Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805014

ABSTRACT

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Subject(s)
Chemokine CXCL5 , DNA-Binding Proteins , Dioxygenases , Lung Neoplasms , Neutrophils , Proto-Oncogene Proteins , STAT3 Transcription Factor , Animals , Neutrophils/metabolism , STAT3 Transcription Factor/metabolism , Mice , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Humans , Dioxygenases/metabolism , Pinocytosis , Cell Line, Tumor , Neutrophil Infiltration , Mice, Knockout , Mice, Inbred C57BL , Lipid Metabolism
2.
Neuroreport ; 35(9): 549-557, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38739900

ABSTRACT

Neuroinflammation after traumatic brain injury (TBI) exhibits a strong correlation with neurological impairment, which is a crucial target for improving the prognosis of TBI patients. The involvement of CXCL5/CXCR2 signaling in the regulation of neuroinflammation in brain injury models has been documented. Therefore, the effects of CXCL5 on post-TBI neuroinflammation and its potential mechanisms need to be explored. Following TBI, C57BL/6 mice were administered intraperitoneal injections of a CXCL5 neutralizing antibody (Nab-CXCL5) (5 mg/kg, 2 times/day). Subsequently, the effects on neuroinflammation, nerve injury, and neurological function were assessed. Nab-CXCL5 significantly reduced the release of inflammatory factors, inhibited the formation of inflammatory microglia and astrocytes, and reduced the infiltration of peripheral immune cells in TBI mice. Additionally, this intervention led to a reduction in neuronal impairment and facilitated the restoration of sensorimotor abilities, as well as improvements in learning and memory functions. Peripheral administration of the Nab-CXCL5 to TBI mice could suppress neuroinflammation, reduce neurological damage, and improve neurological function. Our data suggest that neutralizing antibodies against CXCL5 (Nab-CXCL5) may be a promising agent for treating TBI.


Subject(s)
Brain Injuries, Traumatic , Chemokine CXCL5 , Neuroinflammatory Diseases , Animals , Male , Mice , Antibodies, Neutralizing/pharmacology , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/drug therapy , Chemokine CXCL5/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/drug therapy , Recovery of Function/drug effects
3.
Cancer Immunol Immunother ; 73(6): 108, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642131

ABSTRACT

Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chemokine CXCL5 , Lung Neoplasms , Macrophages , Humans , Adenosine/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , CD8-Positive T-Lymphocytes , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophages/immunology , Macrophages/metabolism , Tumor Microenvironment , Up-Regulation , Receptor, Adenosine A2A/metabolism , Extracellular Traps/immunology , Extracellular Traps/metabolism
4.
Nat Commun ; 15(1): 3263, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627393

ABSTRACT

Gouty arthritis evokes joint pain and inflammation. Mechanisms driving gout pain and inflammation remain incompletely understood. Here we show that CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to drive gout pain and inflammation. CXCL5 expression was increased in ankle joints of gout arthritis model mice, whereas CXCR2 showed expression in joint-innervating sensory neurons. CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to trigger TRPA1 activation, resulting in hyperexcitability and pain. Neuronal CXCR2 coordinates with neutrophilic CXCR2 to contribute to CXCL5-induced neutrophil chemotaxis via triggering CGRP- and substance P-mediated vasodilation and plasma extravasation. Neuronal Cxcr2 deletion ameliorates joint pain, neutrophil infiltration and gait impairment in model mice. We confirmed CXCR2 expression in human dorsal root ganglion neurons and CXCL5 level upregulation in serum from male patients with gouty arthritis. Our study demonstrates CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and inflammation that expands our knowledge of immunomodulation capability of nociceptive sensory neurons.


Subject(s)
Arthritis, Gouty , Animals , Humans , Male , Mice , Arthralgia , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Inflammation , Nociception , Nociceptors/metabolism , Pain
5.
Cancer Lett ; 590: 216866, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38589005

ABSTRACT

Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.


