed to provide scientific evidence that Polygonatum polysaccharide can be developed as a dietary supplement and medication for treating liver injuries. A water-soluble polysaccharide (PSP-N-c-1), with an average molecular weight of 3.45 kDa, was isolated and purified from the water extract of Polygonatum using DEAE cellulose column chromatography, CL-6B agarose gel chromatography, and Sephadex G100 chromatography. High-performance liquid chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy analyses revealed that PSP-N-c-1 might be linear α-(1 â†’ 4)-glucans with α-Glcp residues linked to the backbone at C-6. In vitro experiments revealed that PSP-N-c-1 exhibited protective effects against CCl4-induced damage in HepG2 cells. In vivo experiments demonstrated that PSP-N-c-1 exhibited a hepatoprotective effect by enhancing antioxidant enzyme activity, inhibiting lipid peroxidation, and reducing the activity of pro-inflammatory mediators. Besides, PSP-N-c-1 could attenuate oxidative stress and inflammatory responses by activating the Nrf2-mediated signaling pathways and regulating the TLR4-mediated NF-κB signaling pathways. These findings demonstrated that PSP-N-c-1 may serve as a supplement for alleviating chemical liver damage.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Polygonatum , NF-kappa B/metabolism , Polygonatum/chemistry , NF-E2-Related Factor 2/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Signal Transduction , Antioxidants , Liver , Polysaccharides/chemistry , Water/metabolism
13.
Int Immunopharmacol ; 128: 111546, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38237224

ABSTRACT

Acute liver injury (ALI) is a common clinical disease caused by sepsis, metabolic syndrome, hepatitis virus. Macrophage plays an important role in the development of ALI, which is characterized by polarization and inflammatory regulation. The polarization process of macrophages is related to membrane binding proteins and adaptors. Protein 4.1R acts as an adaptor, linking membrane proteins to the cytoskeleton, and is involved in cell activation and cytokine secretion. However, whether protein 4.1R is involved in regulating macrophage polarization and inflammation-induced liver injury remains unknown. In this study, protein 4.1R is identified with the special effect on macrophage M1 polarization. And it is further demonstrated that protein 4.1R deficiency significantly enhance glycolytic metabolism. Mechanistically, the regulation of protein 4.1R on pyruvate kinase M2 (PKM2) plays a key role in glycolysis metabolism. In addition, we found that protein 4.1R directly interacts with toll-like receptor 4 (TLR4), inhibits the activation of the AKT/HIF-1α signaling pathway. In conclusion, protein 4.1R targets HIF-1α mediated glycolysis regulates M1 macrophage polarization, indicating that protein 4.1R is a candidate for regulating macrophage mediated inflammatory response. In conclusion, we have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy. We have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Sepsis , Mice , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Glycolysis , Sepsis/metabolism
14.
Ecotoxicol Environ Saf ; 270: 115923, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38171107

ABSTRACT

3,3',4',4',5-Polychlorinated biphenyls (PCB126) is classified as a persistent organic environmental pollutant that can cause liver damage by producing excessive reactive oxygen species (ROS). ROS also can stimulate neutrophil extracellular traps (NETs) formation, which cause damage to organism if NETs are produced in excess. Melatonin is generally considered to possess strong antioxidant and anti-inflammation prosperities, but it is unclear whether it can alleviate PCB126-induced injury. To explore whether PCB126-induced liver injury is related to the formation of NETs and whether melatonin has a potent protective effect, we established PCB126 exposure/ PCB126 and melatonin co-treatment mouse models by gavage. To further clarify the specific mechanism, we also cultured neutrophils and AML12 cells to replicate in vivo model. Here, we found PCB126 exposure resulted in an elevation in the activities of MDA, LPO, PCO, and 8-OHdG, and a reduction in the activities of CAT, GSH-PX and SOD. We found that PCB126 exposure led to an elevation in the expression levels of chemokines (CCL2, CCL3, CCL4, CXCL12, and CXCL8) and marker factors for NETs formation (MPO, NE, NOX2, PKCα, and PKCζ) in the PCB126 group. IF, SYTOX staining, and SEM results also revealed that PCB126 could stimulate NETs formation. In addition, results of a co-culture system of PBNs and AML12 cells revealed that the expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) significantly decreased and the expression levels of metabolism factors (Fas, Acc, and Srebp) slightly decreased for scavenging NETs, indicating NETs formation aggravated PCB126-induced hepatic damages. Noteworthy, treatment with melatonin reversed these results. In summary, our findings revealed that melatonin alleviated hepatic damage aggravated by PCB126-induced ROS-dependent NETs formation through suppressing excessive ROS production. This finding not only enriches toxicological mechanism of PCB126, but more importantly extends biological effects of melatonin and its potential application values.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Extracellular Traps , Melatonin , Polychlorinated Biphenyls , Mice , Animals , Extracellular Traps/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Reactive Oxygen Species/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Lipid Metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Neutrophils/metabolism
15.
Environ Pollut ; 343: 123291, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38176639

