Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 721
Filter
1.
Front Immunol ; 15: 1385473, 2024.
Article in English | MEDLINE | ID: mdl-38720890

ABSTRACT

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Subject(s)
Chikungunya virus , Dengue Virus , Dengue , Interferons , Janus Kinases , Macrophages , STAT Transcription Factors , Signal Transduction , Virus Replication , Humans , Chikungunya virus/physiology , Chikungunya virus/immunology , Dengue Virus/physiology , Dengue Virus/immunology , Janus Kinases/metabolism , Virus Replication/drug effects , STAT Transcription Factors/metabolism , Macrophages/immunology , Macrophages/virology , Macrophages/metabolism , Interferons/metabolism , Dengue/immunology , Dengue/virology , Chikungunya Fever/immunology , Chikungunya Fever/virology , Interleukin-27/metabolism , Interleukins/metabolism , Interleukins/pharmacology , Interleukins/immunology , Transcriptome , Cells, Cultured
2.
Front Cell Infect Microbiol ; 14: 1380736, 2024.
Article in English | MEDLINE | ID: mdl-38716191

ABSTRACT

Introduction: Chikungunya virus (CHIKV) infection is associated with acute clinical manifestations and chronic joint inflammation. CHIKV has emerged as a significant causative agent of central nervous system (CNS) complications, including encephalitis and related sequelae. Microglial cells, crucial for immune responses and tissue repair in the CNS, play a vital role in the host response to viral infections, with their activation potentially leading to either protection or pathology. In this study, the infection biology of CHIKV in the C20 human microglial cell line was investigated. Methods: The permissiveness of C20 cells to CHIKV infection was assessed, and viral replication kinetics were compared to Vero E6 cells. Cytopathic effects of CHIKV infection on C20 cells were examined, along with ultrastructural changes using transmission electron microscopy. Additionally, apoptosis induction, mitochondrial membrane potential, and alterations in cell surface marker expression were evaluated by flow cytometry. Results: CHIKV infection demonstrated permissiveness in C20 cells, similar to Vero cells, resulting in robust viral replication and cytopathic effects. Ultrastructural analysis revealed viral replication, mature virion formation, and distinctive cytoplasmic and nuclear changes in infected C20 cells. CHIKV infection induced significant apoptosis in C20 cells, accompanied by mitochondrial membrane depolarization and altered expression of cell surface markers such as CD11c, CD14, and HLA-DR. Notably, decreased CD14 expression was observed in CHIKV-infected C20 cells. Discussion: The study findings suggest that CHIKV infection induces apoptosis in C20 microglial cells via the mitochondrial pathway, with significant alterations in cell surface marker expression, particularly CD14 that is linked with apoptosis induction. These observations provide valuable insights into the role of human microglial cells in the host response to CHIKV infection and contribute to the knowledge on the neuropathogenesis of this virus.


Subject(s)
Apoptosis , Chikungunya Fever , Chikungunya virus , Microglia , Mitochondria , Virus Replication , Microglia/virology , Chikungunya virus/physiology , Humans , Mitochondria/ultrastructure , Cell Line , Chlorocebus aethiops , Animals , Vero Cells , Chikungunya Fever/virology , Membrane Potential, Mitochondrial , Cytopathogenic Effect, Viral
3.
Sci Rep ; 14(1): 10814, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734695

ABSTRACT

Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.


Subject(s)
Aedes , Chikungunya virus , Gastrointestinal Microbiome , Mosquito Vectors , Animals , Female , Aedes/microbiology , Aedes/virology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Chikungunya virus/physiology , Mosquito Vectors/microbiology , Mosquito Vectors/virology , RNA, Ribosomal, 16S/genetics , Thailand
4.
PLoS One ; 19(5): e0281851, 2024.
Article in English | MEDLINE | ID: mdl-38748732