Subject(s)
Bone Neoplasms , Cell Movement , Chemokine CXCL5 , Melanoma , Osteocytes , Receptors, Interleukin-8B , Osteocytes/metabolism , Osteocytes/pathology , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Animals , Melanoma/metabolism , Melanoma/pathology , Melanoma/secondary , Melanoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Mice , Cell Line, Tumor , Humans , Signal Transduction , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL
6.
J Proteomics ; 289: 104995, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37657716

ABSTRACT

Endometriosis is a gynecological disease related to menstruation that affects nearly 10% of reproductive-age women. However, so far, there are no reliable diagnostic biomarkers for endometriosis, causing a delay in diagnosis of 6.7 ± 6.2 years. Menstrual blood is a non-invasive source of endometrial tissue that can be analyzed for biomarkers of endometriosis. In this study, menstrual blood samples were collected from women with (n = 8) and without (n = 8) endometriosis. Data Independent Acquisition (DIA)-based mass spectrometry and bioinformatic analysis were used to quantify and identify differentially expressed proteins (DEPs) using the thresholds of fold change >1.5 and P value <0.05. A total of 95 DEPs were identified in menstrual blood from women with endometriosis compared to women without endometriosis, of which 64 were up-regulated and 31 were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to functionally annotate DEPs. Protein-protein interaction (PPI) network analysis was then conducted to identify hub genes and the MCODE plugin placed CXCL1, CXCL3, CXCL5, CCL18, and IL1RN in the most significant cluster network. The expression of the above candidate proteins was confirmed by enzyme-linked immunosorbent assay (ELISA), among which CXCL5 and IL1RN protein expression was increased in patients with endometriosis, indicating that CXCL5 and IL1RN in menstrual blood may be useful biomarkers to diagnose endometriosis from non-invasive samples. SIGNIFICANCE: Endometriosis is a common gynecological disease that causes discomfort in many women. Unfortunately, the diagnosis of endometriosis is frequently delayed due to a lack of reliable non-invasive biomarkers. To our knowledge, this is the first time that DIA-MS was used to characterize the proteome and identify the differentially expressed proteins in menstrual blood from women with endometriosis. The results, as confirmed by ELISA, showed that CXCL5 and IL1RN protein expression is significantly increased in patients with endometriosis, indicating that these proteins can be used as biomarkers for endometriosis. This study contributes to the identification of putative endometriosis biomarkers from non-invasive samples and lays the groundwork for future research into the roles of CXCL5 and IL1RN in the pathogenesis of endometriosis.


Subject(s)
Endometriosis , Humans , Female , Endometriosis/diagnosis , Proteome/metabolism , Menstruation , Biomarkers/analysis , Protein Interaction Maps , Chemokine CXCL5/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism
7.
Sci Total Environ ; 902: 166443, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37611700

ABSTRACT

Exposure to crystalline silica leads to health effects beyond occupational silicosis. Exercise training's potential benefits on pulmonary diseases yield inconsistent outcomes. In this study, we utilized experimental silicotic mice subjected to exercise training and pharmacological interventions, including interleukin-17A (IL-17A) neutralizing antibody or clodronate liposome for macrophage depletion. Findings reveal exercise training's ability to mitigate silicosis progression in mice by suppressing scavenger receptor B (SRB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Toll-like receptor 4 (TLR4) pathways. Macrophage-derived IL-17A emerges as primary source and trigger for silica-induced pulmonary inflammation and fibrosis. Exercise training effectively inhibits IL-17A-CXC motif chemokine ligand 5 (CXCL5)-Chemokine (C-X-C motif) Receptor 2 (CXCR2) axis in silicotic mice. Our study evidences exercise training's potential to reduce collagen deposition, preserve elastic fibers, slow pulmonary fibrosis advancement, and enhance pulmonary function post silica exposure by impeding macrophage-derived IL-17A-CXCL5-CXCR2 axis.


Subject(s)
Exercise , Pulmonary Fibrosis , Silicosis , Animals , Mice , Chemokines/metabolism , Interleukin-17/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/therapy , Pulmonary Fibrosis/metabolism , Silicon Dioxide/toxicity , Silicosis/therapy , Silicosis/metabolism , Chemokine CXCL5/metabolism , Receptors, Interleukin-8B/metabolism , Inflammation , Exercise/physiology
8.
Mol Biol Rep ; 50(10): 8015-8023, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541997

