Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.251
Filter
1.
BMC Genomics ; 25(1): 554, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831306

ABSTRACT

BACKGROUND: Sperm storage capacity (SSC) determines the duration of fertility in hens and is an important reproduction trait that cannot be ignored in production. Currently, the genetic mechanism of SSC is still unclear in hens. Therefore, to explore the genetic basis of SSC, we analyzed the uterus-vagina junction (UVJ) of hens with different SSC at different times after insemination by RNA-seq and Ribo-seq. RESULTS: Our results showed that 589, 596, and 527 differentially expressed genes (DEGs), 730, 783, and 324 differentially translated genes (DTGs), and 804, 625, and 467 differential translation efficiency genes (DTEGs) were detected on the 5th, 10th, and 15th days after insemination, respectively. In transcription levels, we found that the differences of SSC at different times after insemination were mainly reflected in the transmission of information between cells, the composition of intercellular adhesion complexes, the regulation of ion channels, the regulation of cellular physiological activities, the composition of cells, and the composition of cell membranes. In translation efficiency (TE) levels, the differences of SSC were mainly related to the physiological and metabolic activities in the cell, the composition of the organelle membrane, the physiological activities of oxidation, cell components, and cell growth processes. According to pathway analysis, SSC was related to neuroactive ligand-receptor interaction, histidine metabolism, and PPAR signaling pathway at the transcriptional level and glutathione metabolism, oxidative phosphorylation, calcium signaling pathway, cell adhesion molecules, galactose metabolism, and Wnt signaling pathway at the TE level. We screened candidate genes affecting SSC at transcriptional levels (COL4A4, MUC6, MCHR2, TACR1, AVPR1A, COL1A1, HK2, RB1, VIPR2, HMGCS2) and TE levels(COL4A4, MUC6, CYCS, NDUFA13, CYTB, RRM2, CAMK4, HRH2, LCT, GCK, GALT). Among them, COL4A4 and MUC6 were the key candidate genes differing in transcription, translation, and translation efficiency. CONCLUSIONS: Our study used the combined analysis of RNA-seq and Ribo-seq for the first time to investigate the SSC and reveal the physiological processes associated with SSC. The key candidate genes affecting SSC were screened, and the theoretical basis was provided for the analysis of the molecular regulation mechanism of SSC.


Subject(s)
Chickens , RNA-Seq , Spermatozoa , Animals , Chickens/genetics , Female , Male , Spermatozoa/metabolism , Gene Expression Profiling , Insemination , Transcriptome , Sequence Analysis, RNA , Ribosome Profiling
2.
PLoS One ; 19(5): e0297643, 2024.
Article in English | MEDLINE | ID: mdl-38696379

ABSTRACT

Indigenous and were used to study genetic diversity and population structure analyses. Polymorphism information content (PIC) values ranged from 0.0 to 0.5, with 21,285 SNP markers (35%) being in the lowest PIC value range (0 to 0.15) while 13,511 (commercial chickens have developed unique adaptations to their environments, which may include nutrition, pathogens, and thermal stress. Besides, environmental pressures and artificial selection have generated significant genome-wide divergence in chickens, as those selection pressures contribute a considerable evolutionary force to phenotypic and genotypic differentiation. Herein, we determined genomic diversity of indigenous chickens from semi-deciduous rainforest (SDR), coastal savannah (CS) and Guinea savannah (GS) agro-ecological zones (AEZs) in Ghana and commercial crossbreds (CC) reared at the Kwame Nkrumah University of Science and Technology (KNUST). We generated SNP markers from 82 chickens (62 indigenous chicken ecotypes and 26 commercial crossbred ecotype) using DArT-Seq technology. A total of 85,396 SNP markers were generated and after filtering the data, 58,353 markers 21%) were in the highest PIC value range (0.45 to 0.50). The CC were more genetically diverse than the indigenous birds, with the highest expected heterozygosity value of 0.220. Between the commercial crossbreds population and the indigenous ecotypes, pairwise FST values were estimated to be 0.105 between CS, 0.096 between SDF, and 0.133 between GS. Furthermore, PCA analysis showed that the CC, SDF and GS chickens clustered together and are genetically distant from the commercial crossbred. We herein show that chickens from the AEZs studied can be considered as one population. However, due the abundance of agro-byproducts in the SDR compared to the CS and GS, chickens from the SDR AEZ had better growth compared to their counterparts. It is suggested that the genetic diversity within the local ecotypes could form the basis for genetic improvement.


