Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.535
Filter
1.
Eur J Pharm Sci ; 202: 106892, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39245356

ABSTRACT

Deconvolution and convolution are powerful tools that allow decomposition and reconstruction, respectively, of plasma versus time profiles from input and impulse functions. While deconvolution have commonly used compartmental approaches (e.g., Wagner-Nelson or Loo-Riegelman), convolution most typically used the convolution integral which can be solved with numerical methods. In 2005, an analytical solution for one-compartment pharmacokinetic was proposed and has been widely used ever since. However, to the best of our knowledge, analytical solutions for drugs distributed in more than one compartment have not been reported yet. In this paper, analytical solutions for compartmental convolution from both original and exact Loo-Riegelman approaches were developed and evaluated for different scenarios. While convolution from original approach was slightly more precise than that from the exact Loo-Riegelman, both methods were extremely accurate for reconstruction of plasma profiles after respective deconvolutions. Nonetheless, convolution from exact Loo-Riegelman was easier to interpret and to be manipulated mathematically. In fact, convolution solutions for three and more compartments can be easily written with this approach. Finally, our convolution analytical solution was applied to predict the failure in bioequivalence for levonorgestrel, demonstrating that equations in this paper may be useful tools for pharmaceutical scientists.


Subject(s)
Models, Biological , Therapeutic Equivalency , Pharmacokinetics , Humans , Chemistry, Pharmaceutical/methods , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry
2.
AAPS PharmSciTech ; 25(7): 214, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266781

ABSTRACT

This study aimed to assess the formation of nevirapine (NVP) co-amorphs systems (CAM) with different co-formers (lamivudine-3TC, citric acid-CAc, and urea) through combined screening techniques as computational and thermal studies, solubility studies; in addition to develop and characterize suitable NVP-CAM. NVP-CAM were obtained using the quench-cooling method, and characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and polarized light microscopy (PLM), in addition to in vitro dissolution in pH 6.8. The screening results indicated intermolecular interactions occurring between NVP and 3TC; NVP and CAc, where shifts in the melting temperature of NVP were verified. The presence of CAc impacted the NVP equilibrium solubility, due to hydrogen bonds. DSC thermograms evidenced the reduction and shifting of the endothermic peaks of NVP in the presence of its co-formers, suggesting partial miscibility of the compounds. Amorphization was proven by XRD and PLM assays. In vitro dissolution study exhibited a significant increase in solubility and dissolution efficiency of NVP-CAM compared to free NVP. Combined use of screening studies was useful for the development of stable and amorphous NVP-CAM, with increased NVP solubility, making CAM promising systems for combined antiretroviral therapy.


Subject(s)
Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Nevirapine , Solubility , X-Ray Diffraction , Nevirapine/chemistry , Calorimetry, Differential Scanning/methods , X-Ray Diffraction/methods , Chemistry, Pharmaceutical/methods , Spectroscopy, Fourier Transform Infrared/methods , Drug Compounding/methods , Lamivudine/chemistry , Hydrogen Bonding , Anti-HIV Agents/chemistry
3.
Int J Pharm ; 664: 124651, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39218326

ABSTRACT

Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.


Subject(s)
Drug Compounding , Hot Melt Extrusion Technology , Rheology , Hot Melt Extrusion Technology/methods , Drug Compounding/methods , Solubility , Polymers/chemistry , Drug Liberation , Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical/methods , Drug Stability , Hot Temperature
4.
Ther Deliv ; 15(9): 653-666, 2024.
Article in English | MEDLINE | ID: mdl-39225262

ABSTRACT

Aim: In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach.Methods: A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a p-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques.Results: In vitro release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. In vivo studies further validated increase of 51.8% oral bioavailability. Ex vivo studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether.Conclusion: These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.


[Box: see text].


Subject(s)
Antimalarials , Artemisinins , Biological Availability , Solubility , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Antimalarials/chemistry , Animals , Artemisinins/administration & dosage , Artemisinins/chemistry , Artemisinins/pharmacokinetics , Artemisinins/pharmacology , Permeability , Administration, Oral , Humans , Chemistry, Pharmaceutical/methods , Male , Plasmodium falciparum/drug effects , Intestinal Absorption , Hydrogen-Ion Concentration , Drug Liberation
5.
AAPS PharmSciTech ; 25(7): 208, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237678

ABSTRACT

Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R2), adjusted R2, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R2 values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R2 values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.