ABSTRACT

BACKGROUND: The tumor microenvironment contains chemokines that play a crucial role in various processes, such as tumorigenesis, inflammation, and therapy resistance, in different types of cancer. CXCL5 is a significant chemokine that has been shown to promote tumor proliferation, invasion, angiogenesis, and therapy resistance when overexpressed in various types of cancer. This research aims to investigate the impact of CXCL5 on the biological functions of glioblastoma (GBM). METHODS: The TCGA GBM and GEO databases were utilized to perform transcriptome microarray analysis and oncogenic signaling pathway analysis of CXCL5 in GBM. Validation of CXCL5 expression was performed using RT-qPCR and Western Blot. The impact of CXCL5 on cell proliferation, tumorigenesis, and angiogenesis in GBM was assessed through various methods, including cell proliferation assay, cloning assay, intracranial xenograft tumor models, and tube formation assay. Clinical prognosis was evaluated in 59 samples of gliomas with varying degrees of malignancy (grades 2, 3, and 4) and the TCGA GBM database, based on CXCL5 expression levels. The activities of the JAK-STAT and NF-κB signaling pathways were detected using Western Blot. RESULTS: The expression of CXCL5 was highly enriched in GBM. Moreover, the inhibition of CXCL5 showed a significant efficacy in suppressing cellular proliferation and angiogenesis, resulting in extended survival rates in xenograft mouse models in comparison to the control group. Notably, pretreatment with dapsone exhibited a reversal of the impact of CXCL5 on the formation of colonies and tubes in GBM cells. Elevated expression of CXCL5 was correlated with poor outcomes in GBM patients. Furthermore, the overexpression of CXCL5 has been associated with the activation of JAK-STAT and NF-κB signaling pathways. CONCLUSIONS: CXCL5 plays an important role in tumorigenesis and angiogenesis, indicating the potential for novel therapies targeting CXCL5 in GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , NF-kappa B/metabolism , Glioblastoma/metabolism , Signal Transduction , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism
9.
Cardiovasc Diabetol ; 22(1): 172, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37420254

ABSTRACT

BACKGROUND: Higher chemokine C-X-C motif ligand 5 (CXCL5) level was observed in type 2 diabetes mellitus (DM) patients; however, its role in diabetic vasculopathy was not clarified. This study aimed to explore the impacts and mechanistic insights of CXCL5 in neovasculogenesis and wound healing in DM. METHODS: Endothelial progenitor cells (EPCs) and human aortic endothelial cells (HAECs) were used in vitro. Streptozotocin-induced diabetic mice and Leprdb/JNarl mice were used as type 1 and type 2 DM models. Moreover, CXCL5 knockout mice were used to generate diabetic mice. Hindlimb ischemia surgery, aortic ring assays, matrigel plug assay, and wound healing assay were conducted. RESULTS: CXCL5 concentrations were increased in plasma and EPCs culture medium from type 2 DM patients. CXCL5 neutralizing antibody upregulated vascular endothelial growth factor (VEGF)/stromal cell-derived factor-1 (SDF-1) and promoted cell function in EPCs from type 2 DM patients and high glucose-treated EPCs from non-DM subjects as well as HAECs. CXCL5 directly up-regulated interleukin (IL)-1ß/IL-6/tumor necrosis factor-α and down-regulated VEGF/SDF-1 via ERK/p65 activation through chemokine C-X-C motif receptor 2 (CXCR2). CXCL5 neutralizing antibody recovered the blood flow after hindlimb ischemia, increased circulating EPC number, and enhanced VEGF and SDF-1 expression in ischemic muscle. CXCL5 suppression promoted neovascularization and wound healing in different diabetic animal models. The above observation could also be seen in streptozotocin-induced CXCL5 knockout diabetic mice. CONCLUSIONS: CXCL5 suppression could improve neovascularization and wound healing through CXCR2 in DM. CXCL5 may be regarded as a potential therapeutic target for vascular complications of DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Endothelial Progenitor Cells , Humans , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Vascular Endothelial Growth Factor A , Diabetes Mellitus, Experimental/metabolism , Streptozocin/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Endothelial Progenitor Cells/metabolism , Chemokine CXCL12/metabolism , Mice, Knockout , Wound Healing , Ischemia , Neovascularization, Physiologic/physiology , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism
10.
Pathol Res Pract ; 244: 154319, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36889175