Subject(s)
Chickens , Phenotype , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , Genetic Variation , Ghana , Ecotype , Genotype
3.
J Morphol ; 285(5): e21704, 2024 May.
Article in English | MEDLINE | ID: mdl-38702980

ABSTRACT

Fancy breeds of Japanese indigenous chicken display extensive morphological diversity, particularly in tail feathers. Although marked differences in tail and bone traits have been reported between Tosa-jidori (wild type) and Minohikichabo (rich type) breeds, little is known about the pattern of genetic inheritance in cross experiments. Therefore, this study aimed to investigate the strain and sex effects, and inheritance patterns, in the morphometric variation of pygostyle bones among Tosa-jidori, Minohikichabo, and their F1 hybrids. Five morphological traits, angle of the apex of the pygostyle, pygostyle length, margo cranialis length, tail feather number, and body weight, were evaluated at the adult stage. A significant strain difference was detected in all traits, whereas significant sex differences were observed in only three traits, but not in the angle of the apex of the pygostyle and tail feather number. In F1 hybrids, the angle of the apex of the pygostyle was significantly different to that of Tosa-jidori but not that of Minohikichabo, whereas the pygostyle length and tail number of F1 hybrids were significantly different from those of Minohikichabo but not those of Tosa-jidori. A significant heterosis effect was found in the margo cranialis length and body weight. All five traits showed nonadditive inheritance patterns but varied in each trait between partial dominance (angle of the apex of pygostyle), full dominance (pygostyle length and tail feather number), and over-dominance (margo cranialis length and body weight). Interestingly, different patterns of genetic inheritance in the F1 hybrid were observed at different locations, even within the same pygostyle bone. Using the Japanese indigenous chicken model, these results provide a substantial step toward understanding the genetic architecture of morphology in chickens.


Subject(s)
Chickens , Feathers , Tail , Animals , Chickens/anatomy & histology , Chickens/genetics , Tail/anatomy & histology , Male , Female , Feathers/anatomy & histology , Bone and Bones/anatomy & histology , Body Weight , Breeding , Hybrid Vigor
4.
BMC Genomics ; 25(1): 438, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698322

ABSTRACT

BACKGROUND: Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS: We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid ß-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS: Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.


Subject(s)
Chickens , Liver , Animals , Chickens/genetics , Chickens/growth & development , Chickens/metabolism , Liver/metabolism , Liver/growth & development , Hydrogen-Ion Concentration , Female , Pectoralis Muscles/metabolism , Pectoralis Muscles/growth & development , Male , Gene Expression Profiling , Chick Embryo , Gene Expression Regulation, Developmental
5.
PLoS One ; 19(5): e0295109, 2024.
Article in English | MEDLINE | ID: mdl-38739572

ABSTRACT

The genetic complexity of polygenic traits represents a captivating and intricate facet of biological inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumulative impact of numerous genes, interactions among them, environmental factors, and epigenetic modifications results in a multifaceted architecture of genetic contributions to complex traits. Given the well-characterized genome, diverse traits, and range of genetic resources, chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose genomes had been sequenced to an average of 0.4x was analyzed using genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers associated with 8-week body weight. Additionally, epistatic interactions were studied using the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS and four from vGWAS, were strongly associated with the studied trait. We found evidence of both additive- and non-additive interactions between these modules and constructed a putative local epistasis network for the region. Our screens for functional alleles revealed a missense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously been associated with growth-related traits in chickens and Darwin's finches. In addition, one of the most strongly associated SNPs identified is located in a non-coding region upstream of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate gene for regulating chicken body weight. By studying large numbers of individuals from a family material using approaches to capture both additive and non-additive effects, this study advances our understanding of genetic complexities in a highly polygenic trait and has practical implications for poultry breeding and agriculture.