Subject(s)
Drug Delivery Systems , Drug Liberation , Lipids , Liposomes , Nanoparticles , Nanoparticles/chemistry , Lipids/chemistry , Liposomes/chemistry , Drug Delivery Systems/methods , Models, Theoretical , Drug Carriers/chemistry , Emulsions/chemistry , Chemistry, Pharmaceutical/methods
6.
AAPS PharmSciTech ; 25(7): 202, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237685

ABSTRACT

The focus of the present work was to develop amorphous solid dispersion (ASD) formulation of aprepitant (APT) using sucrose acetate isobutyrate (SAIB) excipient, evaluate for physicochemical attributes, stability, and bioavailability, and compared with hydroxypropyl methylcellulose (HPMC) based formulation. Various formulations of APT were prepared by solvent evaporation method and characterized for physiochemical and in-vivo performance attributes such as dissolution, drug phase, stability, and bioavailability. X-ray powder diffraction indicated crystalline drug conversion into amorphous phase. Dissolution varied as a function of drug:SAIB:excipient proportion. The dissolution was more than 80% in the optimized formulation (F10) and comparable to HPMC based formulation (F13). Stability of F10 and F13 formulations stored at 25 C/60% and 40°C/75% RH for three months were comparable. Both ASD formulations (F10 and F13) were bioequivalent as indicated by the pharmacokinetic parameters Cmax and AUC0-∞. Cmax and AUC0-∞ of F10 and F13 formulations were 2.52 ± 0.39, and 2.74 ± 0.32 µg/ml, and 26.59 ± 0.39, and 24.79 ± 6.02 µg/ml.h, respectively. Furthermore, the bioavailability of ASD formulation was more than twofold of the formulation containing crystalline phase of the drug. In conclusion, stability and oral bioavailability of SAIB based ASD formulation is comparable to HPMC-based formulation of poorly soluble drugs.


Subject(s)
Biological Availability , Excipients , Solubility , Sucrose , Sucrose/analogs & derivatives , Sucrose/chemistry , Administration, Oral , Animals , Excipients/chemistry , Male , Hypromellose Derivatives/chemistry , Chemistry, Pharmaceutical/methods , Drug Stability , X-Ray Diffraction/methods
7.
AAPS PharmSciTech ; 25(7): 209, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39237698

ABSTRACT

The present study aimed to develop and optimize solidified supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) for the combined administration of antihypertensive, antihyperglycemic, and antihyperlipidemic drugs to enhance their solubility and dissolution during the treatment of metabolic syndrome. Various SNEDDS formulations were prepared and subjected to pharmaceutical assessment. The solubility of candesartan (CC), glibenclamide (GB), and rosuvastatin (RC) in SNEDDS and supersaturated SNEDDS formulations was evaluated. The optimized formulation was solidified using Syloid adsorbent at different ratios. Pharmaceutical characterization of the formulations included particle size, zeta potential, in-vitro dissolution, PXRD, FTIR, and SEM analysis. The prepared optimized formulation (F6) was able to form homogeneous nanoemulsion droplets without phase separation, which is composed of Tween 20: PEG-400: Capmul MCM (4: 3: 3). It was mixed with 5% PVP-K30 to prepare a supersaturated liquid SNEDDS formulation (F9). In addition, it was found that the addition of PVP-K30 significantly increased solubility CC and GB from 20.46 ± 0.48 and 6.73 ± 0.05 to 27.67 ± 1.72 and 9.45 ± 0.32 mg/g, respectively. In-vitro dissolution study revealed that liquid and solid SNEDD formulations remarkably improved the dissolution rates of CC, GB, and RC compared to pure drugs. XRPD and FTIR analysis revealed that all drugs present in an amorphous state within prepared solidified supersaturated SNEDDS formulation. SEM images showed that liquid SNEDDS formulation was successfully adsorbed on the surface of Syloid. Overall, optimized F9 and solidified supersaturated SNEDDS formulations showed superior performance in enhancing drug solubility and dissolution rate. The present study revealed that the proposed triple combination therapy of metabolic syndrome holds a promising strategy during the treatment of metabolic syndrome. Further in-vivo studies are required to evaluate the therapeutic efficacy of prepared solidified supersaturated SNEDDS formulation.


