Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.273
Filter
1.
Biomaterials ; 310: 122627, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38823194

ABSTRACT

The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver , Humans , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Liver/pathology , Animals , Swine , Printing, Three-Dimensional , Microfluidics/methods , Models, Biological , Drug Evaluation, Preclinical/methods , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Biomimetics/methods
2.
Biotechnol J ; 19(6): e2300570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864387

ABSTRACT

This article primarily introduces a new treatment for liver fibrosis/cirrhosis. We developed a hepatic patch by combining decellularized liver matrix (DLM) with the hepatocyte growth factor (HGF)/heparin-complex and evaluated its restorative efficacy. In vitro prophylactic results, the HGF/heparin-DLM patches effectively mitigated CCl4-induced hepatocyte toxicity and restored the cytotoxicity levels to the baseline levels by day 5. Furthermore, these patches restored albumin synthesis of injured hepatocytes to more than 70% of the normal levels within 5 days. In vitro therapeutic results, the urea synthesis of the injured hepatocytes reached 91% of the normal levels after 10 days of culture, indicating successful restoration of hepatic function by the HGF/heparin-DLM patches in both prophylactic and therapeutic models. In vivo results, HGF/heparin-DLM patches attached to the liver and gut exhibited a significant decrease in collagen content (4.44 times and 2.77 times, respectively) and an increase in glycogen content (1.19 times and 1.12 times, respectively) compared to the fibrosis group after 1 week, separately. In summary, liver function was restored and inflammation was inhibited through the combined effects of DLM and the HGF/heparin-complex in fibrotic liver. The newly designed hepatic patch holds promise for both in vitro and in vivo regeneration therapy and preventive health care for liver tissue engineering.


Subject(s)
Carbon Tetrachloride , Heparin , Hepatocyte Growth Factor , Hepatocytes , Liver , Animals , Carbon Tetrachloride/toxicity , Hepatocyte Growth Factor/metabolism , Heparin/chemistry , Hepatocytes/drug effects , Male , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Tissue Engineering/methods , Mice , Rats , Liver Cirrhosis/therapy , Chemical and Drug Induced Liver Injury/metabolism , Humans , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley
3.
Theranostics ; 14(8): 3029-3042, 2024.
Article in English | MEDLINE | ID: mdl-38855187

ABSTRACT

Acetaminophen (APAP) overdosing is a major cause of acute liver failure worldwide and an established model for drug-induced acute liver injury (ALI). While studying gene expression during murine APAP-induced ALI by 3'mRNA sequencing (massive analysis of cDNA ends, MACE), we observed splenic mRNA accumulation encoding for the neutrophil serine proteases cathepsin G, neutrophil elastase, and proteinase-3 - all are hierarchically activated by cathepsin C (CtsC). This, along with increased serum levels of these proteases in diseased mice, concurs with the established phenomenon of myeloid cell mobilization during APAP intoxication. Objective: In order to functionally characterize CtsC in murine APAP-induced ALI, effects of its genetic or pharmacological inhibition were investigated. Methods and Results: We report on substantially reduced APAP toxicity in CtsC deficient mice. Alleviation of disease was likewise observed by treating mice with the CtsC inhibitor AZD7986, both in short-term prophylactic and therapeutic protocols. This latter observation indicates a mode of action beyond inhibition of granule-associated serine proteases. Protection in CtsC knockout or AZD7986-treated wildtype mice was unrelated to APAP metabolization but, as revealed by MACE, realtime PCR, or ELISA, associated with impaired expression of inflammatory genes with proven pathogenic roles in ALI. Genes consistently downregulated in protocols tested herein included cxcl2, mmp9, and angpt2. Moreover, ptpn22, a positive regulator of the toll-like receptor/interferon-axis, was reduced by targeting CtsC. Conclusions: This work suggests CtsC as promising therapeutic target for the treatment of ALI, among others paradigmatic APAP-induced ALI. Being also currently evaluated in phase III clinical trials for bronchiectasis, successful application of AZD7986 in experimental APAP intoxication emphasizes the translational potential of this latter therapeutic approach.


