Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 852
Filter
1.
Mol Biol Rep ; 51(1): 705, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824214

ABSTRACT

BACKGROUND: Quinoa seeds (Chenopodium quinoa Willd.) have gained interest due to their naturally occurring phytochemicals and antioxidants. They possess potent anticancer properties against human colorectal cancer. METHODS AND RESULTS: Fatty acids in quinoa oil were studied using gas chromatography-mass spectrometry. Rats were used to test the acute oral toxicity of the nanoemulsion loaded with sodium alginate. The DPPH radical scavenging method was employed to assess the nanoemulsion's ability to scavenge free radicals. It was examined the in vivo anticancer potential of quinoa oil nanoemulsion on rats with breast cancer induced by 7, 12-dimethylbenz (a) anthracene (DMBA). DMBA-breast cancer models received daily quinoa oil nanoemulsions for 30 days. The anticancer effect of the nanoemulsion was assessed by measuring ROS, protein carbonyl, gene expression of anti-oncogenes, and histopathological analysis. Supplying quinoa oil nanoemulsion significantly reduced the increase in serum ROS and PC levels induced in breast cancer tissue. The expression levels of antioncogenes in breast cancer tissue were decreased by the quinoa oil nanoemulsion. Nanoemulsions also improved the cellular morphology of breast tumors. CONCLUSION: The study results indicate that quinoa oil nanoemulsion has anticancer activity against breast cancer, effectively modulating oxidative stress markers, anti-oncogene expressions, and tissue architecture. It can be inferred from the results that quinoa oil nanoemulsion is a chemoprotective medication that may hinder breast cancer progression in rats.


Subject(s)
Alginates , Breast Neoplasms , Chenopodium quinoa , Emulsions , Plant Oils , Animals , Chenopodium quinoa/chemistry , Female , Rats , Plant Oils/pharmacology , Plant Oils/chemistry , Alginates/chemistry , Alginates/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Seeds/chemistry , Antineoplastic Agents/pharmacology , Oxidative Stress/drug effects , Humans
2.
Microb Biotechnol ; 17(6): e14504, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850271

ABSTRACT

This article emphasizes the significant role of environmental factors in shaping the plant microbiome, highlighting how bacterial and fungal communities influence plant responses to water stress, and how environmental factors shape fungal communities in crops. Furthermore, recent studies describe how different genotypes and levels of water stress affect the composition of bacterial communities associated with quinoa plants, as well as the relationship between environmental factors and the structure of fungal communities in apple fruit. These findings underscore the importance of understanding plant microbiome dynamics in developing effective crop protection strategies and improving agricultural sustainability with the objective of advance towards a microbiome-based strategy which allows us to improve crop tolerance to abiotic stresses.


Subject(s)
Bacteria , Fungi , Microbiota , Fungi/genetics , Fungi/physiology , Fungi/classification , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Chenopodium quinoa/microbiology , Malus/microbiology , Plants/microbiology , Stress, Physiological , Environment , Crops, Agricultural/microbiology
3.
Sci Rep ; 14(1): 12345, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811833

ABSTRACT

Pitseed goosefoot (Chenopodium berlandieri) is a free-living North American member of an allotetraploid complex that includes the Andean pseudocereal quinoa (C. quinoa). Like quinoa, pitseed goosefoot was domesticated, possibly independently, in eastern North America (subsp. jonesianum) and Mesoamerica (subsp. nuttaliae). To test the utility of C. berlandieri as a resource for quinoa breeding, we produced the whole-genome DNA sequence of PI 433,231, a huauzontle from Puebla, México. The 1.295 Gb genome was assembled into 18 pseudomolecules and annotated using RNAseq data from multiple tissues. Alignment with the v.2.0 genome of Chilean-origin C. quinoa cv. 'QQ74' revealed several inversions and a 4A-6B reciprocal translocation. Despite these rearrangements, some quinoa x pitseed goosefoot crosses produce highly fertile hybrids with faithful recombination, as evidenced by a high-density SNP linkage map constructed from a Bolivian quinoa 'Real-1' × BYU 937 (Texas coastal pitseed goosefoot) F2 population. Recombination in that cross was comparable to a 'Real-1' × BYU 1101 (Argentine C. hircinum) F2 population. Furthermore, SNP-based phylogenetic and population structure analyses of 90 accessions supported the hypothesis of multiple independent domestications and descent from a common 4 × ancestor, with a likely North American Center of Origin.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Plant Breeding/methods , Genome, Plant , Mexico , Phylogeny
4.
J Agric Food Chem ; 72(20): 11480-11492, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733562

ABSTRACT

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 µmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.