Subject(s)
Chickens , Genome-Wide Association Study , Quantitative Trait Loci , Animals , Chickens/genetics , Chickens/growth & development , Body Weight/genetics , Polymorphism, Single Nucleotide , Epistasis, Genetic , Phenotype , Female , Multifactorial Inheritance , Male
6.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38742598

ABSTRACT

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Subject(s)
Chickens , Cholesterol Side-Chain Cleavage Enzyme , Granulosa Cells , Progesterone , beta Catenin , Animals , Female , Progesterone/biosynthesis , Progesterone/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Granulosa Cells/metabolism , Chickens/genetics , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Gene Expression Regulation/physiology
7.
BMC Genomics ; 25(1): 485, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755540

ABSTRACT

BACKGROUND: Indigenous chickens were developed through a combination of natural and artificial selection; essentially, changes in genomes led to the formation of these modern breeds via admixture events. However, their confusing genetic backgrounds include a genomic footprint regulating complex traits, which is not conducive to modern animal breeding. RESULTS: To better evaluate the candidate regions under domestication in indigenous chickens, we considered both runs of homozygosity (ROHs) and selective signatures in 13 indigenous chickens. The genomes of Silkie feather chickens presented the highest heterozygosity, whereas the highest inbreeding status and ROH number were found in Luhua chickens. Short ROH (< 1 Mb), were the principal type in all chickens. A total of 291 ROH islands were detected, and QTLdb mapping results indicated that body weight and carcass traits were the most important traits. An ROH on chromosome 2 covering VSTM2A gene was detected in 12 populations. Combined analysis with the Tajima's D index revealed that 18 genes (e.g., VSTM2A, BBOX1, and RYR2) were under selection and covered by ROH islands. Transcriptional analysis results showed that RYR2 and BBOX1 were specifically expressed in the heart and muscle tissue, respectively. CONCLUSION: Based on genome-wide scanning for ROH and selective signatures, we evaluated the genomic characteristics and detected significant candidate genes covered by ROH islands and selective signatures. The findings in this study facilitated the understanding of genetic diversity and provided valuable insights for chicken breeding and conservation strategies.


Subject(s)
Chickens , Domestication , Homozygote , Animals , Chickens/genetics , Selection, Genetic , Quantitative Trait Loci , Genome , Genomics/methods , Polymorphism, Single Nucleotide
8.
Commun Biol ; 7(1): 518, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698103

ABSTRACT

Myoblast proliferation and differentiation are essential for skeletal muscle development. In this study, we generated the expression profiles of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in different developmental stages of chicken primary myoblasts (CPMs) using RNA sequencing (RNA-seq) technology. The dual luciferase reporter system was performed using chicken embryonic fibroblast cells (DF-1), and functional studies quantitative real-time polymerase chain reaction (qPCR), cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry cycle, RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence, and western blotting assay. Our research demonstrated that miR-301a-5p had a targeted binding ability to lncMDP1 and ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1). The results revealed that lncMDP1 regulated the proliferation and differentiation of myoblasts via regulating the miR-301a-5p/CHAC1 axis, and CHAC1 promotes muscle regeneration. This study fulfilled the molecular regulatory network of skeletal muscle development and providing an important theoretical reference for the future improvement of chicken meat performance and meat quality.


Subject(s)
Chickens , Gene Expression Profiling , MicroRNAs , Muscle Development , RNA, Long Noncoding , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Development/genetics , Chickens/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Cell Proliferation , Myoblasts/metabolism , Myoblasts/cytology , Chick Embryo
9.
Animal ; 18(5): 101151, 2024 May.
Article in English | MEDLINE | ID: mdl-38701711

