Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.946
Filter
1.
Front Immunol ; 15: 1386727, 2024.
Article in English | MEDLINE | ID: mdl-38720888

ABSTRACT

Introduction: Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods: Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results: Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αß T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion: Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.


Subject(s)
Chickens , Disease Models, Animal , Feathers , Melanocytes , Vitiligo , Animals , Vitiligo/immunology , Chickens/immunology , Feathers/immunology , Melanocytes/immunology , Melanocytes/metabolism , T-Lymphocytes/immunology
2.
Biol Res ; 57(1): 24, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711133

ABSTRACT

Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Chickens , Egg Yolk , Immunoglobulins , SARS-CoV-2 , Animals , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , COVID-19/immunology , Chickens/immunology , Cricetinae , Immunoglobulins/immunology , Egg Yolk/immunology , Antibodies, Viral/immunology , Female , Mesocricetus , COVID-19 Vaccines/immunology
3.
BMC Vet Res ; 20(1): 205, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760749

ABSTRACT

BACKGROUND: Gut microbes play a significant role in digestion, developing immunity, and intestinal health. Therefore, direct-fed microbials are used to modify gut microbiota, maintain a healthy digestive system, enhance immunity, and promote the broilers' performance. In addition, it has a role in improving the utilization of unconventional feed ingredients (olive pulp, OP). This study provides the potential role of Aspergillus awamori in enhancing gut microbial content, nutrient utilization, growth performance, and antioxidative status in heat-stressed broiler chickens fed diets containing olive pulp. METHODS: Three hundred chicks (Ross 308; one day old) were divided into four treatment groups (75 chick/ group) randomly, as follows; CON: chicks fed a basal diet based on corn and soybean meal, OP10: chicks fed a diet containing 10% OP, OA1: chicks fed a diet containing OP with A. awamori at 100 mg per kg, OA2: chicks fed a diet containing OP with A. awamori at 200 mg per kg. RESULTS: Adding A. awamori to the broiler diet that contains OP had a positive effect on productive performance via enhancing nutrition digestibility, body weight gain, feed conversion ratio, and carcass characteristics. A. awamori supplementation had a positive impact on immune responses by increasing serum immunoglobulin G and the relative weight of bursa of Fabricius (P < 0.05) compared to the other groups. Chickens fed A. awamori showed a noticeable improvement in the oxidative status through the increase in the level of serum superoxide dismutase, and glutathione peroxidase, and the decrease in the level of malondialdehyde. Feeding A. awamori also modified the intestinal microbial content by increasing the population of Lactobacillus (P < 0.05). CONCLUSIONS: Our study indicated that adding 200 mg A. awamori reduced the negative effect of heat stress by modifying the microbial content of the intestine, immune response, and enhancing feed utilization, thus improving broiler performance, as well as, improving the nutritional value of the olive pulp. Therefore, adding A. awamori to the OP diet can be effectively used in heat-stressed broiler diets.


Subject(s)
Animal Feed , Antioxidants , Aspergillus , Chickens , Diet , Digestion , Gastrointestinal Microbiome , Olea , Animals , Chickens/growth & development , Chickens/immunology , Animal Feed/analysis , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Antioxidants/metabolism , Digestion/drug effects , Olea/chemistry , Dietary Supplements , Animal Nutritional Physiological Phenomena , Hot Temperature , Male , Heat-Shock Response/drug effects
4.
Anim Sci J ; 95(1): e13962, 2024.
Article in English | MEDLINE | ID: mdl-38811006

ABSTRACT

The aim of this study is to determine the effect of abrupt and gradual light/dark switching on growth performance, behavior, villus development, meat characteristics, and immunity of broilers. A total of 270 daily male broiler chicks were used in the experiment. The study comprised three groups based on whether the transitions between light and dark periods were abrupt or gradual. No significant differences were observed among the examined groups in terms of body weight, weight gain, mortality rate, feeding, pecking, relaxing, and feather preening behaviors, carcass, and breast meat quality characteristics. Total body weight gain, total feed consumption, total feed utilization ratio, and mortality rates of broilers during the 6-week fattening period did not differ compared to the abrupt transition. Broilers in the group with gradual transition exhibited less movement, more sitting, and sleeping behaviors. It was determined that the IgG was higher in the gradual transition group. The transitions between light and dark periods influenced the characteristics of thigh meat. Villus height and crypt depth were higher in the group where a 1-h gradual transition was applied. As a conclusion, gradual transition is more appropriate in broiler rearing.


