Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132.139
Filter
1.
Vet Res ; 55(1): 70, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822378

ABSTRACT

Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.


Subject(s)
Adhesins, Escherichia coli , Bacterial Adhesion , Chickens , Escherichia coli Infections , Poultry Diseases , Poultry Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Animals , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
2.
Reprod Domest Anim ; 59(6): e14588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822558

ABSTRACT

Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 µg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 µg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 µg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.


Subject(s)
Antioxidants , Chickens , Cryopreservation , Phenylethyl Alcohol , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Male , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/drug effects , Sperm Motility/drug effects , Antioxidants/pharmacology , Semen Analysis/veterinary , Cryoprotective Agents/pharmacology , Malondialdehyde/analysis
3.
Food Res Int ; 188: 114479, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823840

ABSTRACT

Freezing is a commonly used method for long-term storage of chicken wing products, of which disadvantages are mainly the product damage caused in the process. The aim of this study was to improve the freezing quality of chicken wings with a combination of phosphorus-free water retaining agent (WRA) and high-voltage electrostatic field (HVEF). The effect of WRA acting at different HVEF intensities (0, 1, 3, and 5 kV/cm) on the quality attributes of frozen chicken wings was investigated in 0, 7, 14, 21, 28 and 35 days of frozen storage. The results showed that WRA had functional properties of significantly improving the water holding capacity (WHC), color and texture properties, and fat stability of frozen chicken wing samples. The application of HVEF on this basis helped to promote the absorption of WRA and inhibit oxidative deterioration of chicken wing samples during frozen storage. Meanwhile, the combination of HVEF at 3 kV/cm was more prominent in terms of improvement in WHC, moisture content, color, protein secondary structure and microstructure integrity. This advantage had been consistently maintained with the extension of storage time. Overall, WRA combined with HVEF of 3 kV/cm can be used as an effective strategy to improve the freezing quality of chicken wing samples and has the potential to maintain the frozen chicken wing samples quality for a long time.


Subject(s)
Chickens , Freezing , Static Electricity , Water , Wings, Animal , Animals , Wings, Animal/chemistry , Water/chemistry , Food Preservation/methods , Food Storage/methods , Phosphorus/analysis
4.
BMC Vet Res ; 20(1): 236, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824607

ABSTRACT

BACKGROUND: The chicken's inflammatory response is an essential part of the bird's response to infection. A single dose of Escherichia coli (E. coli) lipopolysaccharide (LPS) endotoxin can activate the acute phase response (APR) and lead to the production of acute phase proteins (APPs). In this study, the responses of established chicken APPs, Serum amyloid A (SAA) and Alpha-1-acid-glycoprotein (AGP), were compared to two novel APPs, Hemopexin (Hpx) and Extracellular fatty acid binding protein (Ex-FABP), in 15-day old broilers over a time course of 48 h post E.coli LPS challenge. We aimed to investigate and validate their role as biomarkers of an APR. Novel plant extracts, Citrus (CTS) and cucumber (CMB), were used as dietary supplements to investigate their ability to reduce the inflammatory response initiated by the endotoxin. RESULTS: A significant increase of established (SAA, AGP) and novel (Ex-FABP, Hpx) APPs was detected post E.coli LPS challenge. Extracellular fatty acid binding protein (Ex-FABP) showed a similar early response to SAA post LPS challenge by increasing ~ 20-fold at 12 h post challenge (P < 0.001). Hemopexin (Hpx) showed a later response by increasing ∼5-fold at 24 h post challenge (P < 0.001) with a similar trend to AGP. No differences in APP responses were identified between diets (CTS and CMB) using any of the established or novel biomarkers. CONCLUSIONS: Hpx and Ex-FABP were confirmed as potential biomarkers of APR in broilers when using an E. coli LPS model along with SAA and AGP. However, no clear advantage for using either of dietary supplements to modulate the APR was identified at the dosage used.