ABSTRACT

Zika (ZIKV) and chikungunya (CHIKV) are arboviruses that cause infections in humans and can cause clinical complications, representing a worldwide public health problem. Aedes aegypti is the primary vector of these pathogens and Culex quinquefasciatus may be a potential ZIKV vector. This study aimed to evaluate fecundity, fertility, survival, longevity, and blood feeding activity in Ae. aegypti after exposure to ZIKV and CHIKV and, in Cx. quinquefasciatus exposed to ZIKV. Three colonies were evaluated: AeCamp (Ae. aegypti-field), RecL (Ae. aegypti-laboratory) and CqSLab (Cx. quinquefasciatus-laboratory). Seven to 10 days-old females from these colonies were exposed to artificial blood feeding with CHIKV or ZIKV. CHIKV caused reduction in fecundity and fertility in AeCamp and reduction in survival and fertility in RecL. ZIKV impacted survival in RecL, fertility in AeCamp and, fecundity and fertility in CqSLab. Both viruses had no effect on blood feeding activity. These results show that CHIKV produces a higher biological cost in Ae. aegypti, compared to ZIKV, and ZIKV differently alters the biological performance in colonies of Ae. aegypti and Cx. quinquefasciatus. These results provide a better understanding over the processes of virus-vector interaction and can shed light on the complexity of arbovirus transmission.


Subject(s)
Aedes , Chikungunya virus , Culex , Fertility , Mosquito Vectors , Zika Virus Infection , Zika Virus , Animals , Aedes/virology , Aedes/physiology , Chikungunya virus/physiology , Chikungunya virus/pathogenicity , Zika Virus/physiology , Zika Virus/pathogenicity , Culex/virology , Culex/physiology , Mosquito Vectors/virology , Mosquito Vectors/physiology , Female , Zika Virus Infection/transmission , Zika Virus Infection/virology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Feeding Behavior/physiology , Humans , Longevity
5.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786028

ABSTRACT

Zika (ZIKV) and Chikungunya (CHIKV) viruses are mosquito-transmitted infections, or vector-borne pathogens, that emerged a few years ago. Reliable diagnostic tools for ZIKV and CHIKV-inexpensive, multiplexed, rapid, highly sensitive, and specific point-of-care (POC) systems-are vital for appropriate risk management and therapy. We recently studied a detection system with great success in Mexico (Villahermosa, state of Tabasco), working with human sera from patients infected with those viruses. The research conducted in Mexico validated the efficacy of a novel two-step rapid isothermal amplification technique (RAMP). This approach, which encompasses recombinase polymerase amplification (RPA) followed by loop-mediated isothermal amplification (LAMP), had been previously established in the lab using lab-derived Zika (ZIKV) and Chikungunya (CHIKV) viruses. Crucially, our findings confirmed that this technique is also effective when applied to human sera samples collected from locally infected individuals in Mexico.


Subject(s)
Chikungunya virus , Nucleic Acid Amplification Techniques , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Zika Virus Infection/blood , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Chikungunya Fever/blood , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/blood , Mexico , Sensitivity and Specificity , RNA Viruses/genetics , RNA Viruses/isolation & purification
6.
Emerg Microbes Infect ; 13(1): 2356140, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38742328

ABSTRACT

Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.


Subject(s)
Arboviruses , Encephalitis Viruses, Tick-Borne , Reverse Genetics , Animals , Mice , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/physiology , Reverse Genetics/methods , Arboviruses/genetics , Chikungunya virus/genetics , Encephalitis Virus, Japanese/genetics , DNA, Viral/genetics , Encephalitis, Tick-Borne/virology , Female , Genome, Viral , Chikungunya Fever/virology , Humans
7.
Front Cell Infect Microbiol ; 14: 1396279, 2024.
Article in English | MEDLINE | ID: mdl-38800832