Subject(s)
Acetaminophen , Cathepsin C , Chemical and Drug Induced Liver Injury , Mice, Inbred C57BL , Mice, Knockout , Animals , Acetaminophen/adverse effects , Cathepsin C/metabolism , Cathepsin C/genetics , Mice , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Male , Disease Models, Animal
4.
Int J Immunopathol Pharmacol ; 38: 3946320241250286, 2024.
Article in English | MEDLINE | ID: mdl-38764158

ABSTRACT

Background: Aluminum phosphide (AlP) poisoning is prevalent in numerous countries, resulting in high mortality rates. Phosphine gas, the primary agent responsible for AlP poisoning, exerts detrimental effects on various organs, notably the heart, liver and kidneys. Numerous studies have documented the advantageous impact of Coenzyme Q10 (CoQ10) in mitigating hepatic injuries. The objective of this investigation is to explore the potential protective efficacy of CoQ10 against hepatic toxicity arising from AlP poisoning. Method: The study encompassed distinct groups receiving almond oil, normal saline, exclusive CoQ10 (at a dosage of 100 mg/kg), AlP at 12 mg/kg; LD50 (lethal dose for 50%), and four groups subjected to AlP along with CoQ10 administration (post-AlP gavage). CoQ10 was administered at 10, 50, and 100 mg/kg doses via Intraparietal (ip) injections. After 24 h, liver tissue specimens were scrutinized for mitochondrial complex activities, oxidative stress parameters, and apoptosis as well as biomarkers such as aspartate transaminase (AST) and alanine transaminase (ALT). Results: AlP induced a significant decrease in the activity of mitochondrial complexes I and IV, as well as a reduction in catalase activity, Ferric Reducing Antioxidant Power (FRAP), and Thiol levels. Additionally, AlP significantly elevated oxidative stress levels, indicated by elevated reactive oxygen species (ROS) production, and resulted in the increment of hepatic biomarkers such as AST and ALT. Administration of CoQ10 led to a substantial improvement in the aforementioned biochemical markers. Furthermore, phosphine exposure resulted in a significant reduction in viable hepatocytes and an increase in apoptosis. Co-treatment with CoQ10 exhibited a dose-dependent reversal of these observed alterations. Conclusion: CoQ10 preserved mitochondrial function, consequently mitigating oxidative damage. This preventive action impeded the progression of heart cells toward apoptosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver , Oxidative Stress , Phosphines , Ubiquinone , Phosphines/poisoning , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Animals , Oxidative Stress/drug effects , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Apoptosis/drug effects , Antioxidants/pharmacology , Antioxidants/therapeutic use , Rats , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , Aluminum Compounds/toxicity , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Reactive Oxygen Species/metabolism , Rats, Wistar
5.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
6.
World J Gastroenterol ; 30(18): 2454-2466, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764769

ABSTRACT

BACKGROUND: Drug-induced liver injury (DILI) is one of the most common adverse events of medication use, and its incidence is increasing. However, early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests. AIM: To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools. METHODS: Saliva samples from 31 DILI patients and 35 healthy controls (HCs) were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry. Subsequent analyses, including partial least squares-discriminant analysis modeling, t tests and weighted metabolite coexpression network analysis (WMCNA), were conducted to identify key differentially expressed metabolites (DEMs) and metabolite sets. Furthermore, we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction. The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves. RESULTS: We found 247 differentially expressed salivary metabolites between the DILI group and the HC group. Using WMCNA, we identified a set of 8 DEMs closely related to liver injury for further prediction testing. Interestingly, the distinct separation of DILI patients and HCs was achieved with five metabolites, namely, 12-hydroxydodecanoic acid, 3-hydroxydecanoic acid, tetradecanedioic acid, hypoxanthine, and inosine (area under the curve: 0.733-1). CONCLUSION: Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients. Our study may provide a potentially feasible and noninvasive diagnostic method for DILI, but further validation is needed.