ABSTRACT

BACKGROUND: Kidney renal clear cell carcinoma (KIRC, ccRCC) is one of the most common and aggressive subtypes of urinary system cancer. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) exacerbate the malignant phenotype of KIRC. It is necessary to explore further how KIRC induces normal fibroblasts (NFs) into CAFs. METHODS: The transcriptome data of KIRC was obtained from The Cancer Genome Atlas (TCGA), and the hub-genes and their corresponding functions in the co-expression module were obtained through differential analysis, enrichment analysis, and weighted correlation network analysis (WGCNA) analysis. RT-PCR, western-blot, and Elisa assays were used to detect the expression of CXCL5 (C-X-C Motif Chemokine Ligand 5) in KIRC cells and medium. Western-blot and immunofluorescence were used to demonstrate the transformation of NFs to CAF-like cells and relevant pathways. Human umbilical vein endothelial cells (huvec) were seeded within collagen gel to represent the neo-vascular network. Transwell, scrape, colony formation, and CCK-8 assays were performed to reveal the feedback effect of KIRC cells. RESULTS: Bioinformatics analysis showed that CXCL5 was a core gene in differential expression genes (DEGs) and was associated with extracellular matrix (ECM), which was associated with CAFs. KIRC-derived CXCL5 promoted the conversion of NFs to CAF-like cells. It included morphological and corresponding molecular marker changes. Activation of the JAK/STAT3 pathway was involved in this process. Corresponding, CAFs cells could secrete vascular endothelial growth factor (VEGF), which induced angiogenesis. CXCL5 promoted KIRC invasion and proliferation. CONCLUSIONS: Our research suggested that KIRC-derived CXCL5 could induce NFs to become CAFs-like cells that promote angiogenesis in the TME. The positive feedback of CXCL5 promoted its own invasive growth. The intercellular communication with CXCL5 as the core might be the critical node in the occurrence and development of KIRC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Renal Cell/pathology , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells , Cell Line, Tumor , Neoplastic Processes , Kidney Neoplasms/pathology , Tumor Microenvironment , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism
11.
Dig Dis Sci ; 68(3): 841-851, 2023 03.
Article in English | MEDLINE | ID: mdl-35650416

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) is the most lethal malignant tumor, with average survival period of about 10 months. C-X-C ligand 5 (CXCL5), an important chemokine for immune cell accumulation in tumor tissues, has been reported to be involved in a variety of human cancers. However, the exact role of CXCL5 in PC progression has not been well defined. METHODS: The expression of CXCL5 in PC was analyzed based on online databases and clinical specimens immunohistochemical staining, and Western blotting of CXCL5 in PC cell lines and patient samples. The correlation between CXCL5 expression and prognosis in PC was explored. The role of CXCL5 in PC was investigated through in vitro and in vivo experiments. RESULTS: The expression of CXCL5 was significantly increased in PC tissues compared with that in pancreas tissues, and CXCL5 high expression predicts poor prognosis in PC patients. Further analyses demonstrated that overexpression of CXCL5 in PC cells was positively related to higher proliferation rate, higher migration ability, and higher EMT markers including SNAI2 and TWIST1 of tumor cells in vitro. Consistently, the knockdown of CXCL5 in PC cells harmed the proliferation rate, migration ability, and expression of EMT indexes of tumor cells in vitro. Importantly, knockdown of CXCL5 inhibited the growth of xenograft tumors in vivo. CONCLUSION: CXCL5 high expression predicts poor prognosis in PC patients. CXCL5 promotes PC cell growth and EMT process. Inhibition of CXCL5 may be a potential therapeutic approach for PC.


Subject(s)
Epithelial-Mesenchymal Transition , Pancreatic Neoplasms , Humans , Heterografts , Cell Proliferation , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Pancreas/pathology , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Pancreatic Neoplasms
12.
Cell Rep ; 41(12): 111848, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36543124

ABSTRACT

Cerebral small vessel disease and brain white matter injury are worsened by cardiovascular risk factors including obesity. Molecular pathways in cerebral endothelial cells activated by chronic cerebrovascular risk factors alter cell-cell signaling, blocking endogenous and post-ischemic white matter repair. Using cell-specific translating ribosome affinity purification (RiboTag) in white matter endothelia and oligodendrocyte progenitor cells (OPCs), we identify a coordinated interleukin-chemokine signaling cascade within the oligovascular niche of subcortical white matter that is triggered by diet-induced obesity (DIO). DIO induces interleukin-17B (IL-17B) signaling that acts on the cerebral endothelia through IL-17Rb to increase both circulating and local endothelial expression of CXCL5. In white matter endothelia, CXCL5 promotes the association of OPCs with the vasculature and triggers OPC gene expression programs regulating cell migration through chemokine signaling. Targeted blockade of IL-17B reduced vessel-associated OPCs by reducing endothelial CXCL5 expression. In multiple human cohorts, blood levels of CXCL5 function as a diagnostic and prognostic biomarker of vascular cognitive impairment.