ABSTRACT

Aflatoxins B1 (AFB1) and antibiotic (AN) carry co-exposure risks, with the gut being a target organ for their combined effects. However, the current understanding of the impact of AN on gut and liver injury induced by AFB1 remains limited. In this study, we conducted a 9-week investigation into the implications of AN (ampicillin and penicillin) treatment on AFB1-induced intestinal and liver injury in C57BL/6J male mice fed a normal diet (ND) and a high-fat diet (HFD). The results showed that AN treatment significantly reduce the total number and diversity of intestinal species in both ND and HFD mice exposed to AFB1. Moreover, AN treatment alleviated AFB1-induced liver injury and lipid accumulation in mice on ND and HFD, while improving abnormal lipid metabolism in the liver and serum. However, AN treatment also promoted intestinal damage and reduced the levels of short-chain fatty acids in the gut. Correlation analysis demonstrated that, under the two dietary patterns, microorganisms across various genera were significantly positively or negatively correlated with alterations in liver, serum, and intestinal biochemical indexes. These genera include Akkermansia, Robinsoniella, Parabacteroides, Escherichia-Shigel, and Parabacteroides, Odoribacter. AN may alleviate long-term AFB1-induced liver injury through the regulation of intestinal microorganisms, with the effect being more pronounced in mice following an HFD pattern. These findings provide novel insights into the effects of AFB1 on the gut‒liver axis under complex exposure conditions, as well as the relationship between gut microbial homeostasis and liver injury across different dietary patterns.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Gastrointestinal Microbiome , Mice , Male , Animals , Aflatoxin B1/toxicity , Anti-Bacterial Agents/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects
16.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 923-930, 2024 02.
Article in English | MEDLINE | ID: mdl-37535075

ABSTRACT

Oltipraz (OPZ) is a synthetic dithiolethione with potential as a cancer chemopreventive agent, which can work by inducing detoxification enzymes. OPZ is an activator of nuclear factor erythroid 2-related factor 2 (Nrf2), suggesting its involvement in enzyme induction and possible protection against drug-induced liver injury. In this study, we present OPZ-mediated protection of mice against acetaminophen (APAP)-induced liver injury and discuss its possible contributing factors. Overnight-fasted male CD-1 mice were administered APAP intraperitoneally, and some mice were administered OPZ 16 h before APAP. Hepatotoxicity was assessed by measuring serum alanine aminotransferase leakage and histopathological evaluation. The hepatic mRNA expressions of CYP2E1, glutamate cysteine ligase (GCL), and NAD(P)H:quinone oxidoreductase (NQO1) were measured by real-time reverse-transcription polymerase chain reaction. OPZ protected mice from APAP-induced liver injury in a dose-dependent manner, but did not alter hepatic glutathione (GSH) content or GCL expression in control mice, indicating that its hepatoprotective effect is not due to changes in basal GSH levels. OPZ did not affect CYP2E1 expression or APAP-induced early GSH depletion, suggesting it does not inhibit the metabolic activation of APAP to produce N-acetyl-p-benzoquinone imine. In contrast, after GSH depletion, OPZ accelerated hepatic GSH recovery. APAP significantly increased GCL expression during liver injury, but OPZ treatment only led to additional NQO1 expression. This suggests that NQO1 is responsible for the enhanced GSH recovery and protection against APAP-induced liver injury seen in OPZ-treated mice. In summary, OPZ protects against APAP-induced liver injury by inducing NQO1 expression and resulting in improved GSH recovery.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Pyrazines , Thiones , Thiophenes , Male , Animals , Mice , Acetaminophen/toxicity , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism
17.
Int Immunopharmacol ; 126: 111305, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38043264