Subject(s)
Drug Delivery Systems , Emulsions , Hypoglycemic Agents , Metabolic Syndrome , Particle Size , Solubility , Metabolic Syndrome/drug therapy , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Emulsions/chemistry , Drug Delivery Systems/methods , Chemistry, Pharmaceutical/methods , Antihypertensive Agents/chemistry , Antihypertensive Agents/administration & dosage , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/administration & dosage , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Drug Compounding/methods
8.
AAPS PharmSciTech ; 25(7): 203, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237802

ABSTRACT

Normal skin is the first line of defense in the human body. A burn injury makes the skin susceptible to bacterial infection, thereby delaying wound healing and ultimately leading to sepsis. The chances of biofilm formation are high in burn wounds due to the presence of avascular necrotic tissue. The most common pathogen to cause burn infection and biofilm is Pseudomonas aeruginosa. The purpose of this study was to create a microemulsion (ME) formulation for topical application to treat bacterial burn infection. In the present study, tea tree oil was used as the oil phase, Tween 80 and transcutol were used as surfactants, and water served as the aqueous phase. Pseudo ternary phase diagrams were used to determine the design space. The ranges of components as suggested by the design were chosen, optimization of the microemulsion was performed, and in vitro drug release was assessed. Based on the characterization studies performed, it was found that the microemulsion were formulated properly, and the particle size obtained was within the desired microemulsion range of 10 to 300 nm. The I release study showed that the microemulsion followed an immediate release profile. The formulation was further tested based on its ability to inhibit biofilm formation and bacterial growth. The prepared microemulsion was capable of inhibiting biofilm formation.


Subject(s)
Anti-Bacterial Agents , Biofilms , Burns , Drug Delivery Systems , Emulsions , Pseudomonas aeruginosa , Biofilms/drug effects , Burns/drug therapy , Burns/microbiology , Pseudomonas aeruginosa/drug effects , Drug Delivery Systems/methods , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Particle Size , Drug Liberation , Surface-Active Agents/chemistry , Polysorbates/chemistry , Tea Tree Oil/administration & dosage , Tea Tree Oil/chemistry , Tea Tree Oil/pharmacology , Chemistry, Pharmaceutical/methods , Humans
9.
AAPS PharmSciTech ; 25(7): 217, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289236

ABSTRACT

The focus of current studies was to fabricate dose flexible printlets of dapsone (DDS) for pediatric patients by selective laser sintering (SLS) 3D printing method, and evaluate its physicochemical, patient in-use stability, and pharmacokinetic attributes. Eight formulations were fabricated using Kollicoat® IR, Eudragit® L-100-55 and StarCap®as excipients and evaluated for hardness, disintegration, dissolution, amorphous phase by differential scanning calorimetry and X-ray powder diffraction, in-use stability at 30 oC/75% RH for a month, and pharmacokinetic study in Sprague Dawley rats. The hardness, and disintegration of the printlets varied from 2.6±1.0 (F4) to 7.7±0.9 (F3) N and 2.0±0.4 (F2) to 7.6±0.6 (F3) sec, respectively. The drug was partially present as an amorphous form in the printlets. The drug was completely (>85%) dissolved in 20 min. No change in drug form or dissolution extent was observed after storage at in use condition. Pharmacokinetic profiles of both formulations (tablets and printlets) were almost superimposable with no statistical difference in pharmacokinetic parameters (Tmax, Cmax, and AUC0-¥)between formulations (p>0.05). Values of EC50 (half maximal effective concentration) and EC90 (maximal concentration inducing 90% maximal response) were 0.50±0.15 and 1.32±0.26 mM, 0.41±0.06 and 1.11±0.21, and 0.42±0.13 and 1.36±0.19 mM for DDS, printlet and tablet formulations, respectively, and differences were statistically insignificant (p>0.05). In conclusion, tablet and printlet formulations are expected to be clinical similar, thus clinically interchangeable.