Subject(s)
Chickens , Food Quality , Meat , Photoperiod , Animals , Chickens/growth & development , Chickens/immunology , Chickens/physiology , Male , Behavior, Animal , Weight Gain , Immunoglobulin G/blood , Light , Animal Husbandry/methods
5.
Vet Microbiol ; 293: 110093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692193

ABSTRACT

Mycoplasma gallisepticum causes chronic respiratory disease in poultry. A novel vaccine, Vaxsafe MG304 (the ts-304 strain), has greater protective efficacy in chickens than the Vaxsafe MG (strain ts-11) vaccine when delivered by eye drop at 3 weeks of age. Applying this vaccine in the hatchery to 1-day-old birds, using mass administration methods, would improve animal welfare and reduce labour costs associated with handling individual birds. This study assessed the protection provided by vaccination with Vaxsafe MG304 after administration to 1-day-old chicks. Chicks were administered a single dose of the vaccine to assess the efficacy of either a high dose (107.0 colour changing units, CCU) or a low dose (105.7 CCU) after eye drop or spray (in water or gel) administration against experimental challenge with virulent M. gallisepticum strain Ap3AS at 7 weeks of age. The vaccine was able to colonise the palatine cleft of chicks after vaccination by eye drop (at both doses) or by spray (in water or gel) (at the high dose). The high dose of vaccine, when delivered by eye drop or spray, was shown to be safe and induced a serological response and protective immunity (as measured by tracheal mucosal thickness and air sac lesion scores) against challenge. Vaccination of 1-day-old chicks with Vaxsafe MG304 by eye drop induced protective immunity equivalent to vaccination at 3 weeks of age. Vaxsafe MG304 was also protective when applied by both coarse- and gel spray methods at the higher dose and is therefore a suitable live attenuated vaccine for use in 1-day-old chicks.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Chickens , Mycoplasma Infections , Mycoplasma gallisepticum , Poultry Diseases , Vaccination , Animals , Mycoplasma gallisepticum/immunology , Chickens/immunology , Chickens/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Mycoplasma Infections/immunology , Specific Pathogen-Free Organisms , Vaccination/veterinary , Antibodies, Bacterial/blood
6.
Dev Comp Immunol ; 157: 105196, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762097

ABSTRACT

The thymus-derived lymphocytes of jawed vertebrates have four T-cell receptor (TCR) chains that play a significant role in immunity. As chickens have commercial value, their immune systems require a great deal of attention. Local chicken breeds are an essential part of poultry genetic resources in China. Here, we used high-throughput sequencing to analyze the TCRα and TCRß repertoires and their relative expression levels in the native chicken breeds Baier Buff, Longyou Partridge, Xiaoshan, and Xianju. We found that TCR Vα and TCR Vß were expressed and included 17, 19, 17, and six segments of the Vα2, Vα3, Vß1, and Vß2 subgroups, respectively. V-J pairing was biased; Jα11 was utilized by nearly all Vα segments and was the most commonly used. Breed-specific V segments and V-J pairings were detected as well. The results of the principal coordinate analysis (PCoA) as well as the V-J pairing and CDR3 diversity analyses suggested that the four local chicken breeds did not significantly differ in terms of TCR diversity. Hence, they expressed not significant differentiation, and they are rich genetic resources for the development and utilization of immune-related poultry breeding.