ABSTRACT

Background: The Chikungunya virus is an Alphavirus that belongs to the Togaviridae family and is primarily transmitted by mosquitoes. It causes acute infection characterized by fever, headache, and arthralgia. Some patients also experience persistent chronic osteoarthritis-like symptoms. Dedicated antiviral treatments are currently unavailable for CHIKV. This study aims to explore the potential anti-CHIKV effect of rosmarinic acid using network pharmacology. Methods: This study employed network pharmacology to predict and verify the molecular targets and pathways associated with ROSA in the context of CHIKV. The analysis outcomes were further validated using molecular docking and in vitro experiments. Results: The analysis of CHIKV targets using the Kyoto Encyclopedia of Genes and Genomes and MCODE identified IL-17 as an important pathogenic pathway in CHIKV infection. Among the 30 targets of ROSA against CHIKV, nearly half were found to be involved in the IL-17 signaling pathway. This suggests that ROSA may help the host in resisting CHIKV invasion by modulating this pathway. Molecular docking validation results showed that ROSA can stably bind to 10 core targets out of the 30 identified targets. In an in vitro CHIKV infection model developed using 293T cells, treatment with 60 µM ROSA significantly improved the survival rate of infected cells, inhibited 50% CHIKV proliferation after CHIKV infection, and reduced the expression of TNF-α in the IL-17 signaling pathway. Conclusion: This study provides the first confirmation of the efficacy of ROSA in suppressing CHIKV infection through the IL-17 signaling pathway. The findings warrant further investigation to facilitate the development of ROSA as a potential treatment for CHIKV infection.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Cinnamates , Depsides , Interleukin-17 , Molecular Docking Simulation , Rosmarinic Acid , Signal Transduction , Depsides/pharmacology , Cinnamates/pharmacology , Chikungunya virus/drug effects , Interleukin-17/metabolism , Humans , Antiviral Agents/pharmacology , Signal Transduction/drug effects , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Network Pharmacology , HEK293 Cells , Virus Replication/drug effects , Animals
8.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675917

ABSTRACT

The incidence of chikungunya has dramatically surged worldwide in recent decades, imposing an expanding burden on public health. In recent years, South America, particularly Brazil, has experienced outbreaks that have ravaged populations following the rapid dissemination of the chikungunya virus (CHIKV), which was first detected in 2014. The primary vector for CHIKV transmission is the urban mosquito species Aedes aegypti, which is highly prevalent throughout Brazil. However, the impact of the locally circulating CHIKV genotypes and specific combinations of local mosquito populations on vector competence remains unexplored. Here, we experimentally analyzed and compared the infectivity and transmissibility of the CHIKV-ECSA lineage recently isolated in Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected AG129 mice for blood feeding, all the mosquito populations displayed high infection rates and dissemination efficiency. Furthermore, we observed that all the populations were highly efficient in transmitting CHIKV to a vertebrate host (naïve AG129 mice) as early as eight days post-infection. These results demonstrate the high capacity of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage. This observation could help to explain the high prevalence of the CHIKV-ECSA lineage over the Asian lineage, which was also detected in Brazil in 2014. However, further studies comparing both lineages are necessary to gain a better understanding of the vector's importance in the epidemiology of CHIKV in the Americas.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Mosquito Vectors , Animals , Aedes/virology , Chikungunya virus/genetics , Chikungunya virus/classification , Chikungunya virus/physiology , Chikungunya virus/isolation & purification , Brazil/epidemiology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya Fever/epidemiology , Mice , Mosquito Vectors/virology , Genotype , Female , Phylogeny
9.
Viruses ; 16(4)2024 04 19.
Article in English | MEDLINE | ID: mdl-38675976

ABSTRACT

RNA viruses quickly evolve subtle genotypic changes that can have major impacts on viral fitness and host range, with potential consequences for human health. It is therefore important to understand the evolutionary fitness of novel viral variants relative to well-studied genotypes of epidemic viruses. Competition assays are an effective and rigorous system with which to assess the relative fitness of viral genotypes. However, it is challenging to quickly and cheaply distinguish and quantify fitness differences between very similar viral genotypes. Here, we describe a protocol for using reverse transcription PCR in combination with commercial nanopore sequencing services to perform competition assays on untagged RNA viruses. Our assay, called the Universal Competition Assay by Nanopore Sequencing (U-CAN-seq), is relatively cheap and highly sensitive. We used a well-studied N24A mutation in the chikungunya virus (CHIKV) nsp3 gene to confirm that we could detect a competitive disadvantage using U-CAN-seq. We also used this approach to show that mutations to the CHIKV 5' conserved sequence element that disrupt sequence but not structure did not affect the fitness of CHIKV. However, similar mutations to an adjacent CHIKV stem loop (SL3) did cause a fitness disadvantage compared to wild-type CHIKV, suggesting that structure-independent, primary sequence determinants in this loop play an important role in CHIKV biology. Our novel findings illustrate the utility of the U-CAN-seq competition assay.