Subject(s)
Brain Injuries , White Matter , Mice , Humans , Animals , Interleukin-17/metabolism , White Matter/metabolism , Endothelial Cells/metabolism , Brain/metabolism , Signal Transduction , Brain Injuries/metabolism , Oligodendroglia/metabolism , Chemokine CXCL5/metabolism
13.
J Hematol Oncol ; 15(1): 145, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36224639

ABSTRACT

BACKGROUND: Metastatic prostate cancer (PC) is a leading cause of cancer death in men worldwide. Targeting of the culprits of disease progression is an unmet need. Interleukin (IL)-30 promotes PC onset and development, but whether it can be a suitable therapeutic target remains to be investigated. Here, we shed light on the relationship between IL30 and canonical PC driver genes and explored the anti-tumor potential of CRISPR/Cas9-mediated deletion of IL30. METHODS: PC cell production of, and response to, IL30 was tested by flow cytometry, immunoelectron microscopy, invasion and migration assays and PCR arrays. Syngeneic and xenograft models were used to investigate the effects of IL30, and its deletion by CRISPR/Cas9 genome editing, on tumor growth. Bioinformatics of transcriptional data and immunopathology of PC samples were used to assess the translational value of the experimental findings. RESULTS: Human membrane-bound IL30 promoted PC cell proliferation, invasion and migration in association with STAT1/STAT3 phosphorylation, similarly to its murine, but secreted, counterpart. Both human and murine IL30 regulated PC driver and immunity genes and shared the upregulation of oncogenes, BCL2 and NFKB1, immunoregulatory mediators, IL1A, TNF, TLR4, PTGS2, PD-L1, STAT3, and chemokine receptors, CCR2, CCR4, CXCR5. In human PC cells, IL30 improved the release of IGF1 and CXCL5, which mediated, via autocrine loops, its potent proliferative effect. Deletion of IL30 dramatically downregulated BCL2, NFKB1, STAT3, IGF1 and CXCL5, whereas tumor suppressors, primarily SOCS3, were upregulated. Syngeneic and xenograft PC models demonstrated IL30's ability to boost cancer proliferation, vascularization and myeloid-derived cell infiltration, which were hindered, along with tumor growth and metastasis, by IL30 deletion, with improved host survival. RNA-Seq data from the PanCancer collection and immunohistochemistry of high-grade locally advanced PCs demonstrated an inverse association (chi-squared test, p = 0.0242) between IL30 and SOCS3 expression and a longer progression-free survival of patients with IL30NegSOCS3PosPC, when compared to patients with IL30PosSOCS3NegPC. CONCLUSIONS: Membrane-anchored IL30 expressed by human PC cells shares a tumor progression programs with its murine homolog and, via juxtacrine signals, steers a complex network of PC driver and immunity genes promoting prostate oncogenesis. The efficacy of CRISPR/Cas9-mediated targeting of IL30 in curbing PC progression paves the way for its clinical use.


Subject(s)
B7-H1 Antigen , Prostatic Neoplasms , Animals , B7-H1 Antigen/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Humans , Insulin-Like Growth Factor I , Interleukins/metabolism , Male , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Receptors, Chemokine , Suppressor of Cytokine Signaling 3 Protein/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
14.
Sci Rep ; 12(1): 15437, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104403

ABSTRACT

The tumor microenvironment represents one of the main obstacles in breast cancer treatment owing to the presence of heterogeneous stromal cells, such as adipose-derived stem cells (ADSCs), that may interact with breast cancer cells and promote cancer development. Resistin is an adipocytokine associated with adverse breast cancer progression; however, its underlying mechanisms in the context of the breast tumor microenvironment remain largely unidentified. Here, we utilized a transwell co-culture model containing patient-derived ADSCs and breast cancer cell lines to investigate their potential interaction, and observed that breast cancer cells co-cultured with resistin-treated ADSCs (R-ADSCs) showed enhanced cancer cell growth and metastatic ability. Screening by proteome arrays revealed that C-X-C motif chemokine ligand 5 (CXCL5) was released in the conditioned medium of the co-culture system, and phosphorylated ERK was increased in breast cancer cells after co-culture with R-ADSCs. Breast cancer cells treated with the recombinant proteins of CXCL5 showed similarly enhanced cell migration and invasion ability as occurred in the co-culture model, whereas application of neutralizing antibodies against CXCL5 reversed these phenomena. The orthotopic xenograft in mice by breast cancer cells after co-culture with R-ADSCs had a larger tumor growth and more CXCL5 expression than control. In addition, clinical analysis revealed a positive correlation between the expression of resistin and CXCL5 in both tumor tissues and serum specimens of breast cancer patients. The current study suggests that resistin-stimulated ADSCs may interact with breast cancer cells in the tumor microenvironment via CXCL5 secretion, leading to breast cancer cell malignancy.