Subject(s)
Antimalarials , Dapsone , Printing, Three-Dimensional , Rats, Sprague-Dawley , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Animals , Rats , Dapsone/pharmacokinetics , Dapsone/administration & dosage , Dapsone/chemistry , Chemistry, Pharmaceutical/methods , Solubility , Male , Excipients/chemistry , Humans , Tablets/pharmacokinetics , Drug Stability , Child , Calorimetry, Differential Scanning/methods , Drug Compounding/methods , X-Ray Diffraction/methods
10.
AAPS PharmSciTech ; 25(7): 218, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289238

ABSTRACT

This research aims to produce orodispersible films (ODFs) and determine their potential use in the oral delivery of montelukast sodium for asthma treatment and allergic rhinitis. ODFs were successfully developed by Three-dimensional (3D) printing using propylene glycol (PG), and hydroxypropyl methylcellulose (HPMC), polyethylene glycol 400 (PEG). Finally, the amount of montelukast sodium in the ODFs was 5% (w/w). Drug-excipients compatibility with Fourier Transformed Infrared (FTIR) spectroscopy, mass uniformity, thickness, disintegration time, folding endurance, moisture absorption, pH, in vitro drug release (dissolution), drug content, moisture loss, moisture content, mechanical properties, and cytotoxicity studies were performed on the prepared films. All formulations disintegrated in approximately 40 s. Over 98% of drug release from all films within 2 min was confirmed. It was reported that Fm1-4 (8% HPMC and 1% PEG) and Fm2-4 (10% HPMC and 3% PEG) are more suitable for drug content, but Fm2-4 may be the ideal formulation considering its durability and transportability properties. Based on the characterization results and in vitro release values, the montelukast sodium ODF can be an option for other dosage forms. It was concluded that the formulations did not show toxic potential by in vitro cytotoxicity study with 3T3 cells. This new formulation can efficiently treat allergic rhinitis and asthma diseases.


Subject(s)
Acetates , Anti-Asthmatic Agents , Asthma , Cyclopropanes , Drug Liberation , Polyethylene Glycols , Printing, Three-Dimensional , Quinolines , Sulfides , Cyclopropanes/administration & dosage , Quinolines/administration & dosage , Quinolines/chemistry , Acetates/chemistry , Acetates/administration & dosage , Sulfides/chemistry , Asthma/drug therapy , Polyethylene Glycols/chemistry , Administration, Oral , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/chemistry , Anti-Asthmatic Agents/pharmacology , Animals , Excipients/chemistry , Mice , Drug Delivery Systems/methods , Chemistry, Pharmaceutical/methods , Hypromellose Derivatives/chemistry , Propylene Glycol/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Solubility
11.
PLoS One ; 19(9): e0310334, 2024.
Article in English | MEDLINE | ID: mdl-39288134

ABSTRACT

BACKGROUND: The SeDeM-ODT expert system is designed to assess the suitability of the pharmaceutical ingredients for their conversion into an orodispersible formulation by direct compression. The tool can be utilized to select the most appropriate excipients that improve the compressibility and buccodispersibility of the formulation. OBJECTIVE: This study aimed to utilize the SeDeM-ODT expert system to evaluate the performance of superdisintegrants and select an appropriate superdisntegrant for Doxylamine Succinate orodispersible formulation. METHOD: The SeDeM-ODT expert system scrutinized the excipients to develop an orodispersible Doxylamine Succinate formulation. Among the 15 parameters of the tool, some of them were determined through experimental work, while the remaining were calculated through the experimental values of other parameters. The central composite design approach was used for formulation development. The prepared powder blends were compressed using the direct compression method and evaluated for different parameters (hardness, thickness, diameter, friability, weight variation, water absorption ratio, wetting time, and disintegration time). RESULTS: The results of the SeDeM-ODT expert system were correlated with the values obtained by the post-compression tests. The Crospovidone formulation (F7) was found to be an optimized formulation as it disintegrated quickly compared with the other formulations containing other superdisintegtrants. The results perfectly endorsed the SeDeM-ODT expert system evaluation, as Crospovidone showed the highest IGCB value of 6.396. CONCLUSION: The study observed the effectiveness of the expert system in accurately examining the performance of disintegrating agents. The study observed the effectiveness of the expert system in accurately examining the performance of disintegrating agents. The assessment proved Crospovidone to produce quicker disintegration in Doxylamine Succinate orodispersible formulation.