ABSTRACT

Population growth and climate change pose challenges to the sustainability of poultry farming. The emphasis on high-yield traits in commercialized breeds has led to a decline in their adaptability. Chicken varieties adapted to the local environment, possessing traits that facilitate adaptation to climate change, such as disease resistance and tolerance to extreme weather conditions, can improve hybridization outcomes. In this study, we conducted an analysis of the population structure and genetic diversity of 110 chickens representing indigenous breeds from southern China and two different commercial breeds. Further, we performed comparative population genomics, utilizing nucleotide diversity and fixation statistics, to characterize genomic features of natural selection and to identify unique genetic traits and potential selection markers developed by indigenous breeds after adapting to the local environment. Results based on genetic diversity and population structure analyses showed that indigenous varieties exhibited high levels of genetic diversity. Commercial breeds that have been indigenously bred demonstrated higher levels of genetic diversity than those that have not, and breeds with different selection practices displayed significant differences in genetic structure. Additionally, we further searched for potential genomic regions in native chicken ecotypes, uncovering several candidate genes related to ecological adaptations affecting local breeds, such as IKBKB, S1PR1, TSHR, IL1RAPL1 and AMY2A, which are involved in disease resistance, heat tolerance, immune regulation and behavioral traits. This work provides important insights into the genomic characterization of ecotypes of native chicken in southern China. The identification of candidate genes associated with traits such as disease resistance, heat tolerance, immunomodulation, and behavioral traits is a significant outcome. These candidate genes may contribute to the understanding of the molecular basis of the adaptation of the southern native chicken to the local environment. It is recommended that these genes be integrated into chicken breeding programs to enhance sustainable agriculture and promote effective conservation and utilization strategies.


Subject(s)
Adaptation, Physiological , Chickens , Genetic Variation , Selection, Genetic , Animals , Chickens/genetics , China , Adaptation, Physiological/genetics , Breeding , Climate Change , Polymorphism, Single Nucleotide , Genome , Genomics
10.
Poult Sci ; 103(6): 103740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701629

ABSTRACT

Meat quality traits are essential for producing high-quality broilers, but the genetic improvement has been limited by the complexity of measurement methods and the numerous traits involved. To systematically understand the meat quality characteristics of different broiler breeds, this study collected data on slaughter performance, skin color, fat deposition, and meat quality traits of 434 broilers from 12 different breeds in South China. The results showed that there was no significant difference in the live weight and slaughter weight of various broiler breeds at their respective market ages. Commercial broiler breeds such as Xiaobai and Huangma chickens had higher breast muscle and leg muscle rates. The skin and abdominal fat of Huangma chickens cultivated in the consumer market in South China exhibited significantly higher levels of yellowness compared to other varieties. Concerning fat traits, we observed that Wenchang chickens exhibited a strong ability to fat deposition, while the younger breeds showed lower fat deposition. Additionally, there were significant positive correlations found among different traits, including traits related to weight, traits related to fat, and skin color of different parts. Hierarchical clustering analysis revealed that fast-growing and large broiler Xiaobai chickens formed a distinct cluster based on carcass characteristics, skin color, and meat quality traits. Principal component analysis (PCA) was used to extract multiple principal components as substitutes for complex meat quality indicators, establishing a chicken meat quality evaluation model to differentiate between different breeds of chickens. At the same time, we identified 46, 22, and 20 SNP loci and their adjacent genes that were significantly associated with muscle mass traits, fat deposition, and skin color through genome-wide association studies (GWAS). The above results are helpful for systematically understanding the differences and characteristics of meat quality traits among different breeds.


Subject(s)
Chickens , Meat , Animals , Chickens/genetics , Chickens/physiology , Meat/analysis , Meat/standards , China , Male
11.
Poult Sci ; 103(6): 103666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703454

ABSTRACT

The bird beak is mainly functioned as feeding and attacking, and its shape has extremely important significance for survival and reproduction. In chickens, since beak shape could lead to some disadvantages including pecking and waste of feed, it is important to understand the inheritance of chicken beak shape. In the present study, we firstly established 4 indicators to describe the chicken beak shapes, including upper beak length (UL), lower beak length (LL), distance between upper and lower beak tips (DB) and upper beak curvature (BC). And then, we measured the 4 beak shape indicators as well as some production traits including body weight (BW), shank length (SL), egg weight (EW), eggshell strength (ES) of a layer breed, Rhode Island Red (RIR), in order to estimate genetic parameters of chicken beak shape. The heritabilities of UL and LL were 0.41 and 0.37, and the heritabilities of DB and BC were 0.22 and 0.21, indicating that beak shape was a highly or mediumly heritable. There were significant positive genetic and phenotypic correlations among UL, LL, and DB. And UL was positively correlated with body weight (BW18) and shank length (SL18) at 18 weeks of age in genetics, and DB was positively correlated with BC in terms of genetics and phenotype. We also found that layers of chicken cages played a role on beak shape, which could be attributed to the difference of lightness in different cage layers. By a genome-wide association study (GWAS) for the chicken UL, we identified 9 significant candidate genes associated with UL in RIR. For the variants with low minor allele frequencies (MAF <0.01) and outside of high linkage disequilibrium (LD) regions, we also conducted rare variant association studies (RVA) and GWAS to find the association between genotype and phenotype. We also analyzed transcriptomic data from multiple tissues of chicken embryos and revealed that all of the 9 genes were highly expressed in beak of chicken embryos, indicating their potential function for beak development. Our results provided the genetic foundation of chicken beak shape, which could help chicken breeding on beak related traits.