Subject(s)
Chikungunya virus , Mutation , Nanopore Sequencing , Nanopore Sequencing/methods , Chikungunya virus/genetics , Chikungunya virus/classification , Humans , Genotype , Genetic Fitness , RNA, Viral/genetics , Animals , RNA Viruses/genetics , RNA Viruses/classification , Chikungunya Fever/virology
10.
PLoS Negl Trop Dis ; 18(4): e0012120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648230

ABSTRACT

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.


Subject(s)
Antibodies, Viral , Chikungunya Fever , Chikungunya virus , Genome, Viral , Vaccines, Attenuated , Viral Vaccines , Virus Replication , Animals , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/administration & dosage , Mice , Chikungunya virus/genetics , Chikungunya virus/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Chikungunya Fever/prevention & control , Chikungunya Fever/immunology , Chikungunya Fever/virology , Antibodies, Viral/blood , Female , Humans , Chlorocebus aethiops , Antibodies, Neutralizing/blood , Vero Cells , Mice, Inbred BALB C
11.
J Vector Borne Dis ; 61(1): 61-71, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648407

ABSTRACT

BACKGROUND OBJECTIVES: Dengue and chikungunya infections are one of the major health problems that have plagued the human population globally. All dengue virus (DENV) serotypes circulate within Malaysia with particular serotypes dominating in different years/outbreaks. In the state of Kelantan, an increasing number of DENV and chikungunya virus (CHIKV) new cases have been reported, including several deaths. This study aimed to isolate and detect these arboviruses from adult mosquitoes in Kelantan. METHODS: Adult mo squito samples were collected from January to August 2019 and were identified according to gender, species and locality. The isolation of the virus was done in C6/36 cells. Dengue NS1 antigen was carried out using direct mosquito lysate and mosquito culture supernatant. Detection and serotyping of the DENV was performed using multiplex RT-PCR and CHIKV detection using a one-step RT-PCR assay. RESULTS: Of 91 mosquito pools, four were positive for NS1 antigen comprising two pools (2.2%) of male Ae. albopictus (Pulau Melaka and Kubang Siput) and two pools (2.2%) of Ae. aegypti (Kampung Demit Sungai). DENV 1 was detected in one pool (0.9%) of female Ae. albopictus among 114 tested Aedes pools. Two pools of 114 pools (1.7%) from both male Aedes species were positive with double serotypes, DENV 1 and DENV 2 (Pulau Melaka). However, no pool was positive for CHIKV. INTERPRETATION CONCLUSION: The presence of DENV and the main vectors of arboviruses in Kelantan are pertinent indicators of the need to improve vector controls to reduce arbovirus infections among people in the localities.


Subject(s)
Aedes , Chikungunya virus , Dengue Virus , Dengue , Mosquito Vectors , Animals , Malaysia , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Chikungunya virus/classification , Male , Female , Aedes/virology , Mosquito Vectors/virology , Dengue/virology , Chikungunya Fever/virology , Humans , Viral Nonstructural Proteins/genetics , Serogroup
12.
Clin Microbiol Infect ; 30(6): 810-815, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460820