Subject(s)
Chickens , Receptors, Antigen, T-Cell, alpha-beta , Animals , Chickens/immunology , Chickens/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , High-Throughput Nucleotide Sequencing , Breeding , Genetic Variation , China , Complementarity Determining Regions/genetics
7.
Vet Immunol Immunopathol ; 272: 110755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643554

ABSTRACT

Probiotics are essential in the body's nutrients, improving the ratio of meat to meat, immune response, and preventing diseases. In this study, RNA-sequencing (RNA-seq) was used to identify the differentially expressed genes (DEGs), enriched related pathways, and Gene Ontology (GO) terms among blank negative control (NC), supplemented with Bacillus spp. (BS) and commercial probiotic (PC) groups after a 42-day fed supplementation. The results showed that 2005, 1356, and 2189 DEGs were significantly altered in BS vs. NC, PC vs NC, and BS vs PC groups, respectively. On the other hand, 9 DEGs were further validated by qRT-PCR, indicating that the qRT-PCR and RNA-Seq results were more consistent. Therefore, the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs showed that the DEGs were mainly enriched to metabolism signalling pathways (alpha-linolenic acid metabolism, linoleic acid metabolism, tryptophan metabolism, tyrosine metabolism, ether lipid metabolism, and metabolic pathway, etc) and immune response pathways (cytokine-cytokine receptor interaction, MAPK signalling pathway, and intestinal immune network for IgA production, neuroactive ligand-receptor interaction etc). These results will provide a better understanding of the role of probiotics in chicken development and provide basic information on the genetic development of chickens.


Subject(s)
Bacillus , Chickens , Probiotics , Signal Transduction , Spleen , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Chickens/immunology , Chickens/genetics , Chickens/microbiology , Spleen/metabolism , Spleen/immunology , Animal Feed/analysis , Dietary Supplements , Gene Expression Profiling/veterinary , Gene Ontology
8.
Vet Immunol Immunopathol ; 271: 110752, 2024 May.
Article in English | MEDLINE | ID: mdl-38579442

ABSTRACT

Nitric oxide (NO) is gaseous bioactive molecule that is synthesized by NO synthase (NOS). Inducible NOS (iNOS) expression occurs in response to pathogenic challenges, resulting in the production of large amounts of NO. However, there is a lack of knowledge regarding neuronal NOS (nNOS) and endothelial NOS (eNOS) in birds during pathogenic challenge. Therefore, the present study was conducted to determine the influence of intraperitoneal (IP) injection of zymosan (cell wall component of yeast) and lipopolysaccharide (LPS, a cell wall component of gram-negative bacteria) on NOS expression in chicks (Gallus gallus). Furthermore, the effect of NOS inhibitors on the corresponding behavioral and physiological parameters was investigated. Zymosan and LPS injections induced iNOS mRNA expression in several organs. Zymosan had no effect on eNOS mRNA expression in the organs investigated, whereas LPS increased its expression in the pancreas. Zymosan and LPS decreased nNOS mRNA expression in the lung, heart, kidney, and pancreas. The decreased nNOS mRNA expression in pancreas was probably associated with the NO from iNOS provided that such effect was reproduced by IP injection of sodium nitroprusside, which is a NO donor. Furthermore, pancreatic nNOS mRNA expression decreased following subcutaneous injection of corticosterone. Furthermore, IP injections of a nonspecific NOS inhibitor, NG-nitro-L-arginine methyl ester, and an nNOS-specific inhibitor, 7-nitroindazole, resulted in the significant decreases in food intake, cloacal temperature, and feed passage via the digestive tract in chicks. Collectively, the current findings imply the decreased nNOS expression because of fungal and bacterial infections, which affects food intake, body temperature, and the digestive function in birds.