Subject(s)
Acute-Phase Proteins , Acute-Phase Reaction , Biomarkers , Chickens , Escherichia coli , Lipopolysaccharides , Animals , Biomarkers/blood , Lipopolysaccharides/pharmacology , Acute-Phase Proteins/metabolism , Acute-Phase Proteins/analysis , Endotoxins , Serum Amyloid A Protein/analysis , Serum Amyloid A Protein/metabolism , Orosomucoid/metabolism , Dietary Supplements , Plant Extracts/pharmacology , Fatty Acid-Binding Proteins/metabolism , Poultry Diseases/microbiology , Hemopexin/metabolism
5.
Narra J ; 4(1): e406, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798869

ABSTRACT

Patients with chronic obstructive pulmonary disease (COPD) commonly exhibit muscle atrophy and dysfunction due to a reduction in muscle mass; and protein supplements such as chicken egg whites have been reported to improve muscle mass. The aim of this study was to evaluate the impact of physical exercise and egg white supplementation on the muscle mass of COPD patients. An experimental study was conducted among stable COPD patients at Universitas Sumatra Utara Hospital Medan, Indonesia, between August and October 2022. The patients were divided into two groups, control and interventional groups, with each patient subjected to a pre- and post-muscle mass assessment. All the patients performed respiratory endurance and upper extremity muscle strength training three times/week for a total of 12 weeks. In addition, the patients in the intervention group were also given egg white supplementation (10 eggs/day) during the period of intervention in addition to the physical training. The Wilcoxon and Mann-Whitney tests were performed to identify the significance of the difference between pre- and post-intervention and between the control and intervention groups, respectively. A total of 38 COPD patients were included in the study, 19 from each group. Our data suggested no significant difference in muscle mass of the patients in the control group before and after 12 weeks of physical exercise (pre-intervention 27.37±4.54% and post-intervention 27.68±4.5% with p=0.174). However, there was a significant muscle mass increment of patients in the intervention group upon 12 weeks of physical training and egg white supplementation (pre-intervention 27.18±4.15%, post-intervention 29.95±3.76%, p<0.001). A significant difference in muscle mass was observed between patients in the control and the intervention groups (p=0.046) after the intervention. The study highlights that physical exercise in combination with egg white supplementation may serve as potential and effective non-pharmacological treatment for muscle mass restoration in COPD patients as compared to physical exercise alone.


Subject(s)
Dietary Supplements , Egg White , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/therapy , Female , Male , Middle Aged , Aged , Animals , Exercise/physiology , Chickens , Indonesia , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Exercise Therapy/methods
6.
Braz J Biol ; 84: e276805, 2024.
Article in English | MEDLINE | ID: mdl-38808782

ABSTRACT

This study compares the physicochemical characteristics of breast meat (Pectoralis major) from conventional chicken and free-range chicken production systems. Analyses of pH, instrumental color measurement, weight loss from cooking (WLC), and water retention capacity (WRC) were carried out. Average pH values were slightly higher for conventional chicken samples. WLC did not show a significant difference between conventional and free-range chicken samples. The WRC was better and higher for the free-range chicken samples than the conventional ones. The mean values for luminosity (L*) were within the normal range, with slightly higher values for conventional chicken. In chromatids a* and b*, there was a tendency towards a more reddish color for free-range chicken samples. The differences found for types of production can be explained mainly by the difference in age at slaughter, the degree of physical activity, animal feeding, among other characteristics that differentiate an animal raised by the extensive system from the intensive system.


Subject(s)
Chickens , Meat , Animals , Meat/analysis , Meat/standards , Pectoralis Muscles/physiology , Animal Husbandry , Hydrogen-Ion Concentration , Food Quality , Cooking
7.
PLoS One ; 19(5): e0302861, 2024.
Article in English | MEDLINE | ID: mdl-38820282

ABSTRACT

Campylobacter hepaticus, the causative agent of Spotty Liver Disease (SLD) is an important disease in cage-free egg producing chickens causing mortality and production drops. C. hepaticus is a slow growing Campylobacter easily overgrown by fecal bacteria. It is currently only reliably isolatable from bile samples. A selective media for isolation from feces or environment would assist diagnosis and impact assessment. Growth of five Australian C. hepaticus isolates was studied using Horse blood agar (HBA), sheep blood agar (SBA), Bolton, Preston and Brain Heart Infusion (BHI) base media. Blood and/or bile were added to Bolton, Preston and BHI medias. C. jejuni was used as a positive control. Plates were incubated in duplicate under microaerophilic conditions at 42°C for 10 days and examined at days 3-5 and 7-10 of incubation. Each isolate was examined for sensitivity to 14 antimicrobials using HBA sensitivity plates. Growth was inhibited by BHI and by added bile, while blood improved growth. Further replicates using SBA, HBA, Bolton and Preston media showed best growth on Bolton agar with blood. All five C. hepaticus isolates were resistant to trimethoprim and vancomycin, while four were also resistant to rifampicin and bacitracin. Media based upon Bolton plus blood supplemented with vancomycin and trimethoprim might be used as the most appropriate media for selective growth of C. hepaticus. The addition of bile to media for C. hepaticus isolation and growth will inhibit growth and is not advised.