Subject(s)
Beak , Chickens , Animals , Chickens/genetics , Chickens/anatomy & histology , Chickens/physiology , Chickens/growth & development , Beak/anatomy & histology , Female , Phenotype , Male
12.
Nat Commun ; 15(1): 4174, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755126

ABSTRACT

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Subject(s)
Chickens , Feathers , Finches , Animals , Feathers/growth & development , Feathers/metabolism , Chickens/genetics , Finches/genetics , Gene Expression Regulation, Developmental , Extracellular Matrix/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Wnt Signaling Pathway , Keratins/metabolism , Keratins/genetics , Biological Evolution , Morphogenesis/genetics
13.
Genes (Basel) ; 15(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38790253

ABSTRACT

Primordial germ cells (PGCs) are the precursors of functional gametes and the only cell type capable of transmitting genetic and epigenetic information from generation to generation. These cells offer valuable starting material for cell-based genetic engineering and genetic preservation, as well as epigenetic studies. While chicken PGCs have demonstrated resilience in maintaining their germness characteristics during both culturing and cryopreservation, their handling remains a complex challenge requiring further refinement. Herein, the study aimed to compare the effects of different conditions (freezing-thawing and in vitro cultivation) on the expression of PGC-specific marker genes. Embryonic blood containing circulating PGCs was isolated from purebred Green-legged Partridgelike chicken embryos at 14-16 Hamburger-Hamilton (HH) embryonic development stage. The blood was pooled separately for males and females following sex determination. The conditions applied to the blood containing PGCs were as follows: (1) fresh isolation; (2) cryopreservation for a short term (2 days); and (3) in vitro culture (3 months) with long-term cryopreservation of purified PGCs (~2 years). To characterize PGCs, RNA isolation was carried out, followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the expression levels of specific germ cell markers (SSEA1, CVH, and DAZL), as well as pluripotency markers (OCT4 and NANOG). The investigated genes exhibited consistent expression among PGCs maintained under diverse conditions, with no discernible differences observed between males and females. Notably, the analyzed markers demonstrated higher expression levels in PGCs when subjected to freezing than in their freshly isolated counterparts.


Subject(s)
Chickens , Cryopreservation , Germ Cells , Animals , Cryopreservation/methods , Germ Cells/metabolism , Germ Cells/cytology , Chickens/genetics , Male , Female , Chick Embryo , Cells, Cultured , Biomarkers
14.
Dev Comp Immunol ; 157: 105196, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762097

ABSTRACT

The thymus-derived lymphocytes of jawed vertebrates have four T-cell receptor (TCR) chains that play a significant role in immunity. As chickens have commercial value, their immune systems require a great deal of attention. Local chicken breeds are an essential part of poultry genetic resources in China. Here, we used high-throughput sequencing to analyze the TCRα and TCRß repertoires and their relative expression levels in the native chicken breeds Baier Buff, Longyou Partridge, Xiaoshan, and Xianju. We found that TCR Vα and TCR Vß were expressed and included 17, 19, 17, and six segments of the Vα2, Vα3, Vß1, and Vß2 subgroups, respectively. V-J pairing was biased; Jα11 was utilized by nearly all Vα segments and was the most commonly used. Breed-specific V segments and V-J pairings were detected as well. The results of the principal coordinate analysis (PCoA) as well as the V-J pairing and CDR3 diversity analyses suggested that the four local chicken breeds did not significantly differ in terms of TCR diversity. Hence, they expressed not significant differentiation, and they are rich genetic resources for the development and utilization of immune-related poultry breeding.