Subject(s)
Chickens , Lipopolysaccharides , Nitric Oxide Synthase Type I , Zymosan , Animals , Zymosan/pharmacology , Lipopolysaccharides/pharmacology , Chickens/immunology , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Male , Indazoles/pharmacology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism
9.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38651250

ABSTRACT

Immunoglobulin is an essential component of the body's defense against pathogens, aiding in the recognition and clearance of foreign antigens. Research concerning immunoglobulin gene and its diversity of expression across different breeds within the same species is relatively scarce. In this study, we employed RACE (Rapid Amplification of cDNA Ends) technology, prepared DNA libraries, performed high-throughput sequencing, and conducted related bioinformatics analysis to analyze the differences in immunoglobulin gene diversity and expression at different periods in Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens. The study found that the composition of chicken immunoglobulin genes is relatively simple, with both the light chain and heavy chain having a functional V gene. Additionally, the mechanisms of immunoglobulin diversity generation tended to be consistent among different breeds and periods of chickens, primarily relying on abundant junctional diversity, somatic hypermutation (SHM), and gene conversion (GCV) to compensate for the limitations of low-level V(D)J recombination. As the age increased, the junctional diversity of IgH and IgL tended to diversify and showed similar expression patterns among different breeds. In the three chicken breeds, the predominant types of mutations observed in IGHV and IGLV SHM were A to G and G to A transitions. Specifically, IGLV exhibited a preference for A to G mutations, whereas IGHV displayed a bias toward G to A mutations. The regions at the junctions between framework regions (FR) and complementarity-determining regions (CDR) and within the CDR regions themselves are typically prone to mutations. The locations of GCV events in IGLV and IGHV do not show significant differences, and replacement segments are concentrated in the central regions of FR1, CDR, and FR2. Importantly, gene conversion events are not random occurrences. Additionally, our investigation revealed that CDRH3 in chickens of diverse breeds and periods the potential for diversification through the incorporation of cysteine. This study demonstrates that the diversity of immunoglobulin expression tends to converge among Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens, indicating that the immunoglobulin gene expression mechanisms in different breeds of chickens do not exhibit significant differences due to selective breeding.


Immunoglobulins play a key role in the organism's defense against pathogens, and their diverse expression allows the body to generate a wide array of antibodies. This diversity serves as a critical safeguard for the immune system against various pathogens. Natural geographical variances and artificial breeding and selection can potentially lead to different immune responses in distinct populations of the same species when confronted with the same pathogen. In this study, we investigated the diversity of immunoglobulin gene expression in the natural state of different chicken breeds (Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens) and at different periods from the perspective of immunoglobulin gene expression mechanism. We analyzed the diversity of immunoglobulin based on the results of high-throughput sequencing by extracting Fabricius bursa RNA, RACE (Rapid Amplification of cDNA Ends) technique, and constructing DNA libraries. Our study reveals that the junctional diversity, somatic hypermutation, CDR3 diversity, and gene conversion expression of immunoglobulins in Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens converge during the same time period. This indicates that the immunoglobulin gene expression mechanisms in different chicken breeds do not exhibit significant variations as a result of selective breeding.


Subject(s)
Chickens , Animals , Chickens/genetics , Chickens/immunology , Female , Immunoglobulins/genetics , Immunoglobulins/metabolism , Genes, Immunoglobulin/genetics
10.
Vaccine ; 42(15): 3410-3419, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38641498

ABSTRACT

The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.


Subject(s)
Antibodies, Viral , Chickens , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Virus Shedding , Animals , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/genetics , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Virus Shedding/immunology , Specific Pathogen-Free Organisms , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/virology , Immunity, Cellular , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics , Vaccination/methods , Immunity, Humoral , Genetic Vectors/immunology , Immunogenicity, Vaccine , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics
11.
Vaccine ; 42(13): 3220-3229, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38641497