Subject(s)
Biomarkers , Chemical and Drug Induced Liver Injury , Metabolomics , Saliva , Humans , Biomarkers/analysis , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Saliva/chemistry , Saliva/metabolism , Male , Female , Metabolomics/methods , Middle Aged , Adult , Case-Control Studies , Tandem Mass Spectrometry/methods , ROC Curve , Aged , Chromatography, High Pressure Liquid , Early Diagnosis
7.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791241

ABSTRACT

Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid ß-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Liver , Humans , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/chemically induced , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/etiology , Adverse Outcome Pathways , Liver/pathology , Liver/metabolism , Liver/drug effects , Oxidative Stress
8.
ACS Appl Mater Interfaces ; 16(20): 25610-25621, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38741479

ABSTRACT

Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 µm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.


Subject(s)
Acetaminophen , Drug Evaluation, Preclinical , Liver , Spheroids, Cellular , Tissue Scaffolds , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Acetaminophen/chemistry , Acetaminophen/pharmacology , Humans , Tissue Scaffolds/chemistry , Liver/drug effects , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Polyesters/chemistry , Cell Survival/drug effects , Animals
9.
Toxicology ; 505: 153829, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740170

ABSTRACT

Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.


Subject(s)
Chemical and Drug Induced Liver Injury , Coculture Techniques , Spheroids, Cellular , Humans , Spheroids, Cellular/drug effects , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Hep G2 Cells , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , THP-1 Cells , Liver/drug effects , Liver/pathology , Liver/metabolism , Cell Survival/drug effects
10.
J Transl Med ; 22(1): 525, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822329

ABSTRACT

Acetaminophen (APAP)-induced liver injury (AILI) is a pressing public health concern. Although evidence suggests that Bifidobacterium adolescentis (B. adolescentis) can be used to treat liver disease, it is unclear if it can prevent AILI. In this report, we prove that B. adolescentis significantly attenuated AILI in mice, as demonstrated through biochemical analysis, histopathology, and enzyme-linked immunosorbent assays. Based on untargeted metabolomics and in vitro cultures, we found that B. adolescentis generates microbial metabolite hypaphorine. Functionally, hypaphorine inhibits the inflammatory response and hepatic oxidative stress to alleviate AILI in mice. Transcriptomic analysis indicates that Cry1 expression is increased in APAP-treated mice after hypaphorine treatment. Overexpression of Cry1 by its stabilizer KL001 effectively mitigates liver damage arising from oxidative stress in APAP-treated mice. Using the gene expression omnibus (GEO) database, we verified that Cry1 gene expression was also decreased in patients with APAP-induced acute liver failure. In conclusion, this study demonstrates that B. adolescentis inhibits APAP-induced liver injury by generating hypaphorine, which subsequently upregulates Cry1 to decrease inflammation and oxidative stress.


Subject(s)
Acetaminophen , Bifidobacterium adolescentis , Chemical and Drug Induced Liver Injury , Liver , Mice, Inbred C57BL , Animals , Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Humans , Oxidative Stress/drug effects , Mice , Gene Expression Regulation/drug effects , Pyridines
11.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2585-2596, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812159