ABSTRACT

OBJECTIVES: We aimed to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform for the rapid detection of chikungunya virus (CHIKV) in both patient and mosquito samples from Brazil. METHODS: We optimized an RT-LAMP assay and then evaluated the specificity and sensitivity using visual detection. In comparison with the RT-qPCR reference method, we validated the utility of this assay as a molecular diagnostic test in a reference laboratory for arbovirus diagnostics using 100 serum samples collected from suspected CHIKV cases. RESULTS: Our RT-LAMP assay specifically detected CHIKV without cross-reactivity against other arboviruses. The limit of detection of our RT-LAMP was estimated in -1.18 PFU (confidence interval [CI] ranging from -2.08 to 0.45), resulting in a similar analytical sensitivity when directly compared with the reference standard RT-qPCR assay. Then, we demonstrate the ability of our RT-LAMP assay to detect the virus in different human specimens (serum, urine, and saliva), and crude lysate of Aedes aegypti mosquitoes in as little as 20-30 minutes and without a separate RNA isolation step. Lastly, we showed that our RT-LAMP assay could be lyophilized and reactivated by adding water, indicating potential for room-temperature storage. Our RT-LAMP had a clinical sensitivity of 100% (95% CI, 90.97-100.00%), clinical specificity of 96.72% (95% CI, 88.65-99.60%), and overall accuracy of 98.00% (95% CI, 92.96-99.76%). DISCUSSION: Taken together, these findings indicate that the RT-LAMP assay reported here solves important practical drawbacks to the deployment of molecular diagnostics in the field and can be used to improve testing capacity, particularly in low- and middle-income countries.


Subject(s)
Chikungunya Fever , Chikungunya virus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Humans , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , Animals , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Aedes/virology , Brazil , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcription
13.
J Virol ; 97(11): e0143023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37861335

ABSTRACT

IMPORTANCE: Being obligate parasites, viruses use various host cell machineries in effectively replicating their genome, along with virus-encoded enzymes. In order to carry out infection and pathogenesis, viruses are known to manipulate fundamental cellular processes in cells and interfere with host gene expression. Several viruses interact with the cellular proteins involved in the Wnt/ß-catenin pathway; however, reports regarding the involvement of protein components of the Wnt/ß-catenin pathway in Chikungunya virus (CHIKV) infection are scarce. Additionally, there are currently no remedies or vaccines available for CHIKV. This is the first study to report that modulation of the Wnt/ß-catenin pathway is crucial for effective CHIKV infection. These investigations deepen the understanding of the underlying mechanisms of CHIKV infection and offer new avenue for developing effective countermeasures to efficiently manage CHIKV infection.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , beta Catenin/metabolism , Chikungunya Fever/metabolism , Chikungunya Fever/virology , Chikungunya virus/physiology , Virus Replication , Wnt Signaling Pathway
14.
Biotechnol J ; 18(8): e2300125, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37127933

ABSTRACT

Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.


Subject(s)
Biosensing Techniques , Chikungunya virus , Culicidae , Electrodes , Zika Virus , Animals , Biosensing Techniques/instrumentation , Carbon/chemistry , Culicidae/virology , Gold/chemistry , Metal Nanoparticles/chemistry , Reproducibility of Results , Zika Virus/isolation & purification , Zika Virus Infection/prevention & control , Zika Virus Infection/virology , Vector Borne Diseases/prevention & control , Vector Borne Diseases/virology , Chikungunya virus/isolation & purification , Chikungunya Fever/prevention & control , Chikungunya Fever/virology , Limit of Detection , Nanocomposites/chemistry
15.
Acta Trop ; 232: 106497, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35508271

ABSTRACT

Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that causes Chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and acute or chronic arthralgia. CHIKF pathogenesis has an important immunological component since higher levels of pro-inflammatory factors, including cytokines and chemokines, are detected in CHIKV-infected patients. In vitro studies, using monocytes and macrophages have shown that CHIKV infection promotes elevated production of pro-inflammatory cytokines and antiviral response factors. Vitamin D3 (VD3) has been described as an important modulator of immune response and as an antiviral factor for several viruses. Here, we aimed to study the effects of VD3 treatment on viral replication and pro-inflammatory response in CHIKV-infected human monocytes (VD3-Mon) and monocyte-derived macrophages differentiated in the absence (MDMs) or the presence of VD3 (VD3-MDMs). We found that VD3 treatment did not suppress CHIKV replication in either VD3-Mon or VD3-MDMs. However, the expression of VDR, CAMP and CYP24A1 mRNAs was altered by CHIKV infection. Furthermore, VD3 treatment alters TLRs mRNA expression and production of pro-inflammatory cytokines, including TNFα and CXCL8/IL8, but not IL1ß and IL6, in response to CHIKV infection in both VD3-Mon and VD3-MDMs. While a significant decrease in CXCL8/IL8 production was observed in CHIKV-infected VD3-Mon, significantly higher production of CXCL8/IL8 was observed in CHIKV-infected VD3-MDM at 24 hpi. Altogether, our results suggest that vitamin D3 may play an important role in ameliorating pro-inflammatory response during CHIKV infection in human Mon, but not in MDMs. Although further studies are needed to evaluate the efficacy of VD3; nevertheless, this study provides novel insights into its benefits in modulating the inflammatory response elicited by CHIKV infection in humans.