ABSTRACT

Leptospirosis, a globally significant zoonotic disease caused by pathogenic Leptospira, continues to threaten the health and public safety of both humans and animals. Current clinical treatment of leptospirosis mainly relies on antibiotics but their efficacy in severe cases is controversial. Passive immunization has a protective effect in the treatment of infectious diseases. In addition, chicken egg yolk antibody (IgY) has gained increasing attention as a safe passive immunization agent. This study aimed to investigate whether hens produce specific IgY after immunization with inactivated Leptospira and the protective effect of specific IgY against leptospirosis. First, it was demonstrated that specific IgY could be extracted from the eggs of hens vaccinated with inactivated Leptospira and that specific IgY can specifically recognize and bind homotypic Leptospira with a high titre, as shown by MAT and ELISA. Next, we tested the therapeutic effects of IgY in early and late leptospirosis using a hamster model. The results showed that early specific IgY treatment increased the survival rate of hamsters to 100%, alleviated pathological damage to the liver, kidney, and lung, reduced leptospiral burden, and restored haematological indices as well as functional indicators of the liver and kidney. The therapeutic effect of early specific IgY was comparable to that of doxycycline. Late IgY treatment also enhanced the survival rate of hamsters and improved the symptoms of leptospirosis similar to early IgY treatment. However, the therapeutic effect of late IgY treatment was better when combined with doxycycline. Furthermore, no Leptospira colonization was observed in the kidneys, livers, or lungs of the surviving hamsters treated with specific IgY. Mechanistically, IgY was found to inhibit the growth and adhesion to cells of Leptospira. In conclusion, passive immunotherapy with specific IgY can be considered an effective treatment for leptospirosis, and may replace antibiotics regarding its therapeutic effects.


Subject(s)
Antibodies, Bacterial , Immunization, Passive , Immunoglobulins , Leptospira , Leptospirosis , Animals , Cricetinae , Female , Antibodies, Bacterial/immunology , Chickens/immunology , Disease Models, Animal , Doxycycline/therapeutic use , Doxycycline/administration & dosage , Doxycycline/pharmacology , Egg Yolk/immunology , Immunization, Passive/methods , Immunoglobulins/immunology , Immunoglobulins/administration & dosage , Kidney/pathology , Kidney/immunology , Kidney/microbiology , Leptospira/immunology , Leptospirosis/immunology , Leptospirosis/prevention & control , Leptospirosis/therapy , Liver/immunology , Liver/pathology , Liver/microbiology , Mesocricetus , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
12.
J Immunol ; 212(11): 1744-1753, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38629917

ABSTRACT

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.


Subject(s)
Animals, Genetically Modified , Chickens , Immunoglobulin Heavy Chains , Single-Domain Antibodies , Animals , Chickens/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , Transgenes/genetics , B-Lymphocytes/immunology , Antibodies, Viral/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Humans
13.
Poult Sci ; 103(6): 103689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579543

ABSTRACT

The aim of this study was to investigate the effects of prolonged exposure to varying levels of music or noise on the behavioral, physiological, and immune responses of pullets following their transfer to an egg-laying facility. A total of 240 one-day-old Hy-Line Brown pullets were randomly assigned to five groups: 0 dB sound stimulation, low-decibel music (65-75 dB), high-decibel music (85-95 dB), low-decibel noise (65-75 dB), and high-decibel noise (85-95 dB) stimuli. Pullets received music or noise stimuli 10 h per d from 1-day-old to 16-wk-old and were then transferred to the egg-laying facility. The results indicated that feeding and drinking behaviors significantly decreased (P < 0.05), whereas feather pecking, aggression, and preening behaviors significantly increased (P < 0.05) in the pullets after transfer. Pullets also had higher serum cortisol (COR) levels (P < 0.05), whereas immunoglobulin Y (IgY), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleukin-1ß (IL-1ß), interleukin-2 (IL-2) and interleukin-6 (IL-6) levels significantly increased (P < 0.05). Low-decibel sound stimuli increased aggressive behavior and decreased pecking behavior (P < 0.05). High-decibel sound stimuli decreased feather pecking, cage pecking, aggression, and sham dustbathing behaviors (P < 0.05). In addition, a low-decibel sound stimulus decreased the serum COR content, and increased the serum IL-6 level in the transferred pullets. A high-decibel sound stimulus also induced shorter tonic immobility (TI) durations in pullets on d 7 after transport stress. Meanwhile, high-decibel sound stimulus decreased the serum IL-6 and TNF-α levels of pullets. In conclusion, the transfer has detrimental effects on the pullets. Long-term sound stimulation effectively mitigated the negative impact of transportation stress on pullets. Among them, the high-decibel sound stimulus showed more promise in relieving transport stress.