ABSTRACT

This study investigated the effects and mechanisms of total saponins of Panax japonicus(TSPJ) against liver injury induced by acetaminophen(APAP). Male Kunming mice were randomly divided into a blank control group, TSPJ group(200 mg·kg~(-1), ig), model group, APAP+ TSPJ low-dose group(50 mg·kg~(-1), ig), APAP+ TSPJ medium-dose group(100 mg·kg~(-1), ig), APAP+ TSPJ high-dose group(200 mg·kg~(-1), ig), and APAP+ N-acetyl-L-cysteine group(200 mg·kg~(-1), ip). The administration group received the corresponding medications via ig or ip once a day for 14 consecutive days. After the last administration for one hour, except for the blank control group and TSPJ group, all groups of mice were given 500 mg·kg~(-1) APAP by gavage. After 24 hours, mouse serum and liver tissue were collected for serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), reactive oxygen species(ROS), tumor necrosis factor alpha(TNF-α), interleukin-1 beta(IL-1ß), cyclooxygenase-2(COX-2), IL-6, IL-4, IL-10, as well as lactate dehydrogenase(LDH), glutathione(GSH), superoxide dismutase(SOD), catalase(CAT), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and myeloperoxidase(MPO) liver tissue. Hematoxylin-eosin staining was used to observe the morphological changes of liver tissue. The mRNA expression levels of lymphocyte antigen 6G(Ly6G), galectin 3(Mac-2), TNF-α, IL-1ß, COX-2, IL-6, IL-4, and IL-10 in liver tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expression levels of Ly6G, Mac-2, extracellular regulated protein kinases(ERK), phosphorylated extracellular regulated protein kinases(p-ERK), COX-2, inhibitor of nuclear factor κB protein α(IκBα), phosphorylated inhibitor of nuclear factor κB protein α(p-IκBα), and nuclear factor-κB subunit p65(NF-κB p65) in cytosol and nucleus in liver tissue. The results manifested that TSPJ dramatically reduced liver coefficient, serum ALT, AST, ROS, TNF-α, IL-1ß, IL-6, and COX-2 levels, LDH, MPO, and MDA contents in liver tissue, and mRNA expressions of TNF-α, IL-1ß, and IL-6 in APAP-induced liver injury mice. It prominently elevated serum IL-4 and IL-10 levels, GSH, CAT, SOD, and T-AOC contents, and mRNA expressions of IL-4 and IL-10 in liver tissue, improved the degree of liver pathological damage, and suppressed neutrophil infiltration and macrophage recruitment in liver tissue. In addition, TSPJ lessened the mRNA and protein expressions of neutrophil marker Ly6G, macrophage marker Mac-2, and COX-2 in liver tissue, protein expressions of p-ERK, p-IκBα, and NF-κB p65 in nuclear, and p-ERK/ERK and p-IκBα/p-IκBα ratios and hoisted protein expression of NF-κB p65 in cytosol. These results suggest that TSPJ has a significant protective effect on APAP-induced liver injury in mice, and it can alleviate APAP-induced oxidative damage and inflammatory response. Its mechanism may be related to suppressing ERK/NF-κB/COX-2 signaling pathway activation, thus inhibiting inflammatory cell infiltration, cytokine production, and liver cell damage.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Cyclooxygenase 2 , Liver , NF-kappa B , Panax , Saponins , Signal Transduction , Animals , Acetaminophen/adverse effects , Acetaminophen/toxicity , Mice , Panax/chemistry , Male , Saponins/pharmacology , Saponins/administration & dosage , NF-kappa B/genetics , NF-kappa B/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Liver/drug effects , Liver/metabolism , Signal Transduction/drug effects , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology
12.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2575-2584, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812158