Subject(s)
Doxylamine , Excipients , Doxylamine/chemistry , Doxylamine/administration & dosage , Doxylamine/analogs & derivatives , Excipients/chemistry , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Administration, Oral , Solubility , Powders , Tablets/chemistry
12.
Acta Pharm ; 74(3): 479-493, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39279529

ABSTRACT

The formulation of biopharmaceutical drugs is designed to eliminate chemical instabilities, increase conformational and colloidal stability of proteins, and optimize interfacial stability. Among the various excipients involved, buffer composition plays a pivotal role. However, conventional buffers like histidine and phosphate buffers may not always be the optimal choice for all monoclonal antibodies (mAbs). In this study, we investigated the effects of several alternative buffer systems on seven different mAbs, exploring various combinations of ionic strengths, concentrations of the main buffer component, mAb concentrations, and stress conditions. Protein stability was assessed by analyzing soluble aggregate formation through size exclusion chromatography. At low protein concentrations, protein instability after temperature stress was exclusively observed in the bis-TRIS/ glucuronate buffer. Conversely, freeze-thaw stress led to a significant increase in aggregate formation in tested formulations, highlighting the efficacy of several alternative buffers, particularly arginine/ citrate, in preserving protein stability. Under temperature stress, the introduction of arginine to histidine buffer systems provided additional stabilization, while the addition of lysine resulted in protein destabilization. Similarly, the incorporation of arginine into histi-dine/HCl buffer further enhanced protein stability during freeze--thaw cycles. At high protein concentrations, the histidine/citrate buffer emerged as one of the most optimal choices for addressing temperature and light-induced stress. The efficacy of histidine buffers in combating light stress might be attributed to the light-absorbing properties of histidine molecules. Our findings demonstrate that the development of biopharmaceutical formulations should not be confined to conventional buffer systems, as numerous alternative options exhibit comparable or even superior performance.


Subject(s)
Antibodies, Monoclonal , Excipients , Protein Stability , Buffers , Antibodies, Monoclonal/chemistry , Excipients/chemistry , Osmolar Concentration , Drug Compounding/methods , Temperature , Drug Stability , Histidine/chemistry , Freezing , Chemistry, Pharmaceutical/methods , Arginine/chemistry , Protein Aggregates
13.
Eur J Pharm Biopharm ; 203: 114480, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39222674

ABSTRACT

Efficient telmisartan delivery for hypertension management requires the incorporation of meglumine and/or sodium hydroxide as an alkalizer in the formulation. Long-term use of powerful alkalis with formulation as part of chronic therapy can cause metabolic alkalosis, ulcers, diarrhea, and body pain. Here, we aimed to design a telmisartan formulation without alkalizers. Telmisartan properties were tailor-made by microfluidizer-based physical modification. After microfluidization, telmisartan nanosuspension was lyophilized to obtain telmisartan premix powder. The optimized telmisartan nanosuspension had an average particle size of 579.85 ± 32.14 nm. The lyophilized premix was characterized by FT-IR, DSC, and PXRD analysis to ensure its physicochemical characteristics. The solubility analysis of premix showed 2.2 times, 2.3 times, and 6 times solubility improvement in 0.1 N HCl, phosphate buffer pH 7.5, and pH 6.8 compared to pure telmisartan. A 3D in-vitro Caco-2 model was developed to compare apparent permeability of API and powder premix. It showed that the powder premix was more permeable than pure API. The tablet formulation prepared from the telmisartan premix showed a dissolution profile comparable to that of the marketed formulation. The technique present herein can be used as a platform technology for solubility and permeability improvement of similar classes of molecules.


Subject(s)
Particle Size , Permeability , Solubility , Telmisartan , Telmisartan/administration & dosage , Telmisartan/pharmacokinetics , Telmisartan/chemistry , Humans , Caco-2 Cells , Drug Compounding/methods , Intestinal Absorption/drug effects , Powders/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Chemistry, Pharmaceutical/methods , Drug Liberation , Intestinal Barrier Function
14.
Eur J Pharm Biopharm ; 203: 114478, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39226986