Subject(s)
Chenopodium quinoa , Dipeptidyl-Peptidase IV Inhibitors , Peptides , Chenopodium quinoa/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/chemistry , Food Handling , Germination , Plant Proteins/chemistry , Plant Proteins/metabolism , Hydrolysis , Seeds/chemistry , Seeds/metabolism , Humans , Digestion
5.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793569

ABSTRACT

Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by insect-borne viruses, among which pepper veinal mottle virus (PVMV) is one of the most prevalent. PVMV is a member of the genus Potyvirus of the family Potyviridae and is non-persistently transmitted by aphids. Its infection significantly reduces tomato fruit yield and quality. So far, no PVMV-resistant tomato lines are available. In this study, we performed nitrite-induced mutagenesis of the PVMV tomato isolate Tn to generate attenuated PVMV mutants. PVMV Tn causes necrotic lesions in Chenopodium quinoa leaves and severe mosaic and wilting in Nicotiana benthamiana plants. After nitrite treatment, three attenuated PVMV mutants, m4-8, m10-1, and m10-11, were selected while inducing milder responses to C. quinoa and N. benthamiana with lower accumulation in tomato plants. In greenhouse tests, the three mutants showed different degrees of cross-protection against wild-type PVMV Tn. m4-8 showed the highest protective efficacy against PVMV Tn in N. benthamiana and tomato plants, 100% and 97.9%, respectively. A whole-genome sequence comparison of PVMV Tn and m4-8 revealed that 20 nucleotide substitutions occurred in the m4-8 genome, resulting in 18 amino acid changes. Our results suggest that m4-8 has excellent potential to protect tomato crops from PVMV. The application of m4-8 in protecting other Solanaceae crops, such as peppers, will be studied in the future.


Subject(s)
Nicotiana , Plant Diseases , Potyvirus , Solanum lycopersicum , Solanum lycopersicum/virology , Plant Diseases/virology , Plant Diseases/prevention & control , Potyvirus/genetics , Potyvirus/physiology , Nicotiana/virology , Crops, Agricultural/virology , Disease Resistance , Genome, Viral , Chenopodium quinoa/virology , Mutation , Plant Leaves/virology , Taiwan , Mutagenesis
6.
J Agric Food Chem ; 72(22): 12762-12774, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775801

ABSTRACT

Small-granule starches (SGSs) have technological advantages over starches of conventional sizes for many applications. The study compared the granular characteristics of three SGSs (from amaranth, quinoa, and taro) with those of maize and potato starches and revealed their molecular basis. The results indicated that the supramolecular architecture of starch granules was not necessarily correlated with granule size. Acid hydrolysis of amaranth and quinoa starches was fast due to not only their small granule sizes but also the defects in the supramolecular structure, to which short external and internal chain lengths of amaranth and quinoa amylopectins contributed. By comparison, the granular architecture of taro starch granules was more stable partly due to the longer external chain length of taro amylopectin. Comparison of the molecular composition of branched subunits (released by using α-amylase of Bacillus amyloliquefaciens) in amylopectins and that in lintnerized starches suggested a significant heterogeneous degradation of amaranth and quinoa starches at supramolecular levels.


Subject(s)
Amaranthus , Chenopodium quinoa , Starch , Starch/chemistry , Starch/metabolism , Amaranthus/chemistry , Chenopodium quinoa/chemistry , Particle Size , Zea mays/chemistry , Hydrolysis , Solanum tuberosum/chemistry , Amylopectin/chemistry
7.
Mycorrhiza ; 34(3): 191-201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38758247