ABSTRACT

BACKGROUND: Severe heat stroke is often complicated by multiple organ failure, including liver injury. Recent evidence indicates that the underlying mechanism constitutes sterile inflammation triggered by cell damage, in which hepatocyte NOD-like receptor family pyrin domain-containing 3 inflammasome activation and pyroptosis play key roles. As extracellular histones act as damage-associated molecular patterns and mediate tissue toxicity and inflammation, we aimed to investigate whether extracellular histones contribute to inducing hepatocyte pyroptosis following heat stroke, promoting the development of liver inflammation and injury, and elucidate the potential underlying mechanisms. METHODS: Exogenous histones were administered to AML-12 murine hepatocytes or male aged 8-12 week mice following hyperthermic treatment (at 39 °C in a chamber with 60 % relative humidity). Prior to heat exposure, endogenous histones were neutralized using neutralizing antibodies, inflammasomes were inhibited by RNA silencing, and Toll-like receptor 9 was modulated using a pharmacological agonist or antagonist. Inflammasome assembly, caspase-1 activation, histological changes, and liver enzyme levels were measured. Statistical comparison of more than two groups was performed using one-way ANOVA with Tukey's post-hoc testing. The correlations were analyzed using Pearson's correlation test. All experiments were repeated thrice. A p-value < 0.05 was considered significant. RESULTS: Heat stroke induced histone release into the extracellular space at levels correlating with liver injury. Moreover, extracellular histones augmented heat stroke-induced liver injury both in vitro and in vivo in a dose- and time-dependent manner, whereas neutralizing histones conferred protection following heat stroke. Histones mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation through the Toll-like receptor 9 signaling pathway, which resulted in hepatocyte pyroptosis and liver inflammation. CONCLUSIONS: Our findings show that histones are critical mediators of hepatocyte pyroptosis that aggravate liver injury in a heat stroke setting. Therefore, we suggest extracellular histones as potential therapeutic targets to limit heat stroke-induced cell death and liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Heat Stroke , Hepatitis , Male , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Histones/metabolism , Inflammasomes/metabolism , Pyroptosis , Toll-Like Receptor 9/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Hepatocytes/metabolism , Inflammation , Hepatitis/pathology , Heat Stroke/complications , Heat Stroke/pathology
18.
J Leukoc Biol ; 115(2): 322-333, 2024 01 19.
Article in English | MEDLINE | ID: mdl-37726110

ABSTRACT

Scavenger receptor A (SRA) is preferentially expressed in macrophages and implicated as a multifunctional pattern recognition receptor for innate immunity. Hepatic macrophages play a primary role in the pathogenesis of alcoholic liver disease. Herein, we observed that SRA expression was significantly increased in the liver tissues of mice with alcohol-related liver injury. SRA-deficient (SRA-/-) mice developed more severe alcohol-induced liver disease than wild-type mice. Enhanced liver inflammation existed in alcohol-challenged SRA-/- mice and was associated with increased Notch activation in hepatic macrophages compared with wild-type control animals. Mechanistically, SRA directly bound with Notch1 and suppressed its S-glutathionylation, thereby inhibiting Notch pathway activation. Further, we determined that the SRA interacted with thioredoxin-1 (Trx-1), a redox-active protein. SRA inhibited Trx-1 dimerization and facilitated the interaction of Trx-1 with Notch1. Application of a Trx-1-specific inhibitory agent during macrophage stimulation abolished SRA-mediated regulation of the Notch pathway and its downstream targets. In summary, our study revealed that SRA plays a critical role in macrophage inflammatory response by targeting Notch1 for its glutathionylation. SRA-mediated negative regulation of Notch activation might serve as a novel therapeutic strategy for alcohol-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Scavenger Receptors, Class A/metabolism , Macrophages/metabolism , Receptors, Scavenger/metabolism , Liver/metabolism , Immunologic Factors , Ethanol/toxicity , Thioredoxins/genetics , Thioredoxins/metabolism , Mice, Inbred C57BL , Mice, Knockout
19.
J Appl Toxicol ; 44(4): 501-509, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37873635