ABSTRACT

This method paper describes currently used experimental methods to predict the drug-in-polymer solubility of amorphous solid dispersions and offers a combined approach for applying the Melting-point-depression method, the Recrystallization method, and the Melting-and-mixing method. It aims to describe and expand on the theoretical basis as well as the analytical methodology of the recently published Melting-and-mixing method. This solubility method relies on determining the relationship between drug loads and the enthalpy of melting and mixing of a crystalline drug in the presence of an amorphous polymer. This relationship is used to determine the soluble drug load of an amorphous solid dispersion from the recorded enthalpy of melting and mixing of the crystalline drug portion in a drug-polymer sample at equilibrium solubility. Due to the complex analytical methodology of the Melting-and-mixing method, a software solution called the Glass Solution Companion app was developed. Using this new tool, it is possible to calculate the predicted drug-in-polymer solubility and Flory-Huggins interaction parameter from experimental samples, as well as to generate the resulting solubility-temperature curve. This software can be used for calculations for all three experimental methods, which would be useful for comparing the applicability of the methods on a given drug-polymer system. Since it is difficult to predict the suitability of these drug-in-polymer solubility methods for a specific drug-polymer system in silico, some experimental investigation is necessary. By optimizing the experimental protocol, it is possible to collect data for the three experimental methods simultaneously for a specific drug-polymer system. These results can then be readily analyzed using the Glass Solution Companion app to find the most appropriate method for the drug-polymer system, and therefore, the most reliable drug-in-polymer solubility prediction.


Subject(s)
Polymers , Solubility , Polymers/chemistry , Pharmaceutical Preparations/chemistry , Workflow , Crystallization , Chemistry, Pharmaceutical/methods , Software , Transition Temperature
15.
AAPS PharmSciTech ; 25(7): 201, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235493

ABSTRACT

Percutaneous delivery is explored as alternative pathway for addressing the drawbacks associated with the oral administration of otherwise efficacious drugs. Short of breaching the skin by physical means, the preference goes to formulation strategies that augment passive diffusion across the skin. One such strategy lies in the use of skin penetration and permeation enhancers notably of hydroxylated solvents like propylene glycol (PG), ethanol (EtOH), and diethylene glycol monoethyl ether (Transcutol®, TRC). In a previous publication, we focused on the role of Transcutol® as enhancer in neat or diluted systems. Herein, we explore its' role in complex formulation systems, including patches, emulsions, vesicles, solid lipid nanoparticles, and micro or nanoemulsions. This review discusses enhancement mechanisms associated with hydroalcoholic solvents in general and TRC in particular, as manifested in multi-component formulation settings alongside other solvents and enhancers. The principles that govern skin penetration and permeation, notably the importance of drug diffusion due to solubilization and thermodynamic activity in the vehicle (formulation), drug solubilization and partitioning in the stratum corneum (SC), and/or solvent drag across the skin into deeper tissue for systemic absorption are discussed. Emphasized also are the interplay between the drug properties, the skin barrier function and the formulation parameters that are key to successful (trans)dermal delivery.


Subject(s)
Administration, Cutaneous , Ethylene Glycols , Permeability , Skin Absorption , Skin , Solvents , Skin Absorption/physiology , Skin Absorption/drug effects , Ethylene Glycols/chemistry , Humans , Skin/metabolism , Animals , Solvents/chemistry , Chemistry, Pharmaceutical/methods , Solubility , Drug Delivery Systems/methods , Emulsions/chemistry , Nanoparticles/chemistry , Ethanol/chemistry , Ethanol/administration & dosage
16.
Int J Pharm ; 664: 124579, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39137821

ABSTRACT

The pharmaceutical industry is increasingly drawn to the research of innovative drug delivery systems through the use of supercritical CO2 (scCO2)-based techniques. Measuring the solubility of drugs in scCO2 at varying conditions is a crucial parameter in this context. In this research, the supercritical solubility of two pharmaceutical ingredients, namely Febuxostat and Chlorpromazine, has been assessed theoretically using various thermodynamic approaches, including PR, SRK, UNIQUAC, and Wilson models. Additionally, hybrid machine learning models of PO-GPR, and PO-KNN were applied to anticipate the supercritical solubility of these medicines. Verification of the accuracy of each model for each pharmaceutical substance is conducted against previously reported experimental solubility data. In the comparison between the SRK and PR models, it is observed that the SRK model displays greater precision in correlating the solubility of both drugs. It consistently achieves a mean Radj value of 0.995 across all cases and mean AARD% values of 14.47 and 9.30 for Febuxostat and Chlorpromazine, respectively. Furthermore, the findings indicate that the UNIQUAC model surpasses the Wilson model in precisely representing the solubility of both medicines. It consistently achieves a mean Radj value higher than 0.985 across both cases and mean AARD% values of 11.39 and 7.08 for Febuxostat and Chlorpromazine, respectively. Additionally, the performance of both hybrid machine learning models proved to be excellent in anticipating the supercritical solubility of both compounds.