Subject(s)
Chickens , Hydrocortisone , Animals , Chickens/physiology , Chickens/immunology , Hydrocortisone/blood , Female , Random Allocation , Behavior, Animal/physiology , Noise , Housing, Animal , Animal Husbandry/methods , Stress, Physiological
14.
Poult Sci ; 103(6): 103670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598909

ABSTRACT

Aging is associated with alterations in gut function, including intestinal inflammation, leaky gut, and impaired epithelial regeneration. Rejuvenating the aged gut is imperative to extend the laying cycle of aged laying hens. Genistein is known to have beneficial effects on age-related diseases, but its precise role in homeostasis of the aged gut of laying hens remains to be elucidated. In this study, 160 45-wk-old Hyline Brown laying hens were continuously fed a basal diet or a diet supplemented with 40 mg/kg genistein until they reached 100 wk of age. The results revealed that long-term genistein supplementation led to an improvement in the egg production rate and feed conversion ratio, as well as an increase in egg quality. Moreover, the expression levels of senescence markers, such as ß-galactosidase, P16, and P21, were decreased in the gut of genistein-treated aged laying hens. Furthermore, genistein ameliorated gut dysfunctions, such as intestinal inflammation, leaky gut, and impaired epithelial regeneration. Treg cell-derived IL-10 plays a crucial role in the genistein-induced regulation of age-related intestinal inflammation. This study demonstrates that long-term consumption of genistein improves homeostasis in the aged gut and extends the laying cycle of aged laying hens. Moreover, the link between genistein and Treg cells provides a rationale for dietary intervention against age-associated gut dysfunction.


Subject(s)
Aging , Animal Feed , Chickens , Diet , Dietary Supplements , Genistein , Homeostasis , Animals , Genistein/pharmacology , Genistein/administration & dosage , Chickens/physiology , Chickens/immunology , Female , Homeostasis/drug effects , Dietary Supplements/analysis , Diet/veterinary , Animal Feed/analysis , Random Allocation
15.
Poult Sci ; 103(6): 103770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652955

ABSTRACT

Alpiniae oxyphylla fructus was extensively utilized both as dietary supplements and traditional herbal medicines for healthcare functions and has exhibited a positive impact on animal health. The present study aimed to investigate the effects of Alpiniae oxyphyllae fructus powder (AOP) on production performance, egg quality, egg yolk fatty acid composition, reproductive hormones, antioxidant capacity, immunity, anti-apoptosis ability, and intestinal health in hens. A total of 252 Hainan Wenchang laying hens (30-wk-old) were randomly divided into 3 groups with 6 replicates, a basic diet with 0 (CON), 1 g/kg AOP (AOP1), and 3 g/kg (AOP3) mixed AOP. The AOP supplementation was found to decrease the feed conversion ratio and embryo mortality but to increase the laying rate, average egg weight, and oviduct index linearly (p < 0.05). Furthermore, AOP treatment reduced the total saturated fatty acids and palmitic acid (C16:0) in the egg yolk while increasing eggshell strength, albumen height, and Haugh unit (p < 0.05). The serum levels of albumin and phosphorus were increased, whereas total cholesterol, triglycerides, and glucose levels decreased as a result of AOP treatment (p < 0.05). The inclusion of 3 g/kg AOP had higher 17 ß-estradiol and follicle-stimulating hormone levels in serum, while it up-regulated follicle-stimulating hormone receptor and gonadotropin-releasing hormone expression in ovary (p < 0.05). Dietary AOP strengthened the expression of nuclear factor erythroid2-related factor 2 in ovary and increased the activity of superoxide dismutase and total antioxidant capacity, but had a lower malondialdehyde content in serum (p < 0.05). AOP at 3 g/kg up-regulated superoxide dismutase 1 and heme oxygenase 1 expression in jejunum and ovary (p < 0.05). Meanwhile, AOP supplementation down-regulated p53 expression in ovary and bcl-2-associated x expression in liver and jejunum, especially 3 g/kg of AOP had lower caspase-8 concentrations and down-regulated bcl-2-associated x and caspase-3 expression in ovary (p < 0.05). AOP treatment increased serum levels of immunoglobulin A and immunoglobulin M and upregulated interleukin-4 expression in the liver, while decreasing interleukin-1ß expression in liver and ovary and nod-like receptor protein 3 expression in jejunum (p < 0.05). Dietary AOP increased the ratio of villus height to crypt depth but decreased crypt depth in jejunum, especially when 1 g/kg AOP increased expression levels of occludin, mucin-2, peptide-transporter 1, and sodium glucose cotransporter 1 in jejunum (p < 0.05). AOP treatment altered the composition of the cecal microbial community, as evidenced by increased abundance of Oscillospira and Phascolarctobacterium and reduced richness of Clostridiaceae_Clostridium. Dietary AOP supplementation enriched lipid, amino acid, and propanoate metabolism. Spearman's correlation analysis revealed that the genera Oscillospira, Blautia, and Megasphaera were related to laying performance and intestinal integrity. In brief, supplementation of AOP, especially at 3 g/kg, could improve production performance and egg quality of hens via modulating reproductive hormones, antioxidant capacity, immunity, intestinal barrier, and cecal microbiota. Overall, the present work recommends the dietary inclusion of AOP as a beneficial additive for improving the performance of hens.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Animals , Chickens/physiology , Chickens/immunology , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Antioxidants/metabolism , Random Allocation , Alpinia/chemistry , Intestines/drug effects , Intestines/physiology , Fruit/chemistry , Ovum/drug effects , Ovum/physiology , Ovum/chemistry , Egg Yolk/chemistry , Reproduction/drug effects , Dose-Response Relationship, Drug
16.
Poult Sci ; 103(6): 103741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670055