Subject(s)
Breast Neoplasms , Resistin , Adipose Tissue/metabolism , Animals , Breast Neoplasms/pathology , Chemokine CXCL5/metabolism , Coculture Techniques , Female , Humans , Mice , Resistin/metabolism , Stem Cells , Tumor Microenvironment
15.
Anal Cell Pathol (Amst) ; 2022: 5418356, 2022.
Article in English | MEDLINE | ID: mdl-35936390

ABSTRACT

Esophageal carcinoma (EC) is the most prevalent malignant tumor that occurs frequently worldwide. The early diagnostic biomarkers are crucial for EC treatment. miRNA can regulate EC progression, with diagnostic and prognostic value. Herein, differentially expressed miRNAs and mRNAs (DEmRNAs) in EC were predicted based on TCGA database. The target mRNAs of miRNA were predicted through databases, which were then intersected with DEmRNAs. Next, the correlation between miRNA and candidate mRNAs was analyzed. qRT-PCR was introduced to analyze expression of miR-145-3p and CXCL5 mRNA in EC cell lines, and western blot was performed to assess protein expression of CXCL5. Cell proliferation, migration, invasion, and apoptosis in EC were examined through CCK-8, wound healing, Transwell invasion, and flow cytometry assays. Moreover, targeting relationship between miR-145-3p and CXCL5 was verified through luciferase reporter gene analysis. The experimental results revealed a decreased miR-145-3p expression and an increased CXCL5 expression in EC. Enforced expression of miR-145-3p hindered proliferation, migration, invasion, and stimulated apoptosis of EC cells by repressing CXCL5. This study manifested that miR-145-3p may be a tumor suppressor in EC, and miR-145-3p/CXCL5 axis restrained the malignant progression of EC. These results supply an underlying target for prognosis and treatment of EC patients.


Subject(s)
Carcinoma , Chemokine CXCL5/metabolism , Esophageal Neoplasms , MicroRNAs , 3' Untranslated Regions , Carcinoma/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics
16.
Zhonghua Zhong Liu Za Zhi ; 44(5): 382-388, 2022 May 23.
Article in Chinese | MEDLINE | ID: mdl-35615793