ABSTRACT

Asari Radix et Rhizoma is a common drug for relieving exterior syndrome in clinics, but its toxicity limits its use. In this study, the mechanism of hepatic damage of Asari Radix et Rhizoma was studied by network pharmacology and metabolomics. The hepatic damage-related dataset, namely GSE54257 was downloaded from the GEO database. The Limma package was used to analyze the differentially expressed genes in the dataset GSE54257. Toxic components and target genes of Asari Radix et Rhizoma were screened by TCMSP, ECTM, and TOXNET. The hepatic damage target genes of Asari Radix et Rhizoma were obtained by mapping with the differentially expressed gene of GSE54257, and a PPI network was constructed. GO and KEGG enrichment analysis of target genes were performed, and a "miRNA-target gene-signal pathway" network was drawn with upstream miRNA information. Thirty rats were divided into a blank group, a high-dose Asari Radix et Rhizoma group, and a low-dose Asari Radix et Rhizoma group, which were administered once a day. After continuous administration for 28 days, liver function indexes and liver pathological changes were detected. Five liver tissue samples were randomly collected from the blank group and high-dose Asari Radix et Rhizoma group, and small molecule metabolites were analyzed by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS). The orthogonal partial least squares-discriminant analysis(OPLS-DA) method was used to screen differential metabolites, and enrichment analysis, correlation analysis, and cluster analysis were conducted for differential metabolites. Finally, the MetaboAnalyst platform was used to conduct pathway enrichment analysis for differential metabolites. It was found that there were 14 toxic components in Asari Radix et Rhizoma, corresponding to 37 target genes, and 12 genes related to liver toxicity of Asari Radix et Rhizoma were obtained by mapping to differentially expressed genes of GSE54257. The animal test results showed that Asari Radix et Rhizoma could significantly increase the liver function index, reduce the activity of the free radical scavenging enzyme, change the liver oxidative stress level, and induce lipid peroxidation damage in rats. The results of untargeted metabolomics analysis showed that compared with the blank group, nine metabolites were up-regulated, and 16 metabolites were down-regulated in the liver tissue of the Asari Radix et Rhizoma group. These 25 metabolites had strong correlations and good clustering. Pathway enrichment analysis showed that these differential metabolites and the 12 hepatotoxic target genes of Asari Radix et Rhizoma were mainly involved in purine metabolism, as well as the biosynthesis and metabolism of valine, leucine, glycine, serine, and threonine. The study confirmed that the hepatica damage effect of Asari Radix et Rhizoma was the result of multi-component, multi-target, and multi-signaling pathways, and its mechanism may be related to inhibiting nucleotide synthesis and affecting protein metabolism.


Subject(s)
Drugs, Chinese Herbal , Liver , Metabolomics , Animals , Rats , Drugs, Chinese Herbal/administration & dosage , Liver/metabolism , Liver/drug effects , Male , Network Pharmacology , Rats, Sprague-Dawley , Asarum/chemistry , Asarum/genetics , Asarum/metabolism , Rhizome/chemistry , Humans , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/genetics
13.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2566-2574, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812157

ABSTRACT

This study aims to investigate the mitigating effect and mechanism of Cichorium glandulosum n-butanol extraction site(CGE) on the disease in carbon tetrachloride(CCl_4)-induced chronic liver injury model in rats. A chronic liver injury model was constructed by subcutaneous injection of CCl_4 olive oil solution, and after four weeks of CGE treatment, serum levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(AKP), hydroxyproline(HYP), interleukin-4(IL-4), interleukin-6(IL-6), malondialdehyde(MDA), superoxide dismutase(SOD), and tumor necrosis factor-α(TNF-α) were detected. Liver tissue was processed by hematoxylin-eosin(HE) staining and Masson staining to observe the structure of the rat liver. qPCR and Western blot were used to examine the expression of transforming growth factor-ß1(TGF-ß1)/small mothers against decapentaplegic(Smad), Toll-like receptor 4(TLR4), α-smooth muscle actin(α-SMA), and fibronectin(Fn) in rat liver tissue and hepatic stellate-T6(HSC-T6) and evaluate the inhibitory effect of CGE on HSC activation. The results showed that CGE could significantly reduce the serum levels of AST, ALT, AKP, HYP, and affect the levels of related inflammatory indexes including IL-4, IL-6, and TNF-α, and MDA in CCl_4-induced chronic liver injury in rats and had no effect on SOD activity, which could delay the process of liver injury, alleviate the hepatic collagen deposition and inflammatory infiltration, and had significant efficacy in mitigating chronic liver injury in rats. CGE could inhibit α-SMA and TLR4 protein expression in the liver tissue and reverse the increased TGF-ß1/Smad, Fn, and TLR4-related expression in HSC-T6 in vitro. The above results indicated that CGE exerted hepatoprotective effects in rats by inhibiting HSC activation and alleviated CCl_4-induced chronic liver injury in rats and could ameliorate inflammatory response and slight liver fibrosis in rat liver tissue. Its pharmacodynamic mechanism might be related to TGF-ß1/Smad and TLR4-related expression.