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Fibroblasts , Immunity, Innate , Poultry Diseases , Animals , Male , Fibroblasts/virology , Fibroblasts/immunology , Chick Embryo , Adenoviridae Infections/veterinary , Adenoviridae Infections/immunology , Adenoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Chickens/immunology , Aviadenovirus/physiology , Aviadenovirus/immunology , Serogroup , Hepatocytes/virology , Hepatocytes/immunology
17.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38492902

ABSTRACT

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Subject(s)
Chickens , Dexamethasone , Macrophages , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Chickens/immunology , Chickens/genetics , Macrophages/immunology , Macrophages/metabolism , Dexamethasone/pharmacology , Apoptosis , Immune Tolerance , Gene Expression Regulation , Immunosuppression Therapy , Avian Proteins/genetics , Avian Proteins/metabolism , Spleen/immunology , Spleen/metabolism , Signal Transduction , Stress, Physiological/immunology , Cell Line , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Cell Proliferation
18.
Poult Sci ; 103(5): 103569, 2024 May.
Article in English | MEDLINE | ID: mdl-38447310

ABSTRACT

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.


Subject(s)
Chickens , Chitosan , Cross Protection , Nanoparticles , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella enteritidis , Salmonella typhimurium , Animals , Chickens/immunology , Salmonella enteritidis/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/immunology , Chitosan/administration & dosage , Chitosan/pharmacology , Salmonella Vaccines/immunology , Salmonella Vaccines/administration & dosage , Nanoparticles/administration & dosage , Salmonella typhimurium/immunology , Administration, Oral , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
19.
Poult Sci ; 103(5): 103581, 2024 May.
Article in English | MEDLINE | ID: mdl-38460218