ABSTRACT

Objective: To investigate the role of CXCL5 in tumor immune of lung cancer and to explore the potential molecular mechanisms. Methods: A total of 62 cases of patients with lung cancer admitted in the First Affiliated Hospital of Henan University from May 2018 to December 2019 were recruited as study object. Another 20 cases of patients with pulmonary infectious diseases and 20 cases of healthy control were selected as control. Enzyme-linked immunosorbent assay (ELISA) was used to determine serum levels of CXCL5 in patients with lung cancer, pulmonary infectious diseases and healthy control. Immunohistochemical staining (IHC) was used to detect the expressions of CXCL5 and PD-1/PD-L1 in tumor and paracarcinoma tissues of patients with lung cancer. Pearson correlation analysis was used to evaluate the correlation between CXCL5 and PD-1 in tumor and paracarcinoma tissues of patients with lung cancer. Lewis cells either expressing CXCL5 or vector plasmids were used to establish C57BL/6J mice model of lung cancer, and all mice were then divided into vehicle and PD-1 antibody treatment groups, 10 mice for each group. The mice survival and tumor growth curves were recorded. IHC was used to evaluate the expressions of CXCL5, PD-1 as well as the proportions of CD8(+) T and Treg cells in xenograft tumor tissues. Results: In patients with lung cancer, the serum level of CXCL5 [(351.7±51.5) ng/L] was significant higher than that in patients with pulmonary infectious diseases and healthy control [(124.7±23.4) ng/L, P<0.001]. The expression levels of CXCL5 (0.136±0.034), CXCR2 (0.255±0.050), PD-1 (0.054±0.012) and PD-L1 (0.350±0.084) in tumor were significant higher than those in paracarcinoma normal tissues [(0.074±0.022), (0.112±0.023), (0.041±0.007) and (0.270±0.043) respectively, P<0.001]. CXCL5 was significant positively correlated with PD-1 in tumor tissues of lung cancer (r=0.643, P<0.001), but not correlated with PD-1 in paracarcinoma tissues(r=0.088, P=0.496). The vector control group, CXCL5 overexpression group, vector control + anti-PD-1 antibody treatment group and CXCL5 overexpression + anti-PD-1 antibody treatment group all successfully formed tumors in mice, while CXCL5 overexpression increased the tumor growth significantly (P<0.01), which was abrogated by the treatment of anti-PD-1 antibody. CXCL5 overexpression decreased the mice survival time significantly (P<0.01), this effect was also abrogated by the treatment of anti-PD-1 antibody. The proportion of CD8(+) T cells in CXCL5 overexpression group [(10.40±2.00)%] was significant lower than that in vector control group [(21.20±3.30)%, P=0.002]. The proportion of CD4(+) Foxp3(+) Treg cells in CXCL5 overexpression group [(38.40±3.70)%] was significant higher than that in vector control group [(23.30±2.25)%, P<0.001]. After the treatment of anti-PD-1 antibody, no significant difference were observed for the proportion of CD8(+) T cells [(34.10±5.00)% and (33.40±4.00)% respectively] and Treg cells [(14.70±3.50)% and (14.50±3.30)% respectively] in xenograft tumor tissues between CXCL5 overexpression+ anti-PD-1 antibody treatment group and vector control + anti-PD-1 antibody treatment group (P>0.05). Conclusion: The expressions of CXCL5 and PD-1/PD-L1 are all increased significantly in the tumor tissues of patients with lung cancer, CXCL5 may inhibit tumor immune of lung cancer via modulating PD-1/PD-L1 signaling.


Subject(s)
B7-H1 Antigen , Chemokine CXCL5 , Lung Neoplasms , Animals , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Chemokine CXCL5/metabolism , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/metabolism
17.
Sci Rep ; 12(1): 6015, 2022 04 10.
Article in English | MEDLINE | ID: mdl-35399116

ABSTRACT

Although KIF4A has been found to play an important role in a variety of tumors and is closely associated with the activation of immunocytes, its role in bladder cancer (BC) remains unclear. Here, we report increased expression of KIF4A in both lymph node-positive and high grade BC tissues. High expression of KIF4A has been significantly correlated with fewer CD8+ tumor-infiltrating lymphocytes (TILs) and a much worse prognosis in patients with BC. With respect to promoting tumor growth, the expression of KIF4A in promoting tumor growth was more pronounced in immune-competent mice (C57BL/6) than in immunodeficient mice (BALB/C). In addition, the more increased accumulation of myeloid-derived suppressor cells (MDSCs) was observed in tumor-bearing mice with KIF4A overexpression than in the control group. Transwell chemotaxis assays revealed that KIF4A overexpression in T24 cells increased MDSC recruitment. Furthermore, according to ELISA results, CXCL5 was the most noticeably increased cytokine in the KIF4A-transduced BC cells. Additional studies in vitro and in vivo showed that the capability of KIF4A to promote BC cells to recruit MDSCs could be significantly inhibited by anti-CXCL5 antibody. Therefore, our results demonstrated that KIF4A-mediated BC production of CXCL5 led to an increase in MDSC recruitment, which contributed to tumor progression.


Subject(s)
Chemokine CXCL5 , Kinesins , Myeloid-Derived Suppressor Cells , Urinary Bladder Neoplasms , Animals , Cell Line, Tumor , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Humans , Kinesins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , Neoplastic Processes , Urinary Bladder Neoplasms/pathology
18.
Mol Ther ; 30(6): 2327-2341, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35283273

ABSTRACT

CXCL5 is overexpressed in colorectal cancer (CRC) and promotes distant metastasis and angiogenesis of tumors; however, the underlying mechanism that mediates CXCL5 overexpression in CRC remains unclear. Here, we successfully extracted and identified primary mesenchymal stromal cells (MSCs) and verified the promoting effects of tumor-associated MSCs on CRC proliferation and metastasis in vivo and in vitro. We found that MSCs not only promoted the expression of CXCL5 by secreting CCL7 but also secreted TGF-ß to inhibit this process. After secretion, CCL7/CCR1 activated downstream CBP/P300 to acetylate KLF5 to promote CXCL5 transcription, while TGF-ß reversed the effect of KLF5 on transcription activation by regulating SMAD4. Taken together, our results indicate that MSCs in the tumor microenvironment promoted the progression and metastasis of CRC and regulated the expression of CXCL5 in CRC cells by secreting CCL7 and TGF-ß. KLF5 is the key site of these processes and plays a dual role in CXCL5 regulation. MSCs and their secreted factors may serve as potential therapeutic targets in the tumor environment.