Subject(s)
Chlorpromazine , Machine Learning , Solubility , Solvents , Thermodynamics , Chlorpromazine/chemistry , Solvents/chemistry , Febuxostat/chemistry , Carbon Dioxide/chemistry , Chemistry, Pharmaceutical/methods , Models, Chemical
17.
Int J Pharm ; 664: 124566, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39154918

ABSTRACT

Glaucoma is caused by high intraocular pressure, which can causes blindness. Combinations of timolol and dorzolamide are used for its treatment with a requirement of multiple dosing with dosing being twice or four times a day. Conventional eye drops have poor pre-corneal retention and is thus less available for action. This study utilizes principles of Quality by Design for formulation of injectable liposomes coloaded with timolol maleate and dorzolamide HCl, which overcomes limitations of conventional eye drops. For implementation of Quality by Design principles a systematic approach involving defining Quality Target Product Profile, identification of Critical Quality Attributes, mapping Critical Quality Attributes to Critical Process Parameters and Critical Material Attributes, Failure Mode and Effect Analysis based risk assessment, Taguchi screening, and 32 full factorial Design of Experiments design were utilized. A robust model for formulation of coloaded liposomes was successfully developed. Design of Experiments approach allowed to obtain optimized batch having particle size of 116.1 nm, encapsulation efficiency of dorzolamide HCl of 72.12 % and encapsulation efficiency of timolol maleate of 71.94 %. In-vitro drug release showed a sustained release for 4 days. The prepared formulation was in the desired osmolarity range. Biosafety was proved using histopathological characterization. In-vivo studies for assessing the Intra Ocular Pressure reduction showed that there was no significant difference in Intra Ocular Pressure reduction between prepared liposomes and marketed formulation but were superior than marketed formulation because of less fluctuations in Intra Ocular Pressure. Prepared coloaded injectable liposomes lays the foundation for further research in the area and can be translated from to bench side for commercial clinical use.


Subject(s)
Drug Liberation , Intraocular Pressure , Liposomes , Sulfonamides , Thiophenes , Timolol , Timolol/administration & dosage , Timolol/chemistry , Timolol/pharmacokinetics , Sulfonamides/administration & dosage , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Thiophenes/administration & dosage , Thiophenes/chemistry , Animals , Intraocular Pressure/drug effects , Drug Compounding/methods , Particle Size , Rabbits , Male , Drug Combinations , Chemistry, Pharmaceutical/methods , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacokinetics , Glaucoma/drug therapy
18.
Int J Pharm ; 664: 124595, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39154921

ABSTRACT

Following topical application of a dermatological product, the loss (by evaporation and/or absorption through the skin) of volatile excipients will alter the composition of the formulation remaining on the tissue. This so-called metamorphosis impacts the concentration of the drug in the residual vehicle, (potentially) its physical form therein and, as a result, its uptake into and subsequent permeation through the skin. This research aimed to characterise - using primarily confocal Raman microspectroscopy - the metamorphosis of film-forming formulations of betamethasone-17-valerate (at different loadings) comprised of hydroxypropyl cellulose (film-forming agent), triethyl citrate (plasticizer) and ethanol (solvent). Dissolved and crystalline drug in the films were identified separately by their different characteristic Raman frequencies (1666 cm-1 and 1659 cm-1, respectively). These Raman measurements, as well as optical imaging, confirmed corticosteroid crystallisation in the residual films left after ethanol evaporation when drug concentration exceeded the saturation limit. In vitro release tests of either sprayed or pipette-deposited films into either aqueous or ethanolic receptor solutions revealed drug release kinetics dominated by the residual film post-metamorphosis. In particular, the rate and extent of drug release depends on the concentration of dissolved drug in the residual film, which is limited by drug saturation unless supersaturation occurs. For the simple films examined here, supersaturation was not detected and the solubility limit of drug in the films was sufficient to sustain drug release at a constant flux from the saturated films through a thin silicone elastomer membrane into an aqueous receptor solution for 30 h. Flux values were âˆ¼ 1 µg cm-2h-1 from saturated residual films independent of the amount of crystallized drug present. Flux from subsaturated films was reduced by an amount that was consistent with the lower degree of saturation.