ABSTRACT

As an enzyme, ß-mannanase (BM) can be widely used as feed additive to improve the growth performance of animals. This experiment aimed to determine the effect of the addition of BM to low-energy diet on the immune function and intestinal microflora of broiler chickens. In this study, 384 one-day-old Arbor Acres broilers were randomly divided into 3 groups (8 replicates per group): positive control (PC, received a corn-soybean meal basal diet), negative control (NC, received a low-energy diet with Metabolizable Energy (ME) reduced by 50 kcal/kg) and NC + BM group (NC birds + 100 mg/kg BM). All birds were raised for 42 d. The results showed that BM mitigated the damage of immune function in peripheral blood of broilers caused by the decrease of dietary energy level by increasing the Concanavalin A (Con A) index of stimulation (SI) and macrophages phagocytic activity in the peripheral blood of broilers at 42 d (P < 0.05). The analysis of cecum flora showed that the low-energy diet significantly reduced the observed_species index (P < 0.01), Chao1 index and ACE index (P < 0.05), which reduced the abundance and evenness of species in the cecum of broilers at 21 d. It also significantly reduced the relative abundance of Candidatus_Arthromitus and significantly increased the relative abundance of Pseudomonas in the cecum of broilers at 21 d, while also significantly increasing the relative abundance of Monoglobus at 42 d. BM significantly increased the relative abundance of Lachnospiraceae_UCG-001 and Lachnospiraceae_bacterium_615 in the cecum of broilers at 21 d. In addition, BM inhibited microbial Fatty acid degradation by decreasing the activity of glutaryl-CoA dehydrogenase. Collectively, BM could improve intestinal health by enhancing the immune function of broilers, promoting the proliferation of beneficial bacteria and reducing the number of harmful bacteria, regulating intestinal flora, thereby alleviating the adverse effects of lower dietary energy levels.


Subject(s)
Animal Feed , Chickens , Diet , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Random Allocation , beta-Mannosidase , Animals , Chickens/immunology , Chickens/microbiology , Animal Feed/analysis , Diet/veterinary , Gastrointestinal Microbiome/drug effects , beta-Mannosidase/metabolism , beta-Mannosidase/genetics , RNA, Ribosomal, 16S/analysis , Dietary Supplements/analysis , Male , Animal Nutritional Physiological Phenomena/drug effects , Metagenomics
20.
Poult Sci ; 103(5): 103600, 2024 May.
Article in English | MEDLINE | ID: mdl-38471230

ABSTRACT

The aim of this study was to evaluate the effect of microencapsulated essential oils (MEO) on the laying performance, egg quality, immunity, intestinal morphology, and oxidative status of laying hens. A total of 640 Hy-line Brown laying hens, 41 wk of age, were randomly divided into 4 groups, each with 8 replicates containing 20 birds per replicate. The dietary conditions tested included a basal diet (Control) or the basal diet supplemented with various levels of MEO at 100 mg/kg (MEO100), 300 mg/kg (MEO300), and 500 mg/kg (MEO500). The three treatment groups were intermittently fed MEO, following an alternating schedule of 1 wk on and 1 wk off for a total of 56 d. Results showed that feeding MEO at levels of 300 and 500 mg/kg improved both egg production and feed conversion ratios compared to the control group. Hens consumed MEO-supplemented diets exhibited a significant decrease in the breaking egg ratio (P < 0.05) compared to those fed the control diet. Shell thickness and Haugh unit values significantly increased in the groups receiving 300 and 500 mg/kg of MEO (P < 0.05). Both the MEO300 and MEO500 treatments led to improvements in immunoglobulin (IgA, IgM, and IgG) and cytokine (IL-2 and IFN-γ) levels in serum. Hens in the MEO300 and MEO500 groups exhibited higher values for parameters related to intestinal morphometry compared to the control group. Furthermore, supplementation with 300 and 500 mg/kg of MEO enhanced the antioxidant capacity of plasma, as evidenced by increased activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) (P < 0.05). In summary, the intermittent feeding of MEO improved egg production, enhanced antioxidative processes, immune functions, and intestinal morphology, leading to an amelioration in the egg quality of laying hens. Our data demonstrate that supplementation of 300 mg/kg of MEO in feed can significantly improve animal health and egg quality. Implementation of these feeding practices could have a positive economic impact on poultry and egg industry.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Intestines , Oils, Volatile , Animals , Chickens/physiology , Chickens/immunology , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Intestines/drug effects , Intestines/physiology , Intestines/anatomy & histology , Random Allocation , Ovum/physiology , Ovum/drug effects , Dose-Response Relationship, Drug , Reproduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...