ABSTRACT

Dictamnine (DIC), as the most abundant furoquinoline alkaloid ingredient of the herbal medicine Cortex Dictamni (CD), can induce severe liver injury. A previous study found that DIC-induced liver injury was initiated by cytochrome P4503A (CYP3A)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Schisantherin A (SchA) is the major lignan component of the herbal medicine Schisandra chinensis (SC). SC is frequently combined with CD used in numerous Chinese medicinal formulas for the treatment of eczema and urticaria. Furthermore, SC could protect against CD-induced hepatotoxicity. The objective of the study was to investigate the protective effect of SchA on DIC-induced hepatotoxicity based on pharmacokinetic interactions. The studies found that SchA exerted a protective effect on DIC-induced hepatotoxicity in a dose-dependent manner. Pharmacokinetic studies showed that pretreatment with SchA enhanced the area under concentration-time curve (AUC) and maximal concentration (Cmax ) values of DIC in the serum and liver tissue of mice, indicating that SchA could augment the accumulation of DIC in the circulation. In vitro metabolism assays with mouse liver microsomes (MLMs) showed that SchA reduced the production of DIC-glutathione (GSH) conjugate. In addition, SchA significantly reduced the excretion of DIC-GSH conjugate in the urine of mice and relieved hepatic GSH depletion induced by DIC. These results suggested that SchA could inhibit the metabolic activation of DIC in vitro and in vivo. In summary, our findings showed that the observed pharmacokinetic interactions might be attributable to the inhibition of the metabolism of DIC by SchA, which might be responsible for the protection of SchA against DIC-induced hepatotoxicity. Therefore, the development of a standardized combination of DIC and SchA may protect patients from DIC-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Cyclooctanes , Dioxoles , Lignans , Quinolines , Humans , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Lignans/pharmacology , Lignans/therapeutic use , Lignans/metabolism , Liver , Plant Extracts/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism
20.
Cell Mol Gastroenterol Hepatol ; 17(2): 251-265, 2024.
Article in English | MEDLINE | ID: mdl-37879407

ABSTRACT

BACKGROUND & AIMS: Acetaminophen (APAP) overdose is the most common cause of drug-induced liver injury worldwide. Uric acid (UA) is involved in sterile inflammation in many organs, but its role in APAP-induced liver injury remains elusive. METHODS: We quantified the concentration of UA in the serum and liver tissues of APAP-overdosed mice and explored the changes in proteins involved in UA synthesis, absorption, and degeneration on APAP stimulation. We also examined the effects of inhibiting hepatocyte UA synthesis or reabsorption on APAP-induced liver injury in mice. Furthermore, we explored the process of UA clearance by peripheral macrophages. RESULTS: APAP overdose significantly increased intrahepatic UA contents, which occurred earlier than apparent hepatocyte injury in APAP-overdosed mice. APAP overdose induced significant DNA leakage and may thereby increase the substrate of UA synthesis. APAP overdose also significantly increased the enzymatic activity of xanthine oxidase and urate oxidase and decreased the expression of the UA reabsorption transporter GLUT9 in hepatocytes. Inhibiting hepatocyte UA synthesis by febuxostat or reabsorption by hepatic-specific knockout of GLUT9 alleviated APAP-induced liver injury. Further experiments showed that monosodium urate but not soluble UA may be a major form of UA mediating hepatocyte injury. Additionally, monosodium urate further recruited circulating macrophages into the liver and then aggravated inflammation by increasing the levels of inflammatory factors and reactive oxygen species. Deletion of macrophages significantly ameliorated APAP-induced liver injury in mice. CONCLUSIONS: APAP overdose induces excessive UA production and leads to local high concentrations in the liver, which further injures cells and induces liver inflammation. Inhibiting the production of UA may be a potential therapeutic option for treating APAP-induced liver injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Acetaminophen/adverse effects , Uric Acid/metabolism , Uric Acid/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Hepatocytes/metabolism , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...