Subject(s)
Anti-Bacterial Agents , Campylobacter , Culture Media , Campylobacter/isolation & purification , Campylobacter/growth & development , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Microbial Sensitivity Tests , Campylobacter Infections/microbiology , Campylobacter Infections/diagnosis , Bacteriological Techniques/methods , Feces/microbiology
8.
J Texture Stud ; 55(3): e12835, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778604

ABSTRACT

Texture deterioration of meat products upon high-temperature sterilization is a pressing issue in the meat industry. This study evaluated the effect of different thermal sterilization temperatures on the textural and juiciness of ready-to-eat (RTE) chicken breast. In this study, by dynamically monitoring the texture and juiciness of chicken meat products during the process of thermal sterilization, it has been observed that excessively high sterilization temperatures (above 100°C) significantly diminish the shear force, springiness and water-holding capacity of the products. Furthermore, from the perspective of myofibrillar protein degradation, molecular mechanisms have been elucidated, unveiling that the thermal sterilization treatment at 121°C/10 min triggers the degradation of myosin heavy chains and F-actin, disrupting the lattice arrangement of myofilaments, compromising the integrity of sarcomeres, and resulting in an increase of approximately 40.66% in the myofibrillar fragmentation index, thus diminishing the quality characteristics of the products. This study unravels the underlying mechanisms governing the dynamic changes in quality of chicken meat products during the process of thermal sterilization, thereby providing theoretical guidance for the development of high-quality chicken products.


Subject(s)
Chickens , Sterilization , Animals , Sterilization/methods , Hot Temperature , Meat Products/analysis , Food Handling/methods , Proteolysis , Meat/analysis , Actins , Myofibrils/chemistry , Muscle Proteins
9.
Front Immunol ; 15: 1386727, 2024.
Article in English | MEDLINE | ID: mdl-38720888

ABSTRACT

Introduction: Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods: Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results: Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αß T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion: Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.


Subject(s)
Chickens , Disease Models, Animal , Feathers , Melanocytes , Vitiligo , Animals , Vitiligo/immunology , Chickens/immunology , Feathers/immunology , Melanocytes/immunology , Melanocytes/metabolism , T-Lymphocytes/immunology
10.
Trop Anim Health Prod ; 56(4): 146, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722408

ABSTRACT

This study was planned to evaluate the impact of dichromatic lights during incubation on the hatching and post-hatch performance of broiler chickens. A total of 500 eggs of broiler breeder (Ross 308; Age 44 weeks) were evenly divided according to a completely randomized design into 4 treatments having 5 replicates and 25 eggs each. Treatments consisted of dichromatic lights Blue + Red (BR), Green + Red (GR) and Green + Blue (GB) provided at an intensity of 250 lx for 12 h a day along with a Dark (D) environment. After hatching 200 chicks (50 from each respective light group) were divided into 4 treatments with 5 replicates each having 10 chicks. Results indicated a higher embryo index (13.12%) in the GR group on the 12th day of incubation; while an ideal hatch window was observed in GR and GB (98.18% and 96.00% hatched chicks) lighting groups. In hatching traits, higher hatchability (86.15) and hatch of fertile (93.85) percentages were observed in GR lighting followed by GB, BR and Dark treatment groups; while dead-in shell embryos were lowest in the GR group. In growth performance, higher feed intake (513.20 g) and body weight (479.20 g) were observed in the GB group followed by GR, BR and dark group; and feed conversion ratio (FCR) was better in the GR group (1.06). In welfare parameters, improved physical asymmetry (0.90 mm) and tonic immobility (54.40 s) were measured in the GR group followed by GB, BR and the dark group. It was concluded that under experimental conditions when broiler breeder eggs are provided with GR lighting during incubation, it can help to improve hatchability, growth performance and welfare traits in chicks.