Subject(s)
Betamethasone Valerate , Cellulose , Drug Liberation , Ethanol , Spectrum Analysis, Raman , Betamethasone Valerate/chemistry , Betamethasone Valerate/administration & dosage , Cellulose/chemistry , Cellulose/analogs & derivatives , Ethanol/chemistry , Citrates/chemistry , Plasticizers/chemistry , Chemistry, Pharmaceutical/methods , Crystallization , Excipients/chemistry , Solvents/chemistry , Solubility , Skin Absorption , Drug Compounding/methods
19.
Int J Pharm ; 664: 124609, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39163928

ABSTRACT

Magnesium stearate (MgSt) and lactose fines are often used as ternary components in carrier-based dry powder inhalers (DPIs) to improve fine particle fraction (FPF), but whether they act synergistically to improve aerosolization performance of DPI formulations is currently less studied. In addition, the applicability of utilizing powder rheological parameters to predict the FPF needs to be further verified. Thus, in this study, using fluticasone propionate (FP) as a model drug, effect of lactose fines addition in 0.5% MgSt containing DPI formulations on their powder and aerodynamic properties was explored. Influence of MgSt and fines mixing order on the DPIs performance was also investigated. The results showed that addition of lactose fines (1-10%) in 0.5% MgSt containing formulations could further improve flowability and enhance adhesion of the mixtures, and they could act synergistically to improve FPF. Moreover, the presence of 0.5% MgSt can greatly reduce the amount of lactose fines required to achieve the comparable FPF. The mixing order can affect distribution of MgSt on the carrier surface, with higher FPF noted when MgSt was mixed with carrier first, followed by lactose fines. A good linear relationship between powder rheological parameters such as basic flowability energy (BFE), Permeability and FPF was disclosed. In conclusion, in FP based DPIs, MgSt and lactose fines act synergistically to enhance FPF by tuning powder characteristics. Good flowability (27.39%) and strong adhesion (72.61%) contributed to the enhanced drug deposition in the lung.


Subject(s)
Aerosols , Dry Powder Inhalers , Fluticasone , Lactose , Particle Size , Powders , Stearic Acids , Lactose/chemistry , Fluticasone/chemistry , Fluticasone/administration & dosage , Powders/chemistry , Stearic Acids/chemistry , Excipients/chemistry , Rheology , Drug Compounding/methods , Administration, Inhalation , Chemistry, Pharmaceutical/methods , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/chemistry
20.
Int J Pharm ; 664: 124608, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39163929

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) continue as public health concerns. Inhaled drug therapy for TB has substantial benefits in combating the causal agent of TB (Mycobacterium tuberculosis). Pretomanid is a promising candidate in an optional combined regimen for XDR-TB. Pretomanid has demonstrated high potency against M. tuberculosis in both the active and latent phases. Conventional spray drying was used to formulate pretomanid as dry powder inhalers (DPIs) for deep lung delivery using a proliposomal system with a trehalose coarse excipient to enhance the drug solubility. Co-spray drying with L-leucine protected hygroscopic trehalose in formulations and improved powder aerosolization. Higher amounts of L-leucine (40-50 % w/w) resulted in the formation of mesoporous particles with high percentages of drug content and entrapment efficiency. The aerosolized powders demonstrated both geometric and median aerodynamic diameters < 5 µm with > 90 % emitted dose and > 50 % fine particle fraction. Upon reconstitution in simulated physiological fluid, the proliposomes completely converted to liposomes, exhibiting suitable particle sizes (130-300 nm) with stable colloids and improving drug solubility, leading to higher drug dissolution compared to the drug alone. Inhalable pretomanid showed higher antimycobacterial activity than pretomanid alone. The formulations were safe for all broncho-epithelial cell lines and alveolar macrophages, thus indicating their potential suitability for DPIs targeting pulmonary TB.


Subject(s)
Antitubercular Agents , Dry Powder Inhalers , Leucine , Liposomes , Particle Size , Tuberculosis, Pulmonary , Administration, Inhalation , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/pharmacokinetics , Tuberculosis, Pulmonary/drug therapy , Humans , Leucine/chemistry , Leucine/administration & dosage , Trehalose/chemistry , Trehalose/administration & dosage , Aerosols , Solubility , Excipients/chemistry , Powders , Drug Liberation , Spray Drying , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Mycobacterium tuberculosis/drug effects , Nitroimidazoles
SELECTION OF CITATIONS
SEARCH DETAIL