Subject(s)
Chikungunya Fever , Chikungunya virus , Macrophages , Monocytes , Toll-Like Receptors , Virus Replication , Chikungunya Fever/virology , Chikungunya virus/drug effects , Cholecalciferol/pharmacology , Cytokines/biosynthesis , Humans , Macrophages/drug effects , Macrophages/virology , Monocytes/drug effects , Monocytes/virology , Toll-Like Receptors/biosynthesis , Virus Replication/drug effects , Vitamin D/pharmacology
16.
J Virol ; 96(9): e0006422, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35416719

ABSTRACT

Alphaviruses infect cells by a low pH-dependent fusion reaction between viral and host cell membranes that is mediated by the viral E1 glycoprotein. Most reported alphavirus E1 sequences include two phenylalanines (F87 and F95) in the fusion loop, yet the role of these residues in viral infectivity remains to be defined. Following introduction of wild type (WT), E1-F87A, and E1-F95A chikungunya virus (CHIKV) RNA genomes into cells, viral particle production was similar in magnitude. However, CHIKV E1-F87A and E1-F95A virions displayed impaired infectivity compared with WT CHIKV particles. Although WT, E1-F87A, and E1-F95A particles bound cells with similar efficiencies, E1-F87A and E1-F95A particles were unable to undergo fusion and entry into cells. Introduction of an F95A mutation in the E1 fusion loop of Mayaro virus or Venezuelan equine encephalitis virus also resulted in poorly infectious virions. We further tested whether an E1-F87A or E1-F95A mutation could be incorporated into a live-attenuated vaccine strain, CHIKV 181/25, to enhance vaccine safety. Infection of immunocompromised Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice with 181/25E1-F87A or 181/25E1-F95A resulted in 0% mortality, compared with 100% mortality following 181/25 infection. Despite this enhanced attenuation, surviving Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice were protected against virulent virus re-challenge. Moreover, single-dose immunization of WT mice with either 181/25, 181/25E1-F87A, or 181/25E1-F95A elicited CHIKV-specific antibody responses and protected against pathogenic CHIKV challenge. These studies define a critical function for residues E1-F87 and E1-F95 in alphavirus fusion and entry into target cells and suggest that incorporation of these mutations could enhance the safety of live-attenuated alphavirus vaccine candidates. IMPORTANCE Alphaviruses are human pathogens that cause both debilitating acute and chronic musculoskeletal disease and potentially fatal encephalitis. In this study, we determined that two highly conserved phenylalanine residues in the alphavirus E1 glycoprotein are required for fusion of viral and host cell membranes and viral entry into target cells. We further demonstrated that mutation of these phenylalanines results in a substantial loss of viral virulence but not immunogenicity. These data enhance an understanding of the viral determinants of alphavirus entry into host cells and could contribute to the development of new antivirals targeting these conserved phenylalanines or new live-attenuated alphavirus vaccines.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viral Envelope Proteins , Viral Vaccines , Animals , Antibodies, Viral , Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Chikungunya virus/physiology , Interferon Regulatory Factors/metabolism , Mice , Mice, Knockout , Phenylalanine/chemistry , Protein Domains , Vaccines, Attenuated/immunology , Viral Envelope Proteins/chemistry , Viral Vaccines/immunology , Virus Replication
17.
PLoS Negl Trop Dis ; 16(2): e0009848, 2022 02.
Article in English | MEDLINE | ID: mdl-35143495