Subject(s)
Animal Husbandry , Chickens , Lighting , Animals , Chickens/growth & development , Chickens/physiology , Chick Embryo/growth & development , Animal Husbandry/methods , Random Allocation , Female , Light
11.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38771617

ABSTRACT

Infectious bronchitis virus (IBV) is a highly contagious avian Gammacoronavirus that affects mainly chickens (Gallus gallus) but can circulate in other avian species. IBV constitutes a significant threat to the poultry industry, causing reduced egg yield, growth and mortality levels that can vary in impact. The virus can be transmitted horizontally by inhalation or direct/indirect contact with infected birds or contaminated fomites, vehicles, farm personnel and litter (Figure 1). The error-prone viral polymerase and recombination mechanisms mean diverse viral population results, with multiple genotypes, serotypes, pathotypes and protectotypes. This significantly complicates control and mitigation strategies based on vigilance in biosecurity and the deployment of vaccination.


Subject(s)
Chickens , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Infectious bronchitis virus/genetics , Infectious bronchitis virus/classification , Infectious bronchitis virus/physiology , Animals , Chickens/virology , Poultry Diseases/virology , Coronavirus Infections/virology , Coronavirus Infections/veterinary
12.
Trop Anim Health Prod ; 56(4): 161, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733430

ABSTRACT

Chickens are definitely among the most prevalent and broadly distributed domestic species. Among these, Ayam Cemani, also known as black chicken, is a rare Indonesian chicken breed originating from the island of Java. The main characteristic of this breed is that the body, both internally and externally, is entirely black. This is due to a condition named fibro melanosis, in which there is an over accumulation of melanin pigment in body tissues. In addition to this, Ayam Cemani meat results to be also higher in protein content and lower in fat. Moreover, Ayam Cemani meat is also known to have antioxidant and glucose-binding capacities. These properties make it very desirable within the market and consequently very expensive. Their meat is also used traditionally by tribal healers in the treatment of some chronic illnesses. In general, compared to other chicken species, the Ayam Cemani showed an higher genetic resistance to some infectious diseases commonly affecting poultry species. As regard the breeding, Ayam Cemani is a unique breed which may only be raised in specific locations, characterized to be a slowly growing breed with a lower body weight in comparison to the other poultry breeds. Nowadays, due to an improvement in the management, the nutrition and diseases control, it is possible to enhance their productivity. To date, there are not many studies in the literature on the specific breed of Ayam Cemani. For this reason, this review aims to provide a comprehensive overview of all the knowledge of the Ayam Cemani breed, the nutritional composition of the meat and consumer acceptance.


Subject(s)
Chickens , Nutritive Value , Animals , Chickens/physiology , Indonesia , Meat/analysis , Consumer Behavior
13.
Dalton Trans ; 53(20): 8535-8540, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727007

ABSTRACT

The reactivity of the anticancer drug picoplatin (cis-amminedichlorido(2-methylpyridine)platinum(II) complex) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) was investigated by electrospray ionisation mass spectrometry (ESI MS) and X-ray crystallography. The data were compared with those previously obtained for the adducts of these proteins with cisplatin, carboplatin and oxaliplatin under the same experimental conditions. ESI-MS data show binding of Pt to both proteins, with fragments retaining the 2-methylpyridine ligand and, possibly, a chloride ion. X-ray crystallography identifies different binding sites on the two proteins, highlighting a different behaviour of picoplatin in the absence or presence of dimethyl sulfoxide (DMSO). Metal-containing fragments bind to HEWL close to the side chains of His15, Asp18, Asp119 and both Lys1 and Glu7, whereas they bind to RNase A on the side chain of His12, Met29, His48, Asp53, Met79, His105 and His119. The data suggest that the presence of DMSO favours the loss of 2-methylpyridine and alters the ability of the Pt compound to bind to the two proteins. With both proteins, picoplatin appears to behave similarly to cisplatin and carboplatin when dissolved in DMSO, whereas it behaves more like oxaliplatin in the absence of the coordinating solvent. This study provides important insights into the pharmacological profile of picoplatin and supports the conclusion that coordinating solvents should not be used to evaluate the biological activities of Pt-based drugs.