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) colonize biochar in soils, yet the processes governing their colonization and growth in biochar are not well characterized. Biochar amendment improves soil health by increasing soil carbon, decreasing bulk density, and improving soil water retention, all of which can increase yield and alleviate environmental stress on crops. Biochar is often applied with nutrient addition, impacting mycorrhizal communities. To understand how mycorrhizas explore soils containing biochar, we buried packets of non-activated biochar in root exclusion mesh bags in contrasting agricultural soils. In this greenhouse experiment, with quinoa (Chenopodium quinoa) as the host plant, we tested impacts of mineral nutrient (as manure and fertilizer) and biochar addition on mycorrhizal colonization of biochar. Paraglomus appeared to dominate the biochar packets, and the community of AMF found in the biochar was a subset (12 of 18) of the virtual taxa detected in soil communities. We saw differences in AMF community composition between soils with different edaphic properties, and while nutrient addition shifted those communities, the shifts were inconsistent between soil types and did not significantly influence the observation that Paraglomus appeared to selectively colonize biochar. This observation may reflect differences in AMF traits, with Paraglomus previously identified only in soils (not in roots) pointing to predominately soil exploratory traits. Conversely, the absence of some AMF from the biochar implies either a reduced tendency to explore soils or an ability to avoid recalcitrant nutrient sources. Our results point to a selective colonization of biochar in agricultural soils.


Subject(s)
Charcoal , Mycorrhizae , Soil Microbiology , Soil , Mycorrhizae/physiology , Soil/chemistry , Agriculture/methods , Chenopodium quinoa , Plant Roots/microbiology , Manure/microbiology , Manure/analysis
8.
Plant Physiol Biochem ; 212: 108734, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781636

ABSTRACT

The development of quinoa-based functional foods with cost-effective methods has gained considerable attention. In this study, the effects of magnetic field pretreatment on the germination characteristics, phenolic synthesis, and antioxidant system of quinoa (Chenopodium quinoa Willd.) were investigated. The results showed that the parameters of magnetic field pretreatment had different effects on the germination properties of five quinoa varieties, in which Sanjiang-1 (SJ-1) was more sensitive to magnetic field pretreatment. The content of total phenolics and phenolic acids in 24-h germinated seeds increased by 20.48% and 26.54%, respectively, under the pretreatment of 10 mT magnetic fields for 10 min compared with the control. This was closely related to the activation of the phenylpropanoid pathway by increasing enzyme activities and gene expression. In addition, magnetic field improved 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free radicals scavenging capacities and increased peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) activities. This study suggests that magnetic field pretreatment enhanced gene expression of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS) and chalcone isomerase (CHI), increased antioxidant enzyme activity and phenolics content. Thereby lead to an increase in the antioxidative capacity of quinoa.


Subject(s)
Antioxidants , Chenopodium quinoa , Germination , Magnetic Fields , Phenols , Chenopodium quinoa/metabolism , Chenopodium quinoa/genetics , Chenopodium quinoa/growth & development , Phenols/metabolism , Antioxidants/metabolism , Seeds/metabolism , Seeds/growth & development , Hydroxybenzoates/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
9.
Food Res Int ; 187: 114345, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763637

ABSTRACT

Long-term consumption of Western-style diet (WSD) can lead to metabolic disorders and dysbiosis of gut microbiota, presenting a critical risk factor for various chronic conditions such as fatty liver disease. In the present study, we investigated the beneficial role of co-fermented whole grain quinoa and black barley with Lactobacillus kisonensis on rats fed a WSD. Male Sprague-Dawley (SD) rats, aged six weeks and weighing 180 ± 10 g, were randomly assigned to one of three groups: the normal control group (NC, n = 7), the WSD group (HF, n = 7), and the WSD supplemented with a co-fermented whole grain quinoa with black barley (FQB) intervention group (HFF, n = 7). The findings indicated that FQB was effective in suppressing body weight gain, mitigating hepatic steatosis, reducing perirenal fat accumulation, and ameliorating pathological damage in the livers and testicular tissues of rats. Additionally, FQB intervention led to decreased levels of serum uric acid (UA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). These advantageous effects can be ascribed to the regulation of FQB on gut microbiota dysbiosis, which includes the restoration of intestinal flora diversity, reduction of the F/B ratio, and promotion of probiotics abundance, such as Akkermansia and [Ruminococcus] at the genus level. The study employed the UPLC-Q-TOF-MSE technique to analyze metabolites in fecal and hepatic samples. The findings revealed that FQB intervention led to a regression in the levels of specific metabolites in feces, including oxoadipic acid and 20a, 22b-dihydroxycholesterol, as well as in the liver, such as pyridoxamine, xanthine and xanthosine. The transcriptome sequencing of liver tissues revealed that FQB intervention modulated the mRNA expression of specific genes, including Cxcl12, Cidea, and Gck, known for their roles in anti-inflammatory and anti-insulin resistance mechanisms in the context of WSD. Our findings indicate that co-fermented whole-grain quinoa with black barley has the potential to alleviate metabolic disorders and chronic inflammation resulting from the consumption of WSD.