Subject(s)
Carbon Tetrachloride , Liver , Rats, Sprague-Dawley , Animals , Rats , Carbon Tetrachloride/adverse effects , Male , Liver/metabolism , Liver/drug effects , Liver/injuries , 1-Butanol/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Malondialdehyde/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Interleukin-4/genetics , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/genetics
14.
Zhongguo Zhen Jiu ; 44(5): 549-54, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38764105

ABSTRACT

OBJECTIVE: To observe the protective effect of wheat-grain moxibustion on cyclophosphamide (CTX)-induced liver injury in mice, and explore its mechanism based on the nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) signaling pathway. METHODS: Twenty-four male CD-1 (ICR) mice were randomly divided into a blank group, a model group, and a moxibustion group, with 8 mice in each group. The mice in the model group and the moxibustion group were intraperitoneally injected with CTX (80 mg/kg) to induce liver injury. The mice in the moxibustion group were treated with wheat-grain moxibustion at "Guanyuan" (CV 4) and bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with each acupoint being treated by 3 cones, approximately 30 seconds per cone, once daily for 7 days. After intervention, the general condition of the mice was observed; the liver mass was measured and the liver index was calculated; HE staining was used to observe the morphology of the liver, and the liver tissue pathological score was assessed; ELISA was used to detect the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH) and the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in the liver; Western blot and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expression of Nrf2, Keap1, and quinione acceptor oxidoreductase 1 (NQO1) in the liver. RESULTS: Compared with the blank group, the mice in the model group showed sluggishness, unsteady gait, and decreased body weight; liver index was increased (P<0.01); liver cells were loosely arranged, with a small number of cell swollen and exhibiting balloon-like changes; liver tissue pathological score was increased (P<0.05); the serum levels of AST, ALT, GLDH, and level of MDA in the liver were increased (P<0.05), and the levels of SOD and GSH-Px in the liver were decreased (P<0.05); protein and mRNA expression of Nrf2 and NQO1 in the liver was decreased (P<0.01), protein and mRNA expression of Keap1 in the liver was increased (P<0.01). Compared with the model group, the mice in the moxibustion group showed improvement in general condition; liver index was decreased (P<0.01); liver cell structure was relatively intact and clear, and liver tissue pathological score was decreased (P<0.05); the serum levels of AST, ALT, GLDH, and level of MDA in the liver were decreased (P<0.05), and the levels of SOD and GSH-Px in the liver were increased (P<0.05, P<0.01); protein and mRNA expression of Nrf2 and NQO1 in the liver was increased (P<0.05), protein and mRNA expression of Keap1 in the liver was decreased (P<0.05). CONCLUSION: The wheat-grain moxibustion may alleviate CTX-induced liver injury by activating the Nrf2-Keap1 signaling pathway and enhancing the expression of antioxidative enzyme system in the body.


Subject(s)
Cyclophosphamide , Kelch-Like ECH-Associated Protein 1 , Liver , Moxibustion , NF-E2-Related Factor 2 , Signal Transduction , Triticum , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Male , Signal Transduction/drug effects , Humans , Cyclophosphamide/adverse effects , Triticum/chemistry , Liver/metabolism , Liver/drug effects , Mice, Inbred ICR , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/therapy , Chemical and Drug Induced Liver Injury/genetics , Antioxidants/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
15.
J Ethnopharmacol ; 332: 118364, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763368