Subject(s)
Muramidase , Organoplatinum Compounds , Ribonuclease, Pancreatic , Muramidase/chemistry , Muramidase/metabolism , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/metabolism , Animals , Crystallography, X-Ray , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/metabolism , Cattle , Protein Binding , Binding Sites , Models, Molecular , Chickens , Spectrometry, Mass, Electrospray Ionization , Dimethyl Sulfoxide/chemistry , Carboplatin/chemistry , Carboplatin/metabolism
14.
J Biol Inorg Chem ; 29(3): 353-373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38744691

ABSTRACT

Investigating the application of innovative antimicrobial surface coatings on medical devices is an important field of research. Many of these coatings have significant drawbacks, including biocompatibility, coating stability and the inability to effectively combat multiple drug-resistant bacteria. In this research, we developed an antibiofilm surface coating for medical catheters using biosynthesized silver nanoparticles (b-Cs-AgNPs) developed using leaves extract of Calliandra surinamensis. Various characterization techniques were employed to thoroughly characterize the synthesized b-Cs-AgNPs and c-AgNPs. b-Cs-AgNPs were compatible with human normal kidney cells and chicken embryos. It did not trigger any skin inflammatory response in in vivo rat model. b-Cs-AgNPs demonstrated potent zone of inhibition of 19.09 mm when subjected to the disc diffusion method in E. coli confirming strong antibacterial property. Different anti-bacterial assays including liquid growth curve, colony counting assay, biofilm formation assay supported the potent antimicrobial efficacy of b-Cs-AgNPs alone and when coated to medical grade catheters. Mechanistic studies reveal the presence of ferulic acid, that was important for the synthesis of b-AgNPs along with enhanced antibacterial effects of b-Cs-AgNPs compared to c-AgNPs, supported by molecular docking analysis. These results together demonstrated the effective role b-Cs-AgNPs in combating infections and mitigating biofilm formations, highlighting their need for further study in the field of biomedical applications.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catheters , Metal Nanoparticles , Silver , Animals , Biofilms/drug effects , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Catheters/microbiology , Chickens , Escherichia coli/drug effects , Escherichia coli/physiology , Microbial Sensitivity Tests , Humans , Chick Embryo , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/microbiology
15.
Elife ; 132024 May 21.
Article in English | MEDLINE | ID: mdl-38771186

ABSTRACT

Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.


Subject(s)
Cell Transdifferentiation , Chickens , Fibroblasts , Meat , Animals , Fibroblasts/metabolism , Fibroblasts/cytology , Adipose Tissue/cytology , Muscle Cells/cytology , Muscle Development , Cell Proliferation , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , In Vitro Meat
16.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38757512

ABSTRACT

This study aimed to detect the presence of Staphylococcus aureus in some animal source food (ASF) including emulsified meat products (sausage and salami), dry fermented meat product (soudjouk), semi dry meat product (pastrami) and raw chicken meat. Sixty six  (38.8%) of 170 samples were found to be positive for S. aureus. It was determined that S. aureus was found in 17 (56.6%) salami, 27 (54%) raw chicken meat, 9 (30%) soudjouk, 9 (30%) pastrami, 4 (13.3%) sausage samples. Staphylococcal enterotoxins (SEs) were identified in 5 out of 66 (7.5 %) isolates food matrices including 3 (4.5%) SEA, 2 (3.03%) SEC. The sea and sec genes were detected in 3 (4.5%) of 66 isolates. The results of this study highlight the need to provide suitable control strategies concerning production, sales, and storage to prevent the spread of enterotoxigenic S. aureus isolates in ASF. The key contribution of this study is its revelation of the presence of S. aureus in animal products sold in Turkish local markets, highlighting the potential public health risks associated with animal foods.