Subject(s)
Colorectal Neoplasms , Mesenchymal Stem Cells , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CCL7 , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Chemokine CXCL5/pharmacology , Colorectal Neoplasms/pathology , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mesenchymal Stem Cells/metabolism , Neoplasm Metastasis , Neovascularization, Pathologic/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/genetics
19.
Oncogene ; 41(14): 2026-2038, 2022 04.
Article in English | MEDLINE | ID: mdl-35173310

ABSTRACT

The emergence of RAS/RAF mutant clone is the main feature of EGFR inhibitor resistance in KRAS wild-type colon cancer. However, its molecular mechanism is thought to be multifactorial, mainly due to cellular heterogeneity. In order to better understand the resistance mechanism in a single clone level, we successfully isolated nine cells with cetuximab-resistant (CR) clonality from in vitro system. All CR cells harbored either KRAS or BRAF mutations. Characteristically, these cells showed a higher EMT (Epithelial to mesenchymal transition) signature, showing increased EMT markers such as SNAI2. Moreover, the expression level of CXCL1/5, a secreted protein, was significantly higher in CR cells compared to the parental cells. In these CR cells, CXCL1/5 expression was coordinately regulated by SNAI2/NFKB and transactivated EGFR through CXCR/MMPI/EGF axis via autocrine singling. We also observed that combined cetuximab/MEK inhibitor not only showed growth inhibition but also reduced the secreted amounts of CXCL1/5. We further found that serum CXCL1/5 level was positively correlated with the presence of RAS/RAF mutation in colon cancer patients during cetuximab therapy, suggesting its role as a biomarker. These data indicated that the application of serum CXCL1/5 could be a potential serologic biomarker for predicting resistance to EGFR therapy in colorectal cancer.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Cetuximab/therapeutic use , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics
20.
FEBS J ; 289(12): 3535-3549, 2022 06.
Article in English | MEDLINE | ID: mdl-35038357

ABSTRACT

High rates of metastasis and postsurgical recurrence contribute to the higher mortality of hepatocellular carcinoma (HCC), partly due to cancer stem cell (CSC)-dependent tumorigenesis and metastasis. Sex-determining region Y-box 9 (Sox9) has been previously characterized as a candidate CSC marker of HCC. Here, we observed that the increase of Sox9 significantly promoted HCC cell growth and invasion in cell cultures, whereas knockdown of Sox9 showed the opposite effects, suggesting that Sox9 may regulate the proliferation and invasion of hepatoma cells in an autocrine manner. RNA sequencing, together with functional assays and clinical analyses, identified CXCL5 as a key mediator downstream of Sox9 in HCC cells. Mechanistic studies revealed that Sox9 induced CXCL5 expression by directly binding to a promoter region. Using gain- and loss-of-function approaches, we demonstrated that the intrinsic effective role of Sox9 in hepatoma cell growth and invasion depended on CXCL5, and that blockade of CXCL5/CXCR2 signalling abolished Sox9-triggered HCC cell proliferation and migration. Furthermore, the Sox9/CXCL5 axis activated PI3K-AKT and ERK1/2 signalling which are implicated in regulating HCC cell proliferation and invasion. Finally, the Sox9/CXCL5 axis contributed to the infiltration of neutrophils and macrophages in both tumour and peritumoral tissues from the orthotopic xenograft model. In summary, our data identify the Sox9/CXCL5 axis as an endogenous factor in controlling HCC cell growth and invasion, thereby raising the possibility of pharmacologic intervention with CXCL5/CXCR2 pathway inhibitors in therapy for HCC patients with higher Sox9 expression.


Subject(s)
Carcinoma, Hepatocellular , Chemokine CXCL5 , Liver Neoplasms , SOX9 Transcription Factor , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Neoplastic Stem Cells/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...