Subject(s)
Chickens , Receptors, Antigen, T-Cell, alpha-beta , Animals , Chickens/immunology , Chickens/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , High-Throughput Nucleotide Sequencing , Breeding , Genetic Variation , China , Complementarity Determining Regions/genetics
15.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38764183

ABSTRACT

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Subject(s)
Alternative Splicing , Chickens , LIM Domain Proteins , Muscle Development , Muscle, Skeletal , Animals , Chickens/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/growth & development , Muscle Development/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Myoblasts/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Avian Proteins/chemistry , Cell Differentiation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry
16.
BMC Genomics ; 25(1): 430, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693501

ABSTRACT

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Subject(s)
Chickens , Genome , Molecular Sequence Annotation , Animals , Chickens/genetics , Base Composition , Telomere/genetics , Chromosomes/genetics , Genomics/methods
17.
Sci Rep ; 14(1): 10668, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724593

ABSTRACT

Currently food fraud and authenticity of products composition are topics of great concern; ingredients quantification could allow to identify small amounts of contaminats or voluntary addition of improper components. Many molecular methods are available for species identification in foodstuffs but, for a better application, they should not be affected by the interference of other ingredients. The main purpose of this work was to verify the Real Time PCR and the Digital PCR (dPCR) quantification performances on baby food samples, specifically selected for their high miscibility to limit variability; chicken was selected as target to verify the performance of quantification of methods after having spiked the same quantity in different baby foods. The other aims were: (1) to verify a constant genome copies ratio existence between mammalian and avian species (2) to verify the dPCR performance, set up on housekeeping, to quantify mammalian and avian species in commercial products. Digital PCR showed fewer differences respect to Real Time PCR, at the same 15% w/w chicken spiking level. Despite the constant difference between mammalian and avian genome copies, in samples with the same spiking weight, the confidence intervals increasing towards the extreme values, made impossible to use genome copies ratio as a sort of correction factor between species. Finally, the dPCR system using the myostatin housekeeping gene to determine the chicken content seemed reliable to verify the labelling compliance in meat-based commercial products.


Subject(s)
Chickens , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/methods , Chickens/genetics , Mammals/genetics , Food Labeling , Food Analysis/methods , Birds/genetics , Meat/analysis , Polymerase Chain Reaction/methods
18.
Nat Commun ; 15(1): 2697, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565545

ABSTRACT

The origins and dispersal of the chicken across the ancient world remains one of the most enigmatic questions regarding Eurasian domesticated animals. The lack of agreement concerning timing and centers of origin is due to issues with morphological identifications, a lack of direct dating, and poor preservation of thin, brittle bird bones. Here we show that chickens were widely raised across southern Central Asia from the fourth century BC through medieval periods, likely dispersing along the ancient Silk Road. We present archaeological and molecular evidence for the raising of chickens for egg production, based on material from 12 different archaeological sites spanning a millennium and a half. These eggshells were recovered in high abundance at all of these sites, suggesting that chickens may have been an important part of the overall diet and that chickens may have lost seasonal egg-laying.


Subject(s)
Animals, Domestic , Chickens , Animals , Chickens/genetics , Asia , Archaeology
19.
Front Immunol ; 15: 1357072, 2024.
Article in English | MEDLINE | ID: mdl-38638435

ABSTRACT

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Subject(s)
Arginine , Bacterial Toxins , Calcium-Binding Proteins , Interleukin-6 , Type C Phospholipases , Animals , Male , Arginine/pharmacology , Bacterial Toxins/toxicity , bcl-2-Associated X Protein , Chickens/genetics , Inflammation , Mechanistic Target of Rapamycin Complex 1 , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Amino Acid Transport Systems/metabolism
20.
Nat Commun ; 15(1): 3151, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605055

ABSTRACT

Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.


Subject(s)
Endogenous Retroviruses , Passeriformes , Animals , Endogenous Retroviruses/genetics , Passeriformes/genetics , Chickens/genetics , Terminal Repeat Sequences/genetics , Homologous Recombination , Mammals/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...