Subject(s)
Chenopodium quinoa , Diet, Western , Fermentation , Gastrointestinal Microbiome , Hordeum , Lactobacillus , Rats, Sprague-Dawley , Animals , Hordeum/chemistry , Male , Lactobacillus/metabolism , Chenopodium quinoa/chemistry , Rats , Liver/metabolism , Dysbiosis , Metabolomics , Fermented Foods , Multiomics
10.
Food Res Int ; 187: 114395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763655

ABSTRACT

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Subject(s)
Antioxidants , Chenopodium quinoa , Esterification , Chenopodium quinoa/chemistry , Structure-Activity Relationship , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Pectins/chemistry , Polysaccharides/chemistry , Prebiotics , Animals , Mice , Functional Food , RAW 264.7 Cells , NF-kappa B/metabolism
11.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710546

ABSTRACT

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Subject(s)
Antioxidants , Chenopodium quinoa , Flavonoids , Nanoparticles , Rutin , Starch , Zea mays , Flavonoids/chemistry , Rutin/chemistry , Zea mays/chemistry , Nanoparticles/chemistry , Chenopodium quinoa/chemistry , Starch/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Availability , Hydrolysis
12.
Food Res Int ; 186: 114339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729694

ABSTRACT

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Subject(s)
Chenopodium quinoa , Colon , Digestion , Fermentation , Metabolomics , Polyphenols , Prebiotics , Humans , Polyphenols/metabolism , Chenopodium quinoa/metabolism , Caco-2 Cells , Colon/metabolism , Colon/microbiology , Germination , Biological Transport , Biological Availability , Gastrointestinal Microbiome/physiology
13.
Food Res Int ; 186: 114365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729700

ABSTRACT

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Subject(s)
Antioxidants , Catechin , Chenopodium quinoa , Emulsions , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Hydrolysates , Chenopodium quinoa/chemistry , Hydrogen-Ion Concentration , Emulsions/chemistry , Protein Hydrolysates/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Antioxidants/chemistry , Hydrogen Bonding , Plant Proteins/chemistry , Lipids/chemistry
14.
Anim Reprod Sci ; 264: 107472, 2024 May.
Article in English | MEDLINE | ID: mdl-38598888

ABSTRACT

Although cryopreservation is a reliable method used in assisted reproduction to preserve genetic materials, it can stimulate the occurrence of oxidative stress, which affects sperm structure and function. This research was conducted to explore the effects of quinoa seed extracts (QSE) on ram sperm quality, oxidative biomarkers, and the gene expression of frozen-thawed ram sperm. Semen samples were diluted in extenders supplemented with 0 (QSE0), 250 (QSE1), 500 (QSE2), 750 (QSE3), and 1000 (QSE4) µg of QSE /mL, and then frozen according to the typical procedure. The findings indicate that the QSE3 and QSE4 groups provided the optimal results in terms of sperm viability and progressive motility. Sperm kinematics were considerably enhanced in the QSE3 group compared to the other groups (P<0.01). QSE (500-1000 µg/mL) significantly decreased the apoptosis-like changes (higher viable and lower apoptotic sperm) in ram sperm (P<0.001). The percentage of live sperm with intact acrosomes was significantly increased, while the percentage of detached and intact acrosomes in live and dead sperm were significantly decreased respectively by the QSE addition (P<0.001). All QSE groups had higher TAC and lower MDA and H2O2 levels than the control group (P<0.001). The expressions of SOD1, CAT, GABPB1, and GPX1 genes in sperm samples were significantly increased, while the CASP3 gene was significantly decreased in all QSE-supplemented samples. Our data suggest that QSE has beneficial effects on sperm quality of cryopreserved ram semen, which are achieved by promoting sperm antioxidant-related genes and reducing apoptosis-related gene.