Subject(s)
Food Microbiology , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Animals , Turkey , Public Health , Meat Products/microbiology , Meat Products/analysis , Chickens/microbiology
17.
Vet Med Sci ; 10(3): e1475, 2024 May.
Article in English | MEDLINE | ID: mdl-38739101

ABSTRACT

BACKGROUND AND AIM: Different Salmonella serotypes are considered one of the most important food pathogens in the world. Poultry meat and eggs are the primary carriers of Salmonella in human populations. This study aimed to estimate the Salmonella enteritidis and Salmonella typhimurium contamination rates of retail hen and quail eggs in Karaj, Iran. Moreover, the antimicrobial resistance patterns of the strains were evaluated, and the efficiency of the standard culture method and multiplex polymerase chain reaction (m-PCR) were compared. MATERIALS AND METHODS: In this descriptive cross-sectional study over 1 year (Jan-Dec 2022), 150 commercial and 150 backyard hen eggs and 300 commercial quail eggs, without cracks and fractures, were collected randomly from best selling groceries in Karaj city. All samples were examined for Salmonella contamination independently by standard culture and m-PCR approaches. A standard disc diffusion method was employed to assess the antimicrobial susceptibility of the strains against 18 antimicrobial agents. RESULTS: Out of 300 examined eggs, 2 S. enteritidis strains were isolated from the shell of backyard hen eggs. The same serotype was also detected in the contents of one of these two eggs. One S. typhimurium was isolated from the shell of a commercial hen egg. Overall, the Salmonella contamination of the shell and contents was 1% and 0.3%, respectively. Salmonella was not isolated from the eggshells or the contents of the quail eggs. There was complete agreement between the results of m-PCR and the standard culture methods. Among the 18 tested antibiotics, the highest resistance was recorded for colistin (100%), followed by nalidixic acid (75%). CONCLUSION: As most Salmonella spp. are associated with human food poisoning, continuous surveillance is required to effectively reduce the risk posed by contaminated poultry eggs. Furthermore, mandatory monitoring of antimicrobial use on Iranian poultry farms is recommended.


Subject(s)
Chickens , Eggs , Salmonella enteritidis , Salmonella typhimurium , Animals , Iran/epidemiology , Salmonella enteritidis/drug effects , Salmonella enteritidis/isolation & purification , Eggs/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Cross-Sectional Studies , Prevalence , Anti-Bacterial Agents/pharmacology , Quail/microbiology , Drug Resistance, Bacterial , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology
18.
PLoS One ; 19(5): e0295109, 2024.
Article in English | MEDLINE | ID: mdl-38739572

ABSTRACT

The genetic complexity of polygenic traits represents a captivating and intricate facet of biological inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumulative impact of numerous genes, interactions among them, environmental factors, and epigenetic modifications results in a multifaceted architecture of genetic contributions to complex traits. Given the well-characterized genome, diverse traits, and range of genetic resources, chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose genomes had been sequenced to an average of 0.4x was analyzed using genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers associated with 8-week body weight. Additionally, epistatic interactions were studied using the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS and four from vGWAS, were strongly associated with the studied trait. We found evidence of both additive- and non-additive interactions between these modules and constructed a putative local epistasis network for the region. Our screens for functional alleles revealed a missense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously been associated with growth-related traits in chickens and Darwin's finches. In addition, one of the most strongly associated SNPs identified is located in a non-coding region upstream of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate gene for regulating chicken body weight. By studying large numbers of individuals from a family material using approaches to capture both additive and non-additive effects, this study advances our understanding of genetic complexities in a highly polygenic trait and has practical implications for poultry breeding and agriculture.


Subject(s)
Chickens , Genome-Wide Association Study , Quantitative Trait Loci , Animals , Chickens/genetics , Chickens/growth & development , Body Weight/genetics , Polymorphism, Single Nucleotide , Epistasis, Genetic , Phenotype , Female , Multifactorial Inheritance , Male
19.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38742598

ABSTRACT

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Subject(s)
Chickens , Cholesterol Side-Chain Cleavage Enzyme , Granulosa Cells , Progesterone , beta Catenin , Animals , Female , Progesterone/biosynthesis , Progesterone/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Granulosa Cells/metabolism , Chickens/genetics , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Gene Expression Regulation/physiology
20.
PLoS One ; 19(5): e0303371, 2024.
Article in English | MEDLINE | ID: mdl-38728352

ABSTRACT

Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Marek Disease , Oncogene Proteins, Viral , Phylogeny , Animals , Chickens/virology , Taiwan/epidemiology , Marek Disease/virology , Marek Disease/prevention & control , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/pathogenicity , Virulence/genetics , Oncogene Proteins, Viral/genetics , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Marek Disease Vaccines/genetics , Marek Disease Vaccines/immunology , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...