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG), a widely used traditional Chinese medicine, exhibits anti-inflammatory and antioxidant properties. Wogonin is one of the primary bioactive components of SBG. Acetaminophen (APAP)-induced liver injury (AILI) represents a prevalent form of drug-induced liver damage and is primarily driven by inflammatory responses and oxidative stress. AIM OF STUDY: To investigate the therapeutic effects of Wogonin on AILI and the underlying mechanisms. MATERIALS AND METHODS: C57BL/6 J mice were pre-treated with Wogonin (1, 2.5, and 5 mg/kg bodyweight) for 3 days, followed by treatment with APAP (300 mg/kg bodyweight). The serum and liver tissue samples were collected at 24 h post-APAP treatment. Bone marrow-derived macrophages and RAW264.7 cells were cultured and pre-treated with Wogonin (5, 10, and 20 µM) for 30 min, followed by stimulation with lipopolysaccharide (LPS; 100 ng/mL) for 3 h. To examine the role of the PI3K/AKT signaling pathway in the therapeutic effect of Wogonin on AILI, mice and cells were treated with LY294002 (a PI3K inhibitor) and MK2206 (an AKT inhibitor). RESULTS: Wogonin pre-treatment dose-dependently alleviated AILI in mice. Additionally, Wogonin suppressed oxidative stress and inflammatory responses. Liver transcriptome analysis indicated that Wogonin primarily regulates immune function and cytokines in AILI. Wogonin suppressed inflammatory responses of macrophages by inhibiting the PI3K/AKT signaling pathway. Consistently, Wogonin exerted therapeutic effects on AILI in mice through the PI3K/AKT signaling pathway. CONCLUSIONS: Wogonin alleviated AILI and APAP-induced hepatotoxicity in mice through the PI3K/AKT signaling pathway.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Flavanones , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Acetaminophen/toxicity , Mice , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Male , RAW 264.7 Cells , Phosphatidylinositol 3-Kinases/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Scutellaria baicalensis/chemistry
16.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789868

ABSTRACT

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Subject(s)
Apoptosis , Carrier Proteins , Rutin , Animals , Humans , Male , Mice , Apoptosis/drug effects , Carrier Proteins/metabolism , Carrier Proteins/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Rutin/pharmacology
17.
Environ Pollut ; 352: 124145, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735462

ABSTRACT

Copper is an essential trace element, and excessive exposure could result in hepatoxicity, however, the underlying molecular mechanisms remain incompletely understood. The present study is aimed to investigate the molecular mechanisms of copper sulfate (CuSO4) exposure-induced hepatoxicity both in vivo and in vitro. In vitro, HepG2 and L02 cells were exposed to various doses of CuSO4 for 24 h. Cell viability, ROS production, oxidative stress biomarkers, mitochondrial functions, ultrastructure, intracellular calcium (Ca2+) concentration, and the expression of proteins related to mitochondrial apoptosis and endoplasmic reticulum (ER) stress were assessed. In vivo, C57BL/6 mice were treated with CuSO4 at doses of 10 and 30 mg/kg BW/day and co-treated with 4-PBA at 100 mg/kg BW/day for 35 days. Subsequently, liver function, histopathological features, and protein expression were evaluated. Results found that exposure to CuSO4 at concentrations of 100-400 µM for 24 h significantly decreased the viabilities of HepG2 and L02 cells and it was in a dose-dependent manner. Additionally, CuSO4 exposure induced significant oxidative stress and mitochondrial dysfunction in HepG2 cells, which were partially ameliorated by the antioxidant N-acetylcysteine (NAC). Furthermore, CuSO4 exposure prominently triggered ER stress, as evidenced by the upregulation of GRP94, GRP78, phosphorylated forms of PERK and eIF2α, and CHOP proteins in livers of mice and HepG2 cells. NAC treatment significantly inhibited CuSO4 exposure -induced ER stress in HepG2 cells. Pharmacological inhibition of ER stress through co-treatment with 4-PBA and the PERK inhibitor GSK2606414, as well as genetic knockdown of ATF4, partially mitigated CuSO4-induced cytotoxicity in HepG2 cells by reducing mitochondrial dysfunction and inhibiting the mitochondrial apoptotic pathway. Moreover, 4-PBA treatment significantly attenuated CuSO4-induced caspase activation and hepatoxicity in mice. In conclusion, these results reveal that CuSO4-induced hepatotoxicity involves mitochondrial dysfunction and ER stress by activating oxidative stress induction and PERK/ATF4 pathway.