Subject(s)
Chenopodium quinoa , Cryopreservation , Plant Extracts , Seeds , Semen Analysis , Semen Preservation , Spermatozoa , Male , Cryopreservation/veterinary , Cryopreservation/methods , Animals , Sheep/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Seeds/chemistry , Semen Analysis/veterinary , Spermatozoa/drug effects , Spermatozoa/physiology , Plant Extracts/pharmacology , Chenopodium quinoa/chemistry
15.
Food Chem ; 449: 139262, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608613

ABSTRACT

Despite its nutritional components and potential health benefits, the bitterness of quinoa seed limits its utilization in the food industry. Saponins are believed to be the main cause of the bitterness, but it is still uncertain which specific compound is responsible. This study aimed to isolate the main components contributing to the bitterness in quinoa seed by solvent extraction and various column chromatography techniques guided by sensory evaluation. Five compounds were identified by mass spectrometry and nuclear magnetic resonance analyses, with the dose-over-threshold factors from 29.03 to 198.89. The results confirmed that triterpenoids are responsible for the bitter taste in quinoa seed, with phytolaccagenic acid derivatives being the primary contributor. Additionally, kaempferol 3-O-(2″, 6″-di-O-α-rhamnopyranosyl)-ß-galactopyranoside (namely mauritianin), was demonstrated for the first time to be associated with the bitterness of quinoa. This study could provide new insight into the bitter compound identification in quinoa.


Subject(s)
Chenopodium quinoa , Phytochemicals , Seeds , Taste , Chenopodium quinoa/chemistry , Humans , Seeds/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Molecular Structure
16.
Food Chem ; 448: 138575, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38604110

ABSTRACT

Quinoa sprouts are a green vegetable rich in bioactive chemicals, which have multiple health benefits. However, there is limited information on the overall metabolic profiles of quinoa sprouts and the metabolite changes caused by saline-alkali stress. Here, a UHPLC-MS/MS-based widely targeted metabolomics technique was performed to comprehensively evaluate the metabolic profiles of quinoa sprouts and characterize its metabolic response to saline-alkali stress. A total of 930 metabolites were identified of which 232 showed significant response to saline-alkali stress. The contents of lipids and amino acids were significantly increased, while the contents of flavonoids and phenolic acids were significantly reduced under saline-alkali stress. Moreover, the antioxidant activities of quinoa sprouts were significantly affected by saline-alkali stress. The enrichment analysis of the differentially accumulated metabolites revealed that flavonoid, amino acid and carbohydrate biosynthesis/metabolism pathways responded to saline-alkali stress. This study provided an important theoretical basis for evaluating the nutritional value of quinoa sprouts and the changes in metabolites in response to saline-alkali stress.


Subject(s)
Alkalies , Chenopodium quinoa , Flavonoids , Nutritive Value , Chenopodium quinoa/chemistry , Chenopodium quinoa/metabolism , Chenopodium quinoa/growth & development , Alkalies/chemistry , Alkalies/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Chromatography, High Pressure Liquid , Antioxidants/metabolism , Antioxidants/chemistry , Metabolomics , Tandem Mass Spectrometry , Amino Acids/metabolism , Amino Acids/analysis , Stress, Physiological
17.
Sci Rep ; 14(1): 9205, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649738

ABSTRACT

Quinoa (Chenopodium quinoa Willd.), an Andean crop, is a facultative halophyte food crop recognized globally for its high nutritional value and plasticity to adapt to harsh conditions. We conducted a genome-wide association study on a diverse set of quinoa germplasm accessions. These accessions were evaluated for the following agronomic and biochemical traits: days to 50% flowering (DTF), plant height (PH), panicle length (PL), stem diameter (SD), seed yield (SY), grain diameter (GD), and thousand-grain weight (TGW). These accessions underwent genotyping-by-sequencing using the DNBSeq-G400R platform. Among all evaluated traits, TGW represented maximum broad-sense heritability. Our study revealed average SNP density of ≈ 3.11 SNPs/10 kb for the whole genome, with the lowest and highest on chromosomes Cq1B and Cq9A, respectively. Principal component analysis clustered the quinoa population in three main clusters, one clearly representing lowland Chilean accessions, whereas the other two groups corresponded to germplasm from the highlands of Peru and Bolivia. In our germplasm set, we estimated linkage disequilibrium decay to be ≈ 118.5 kb. Marker-trait analyses revealed major and consistent effect associations for DTF on chromosomes 3A, 4B, 5B, 6A, 7A, 7B and 8B, with phenotypic variance explained (PVE) as high as 19.15%. Nine associations across eight chromosomes were also found for saponin content with 20% PVE by qSPN5A.1. More QTLs were identified for PL and TGW on multiple chromosomal locations. We identified putative candidate genes in the genomic regions associated with DTF and saponin content. The consistent and major-effect genomic associations can be used in fast-tracking quinoa breeding for wider adaptation across marginal environments.


Subject(s)
Chenopodium quinoa , Genome, Plant , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Phenotype , Peru , Genotype , Bolivia , Chromosomes, Plant/genetics , Quantitative Trait, Heritable
18.
Sci Rep ; 14(1): 7647, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561426

ABSTRACT

The persistent challenges posed by pollution and climate change are significant factors disrupting ecosystems, particularly aquatic environments. Numerous contaminants found in aquatic systems, such as ammonia and metal toxicity, play a crucial role in adversely affecting aquaculture production. Against this backdrop, fish feed was developed using quinoa husk (the byproduct of quinoa) as a substitute for fish meal. Six isonitrogenous diets (30%) and isocaloric diets were formulated by replacing fish meal with quinoa husk at varying percentages: 0% quinoa (control), 15, 20, 25, 30 and 35%. An experiment was conducted to explore the potential of quinoa husk in replacing fish meal and assess its ability to mitigate ammonia and arsenic toxicity as well as high-temperature stress in Pangasianodon hypophthalmus. The formulated feed was also examined for gene regulation related to antioxidative status, immunity, stress proteins, growth regulation, and stress markers. The gene regulation of sod, cat, and gpx in the liver was notably upregulated under concurrent exposure to ammonia, arsenic, and high-temperature (NH3 + As + T) stress. However, quinoa husk at 25% downregulated sod, cat, and gpx expression compared to the control group. Furthermore, genes associated with stress proteins HSP70 and DNA damage-inducible protein (DDIP) were significantly upregulated in response to stressors (NH3 + As + T), but quinoa husk at 25% considerably downregulated HSP70 and DDIP to mitigate the impact of stressors. Growth-responsive genes such as myostatin (MYST) and somatostatin (SMT) were remarkably downregulated, whereas growth hormone receptor (GHR1 and GHRß), insulin-like growth factors (IGF1X, IGF2X), and growth hormone gene were significantly upregulated with quinoa husk at 25%. The gene expression of apoptosis (Caspase 3a and Caspase 3b) and nitric oxide synthase (iNOS) were also noticeably downregulated with quinoa husk (25%) reared under stressful conditions. Immune-related gene expression, including immunoglobulin (Ig), toll-like receptor (TLR), tumor necrosis factor (TNFα), and interleukin (IL), strengthened fish immunity with quinoa husk feed. The results revealed that replacing 25% of fish meal with quinoa husk could improve the gene regulation of P. hypophthalmus involved in mitigating ammonia, arsenic, and high-temperature stress in fish.


Subject(s)
Arsenic , Catfishes , Chenopodium quinoa , Animals , Dietary Supplements/analysis , Chenopodium quinoa/genetics , Arsenic/toxicity , Ammonia , Ecosystem , Diet , Antioxidants , Caspases , Animal Feed/analysis
19.
PLoS One ; 19(4): e0300464, 2024.
Article in English | MEDLINE | ID: mdl-38626197

ABSTRACT

Our research occurred in the Andean region, one of the eight global centers of domestication of plant species grown for agriculture. The shores of Lake Titicaca (located between Peru and Bolivia), at 3800 meters above sea level, are recognized as the center of origin of quinoa (Chenopodium quinoa Willd.). In this region, complex societies have emerged, thanks to the development of water and soil management technologies. They have managed to overcome high mountain territories' extreme and variable climatic conditions. These societies have traditionally protected and preserved quinoa as food for present and future generations through their long-standing knowledge and cultivation practices. The fieldwork occurred in the context of Andean family farming, and our study analyzes nature-society dynamics with a chorematic approach and interviews with local communities. The interest of this work is the transformation of the landscape at the scale of the mountain agroecosystem to understand better the impacts of rural development policies. Chorematic modeling was applied to two periods, before and after 1970, a pivotal year in Peru for agriculture, to show how socio-spatial dynamics in the Andean environment are changing, particularly concerning the evolution of quinoa cultivation. The results show that wild quinoa relatives' distribution is strongly linked to the socio-spatial organization of the agroecosystem. Different species of wild quinoa relatives are maintained by villagers for their multiple foods, medicinal and cultural uses in natural areas, grazed areas, on edge, and also within cultivated fields. However, this management is changing under the pressure of global issues related to the international quinoa market, whose requirements imply reducing the presence of wild relatives in cultivated fields.


Subject(s)
Chenopodium quinoa , Peru , Bolivia , Domestication , Agriculture
20.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627628

ABSTRACT

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Phylogeny , Temperature , Polyamines/metabolism , Ethylenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...