Subject(s)
Activating Transcription Factor 4 , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Mitochondria , Oxidative Stress , eIF-2 Kinase , Endoplasmic Reticulum Stress/drug effects , Animals , Oxidative Stress/drug effects , Humans , Mice , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Hep G2 Cells , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Copper/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Copper Sulfate/toxicity , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Male , Liver/drug effects , Liver/metabolism , Cell Survival/drug effects
18.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745150

ABSTRACT

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Subject(s)
CD11b Antigen , Liver Cirrhosis , Liver Regeneration , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Regeneration/physiology , CD11b Antigen/metabolism , Male , Disease Models, Animal , Liver/pathology , Liver/metabolism , Vascular Endothelial Growth Factor A/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Concanavalin A , Ligation , Lipopolysaccharides , Interleukin-10/metabolism , Transforming Growth Factor beta/metabolism , Hepatic Stellate Cells/metabolism , Coculture Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Bile Ducts
19.
Anal Chim Acta ; 1309: 342673, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772656

ABSTRACT

BACKGROUND: Over-consumption of drugs can result in drug-induced liver damage (DILI), which can worsen liver failure. Numerous studies have shown the significant role ferroptosis plays in the pathophysiology of DILI, which is typified by a marked imbalance between the generation and breakdown of lipid reactive oxygen species (ROS). The content of peroxynitrite (ONOO-) rapidly increased during this process and was thought to be a significant marker of early liver injury. Therefore, the construction of fluorescence probe for the detection and imaging of ONOO- holds immense importance in the early diagnosis and treatment of ferroptosis-mediated DILI. RESULTS: We designed a probe DILI-ONOO based on the ICT mechanism for the purpose of measuring and visualizing ONOO- in ferroptosis-mediated DILI processes and associated studies. This probe exhibited significant fluorescence changes with good sensitivity, selectivity, and can image exogenous and endogenous ONOO- in cells with low cytotoxicity. Using this probe, we were able to show changes in ONOO- content in ferroptosis-mediated DILI cells and mice models induced by the intervention of acetaminophen (APAP) and isoniazid (INH). By measuring the concentration of ferroptosis-related indicators in mice liver tissue, we were able to validate the role of ferroptosis in DILI. It is worth mentioning that compared to existing alanine transaminase (ALT) and aspartate aminotransferase (AST) detection methods, this probe can achieve early identification of DILI prior to serious liver injury. SIGNIFICANCE: This work has significant reference value in researching the relationship between ferroptosis and DILI and visualizing research. The results indicate a strong correlation between the progression of DILI and ferroptosis. Additionally, the use of DILI-ONOO shows promise in investigating the DILI process and assessing the effectiveness of medications in treating DILI.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Ferroptosis , Fluorescent Dyes , Peroxynitrous Acid , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/diagnostic imaging , Ferroptosis/drug effects , Animals , Peroxynitrous Acid/metabolism , Mice , Fluorescent Dyes/chemistry , Humans , Acetaminophen/toxicity , Optical Imaging , Mice, Inbred C57BL , Male , Isoniazid/chemistry , Infrared Rays
20.
Sci Rep ; 14(1): 10846, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38736008

ABSTRACT

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Subject(s)
Cell Differentiation , Hepatocytes , Nanofibers , Organoids , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/cytology , Cell Differentiation/drug effects , Nanofibers/chemistry , Cells, Cultured , Liver/cytology , Liver/drug effects , Liver/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Cell Survival/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...