ABSTRACT

Across the Pacific, and including in the Solomon Islands, outbreaks of arboviruses such as dengue, chikungunya, and Zika are increasing in frequency, scale and impact. Outbreaks of mosquito-borne disease have the potential to overwhelm the health systems of small island nations. This study mapped the seroprevalence of dengue, Zika, chikungunya and Ross River viruses in 5 study sites in the Solomon Islands. Serum samples from 1,021 participants were analysed by ELISA. Overall, 56% of participants were flavivirus-seropositive for dengue (28%), Zika (1%) or both flaviviruses (27%); and 53% of participants were alphavirus-seropositive for chikungunya (3%), Ross River virus (31%) or both alphaviruses (18%). Seroprevalence for both flaviviruses and alphaviruses varied by village and age of the participant. The most prevalent arboviruses in the Solomon Islands were dengue and Ross River virus. The high seroprevalence of dengue suggests that herd immunity may be a driver of dengue outbreak dynamics in the Solomon Islands. Despite being undetected prior to this survey, serology results suggest that Ross River virus transmission is endemic. There is a real need to increase the diagnostic capacities for each of the arboviruses to support effective case management and to provide timely information to inform vector control efforts and other outbreak mitigation interventions.


Subject(s)
Alphavirus Infections/blood , Chikungunya Fever/blood , Chikungunya virus/immunology , Dengue Virus/immunology , Dengue/blood , Ross River virus/immunology , Zika Virus Infection/blood , Zika Virus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Antibodies, Viral/blood , Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Child , Child, Preschool , Dengue/epidemiology , Dengue/virology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Humans , Male , Melanesia/epidemiology , Middle Aged , Ross River virus/genetics , Ross River virus/isolation & purification , Seroepidemiologic Studies , Young Adult , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/epidemiology , Zika Virus Infection/virology
18.
Viruses ; 14(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35062303

ABSTRACT

Dengue is a mosquito-borne disease of public health concern affecting tropical and subtropical countries, including Indonesia. Although studies on dengue epidemiology have been undertaken in Indonesia, data are lacking in many areas of the country. The aim of this study was to determine dengue virus (DENV) and chikungunya virus (CHIKV) molecular epidemiology in western regions of the Indonesian archipelago. A one-year prospective study was conducted in Aceh and Jambi in 2015 and 2016, respectively, where patients with dengue-like illness were enrolled. Of 205 patients recruited, 29 and 27 were confirmed with dengue in Aceh and Jambi, respectively, and three from Jambi were confirmed with chikungunya. DENV-1 was the predominant serotype identified in Aceh while DENV-2 was predominant in Jambi. All DENV-1 and DENV-2 from both regions were classified as Genotype I and Cosmopolitan genotype, respectively, and all DENV-3 viruses from Jambi were Genotype I. Some viruses, in particular DENV-1, displayed a distinct lineage distribution, where two DENV-1 lineages from Aceh were more closely related to viruses from China instead of Jambi highlighting the role of travel and flight patterns on DENV transmission in the region. DENV-2 from both Aceh and Jambi and DENV-3 from Jambi were all closely related to Indonesian local strains. All three CHIKV belonged to Asian genotype and clustered closely with Indonesian CHIKV strains including those previously circulating in Jambi in 2015, confirming continuous and sustainable transmission of CHIKV in the region. The study results emphasize the importance of continuous epidemiological surveillance of arboviruses in Indonesia and simultaneous testing for CHIKV among dengue-suspected patients.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Dengue Virus/genetics , Dengue/epidemiology , Adolescent , Adult , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Child , Child, Preschool , Cross-Sectional Studies , Dengue/virology , Dengue Virus/isolation & purification , Female , Genotype , Humans , Indonesia/epidemiology , Infant , Male , Middle Aged , Molecular Epidemiology , Phylogeny , Serogroup , Young Adult
19.
J Virol ; 96(3): e0173221, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34787452

ABSTRACT

The chikungunya virus has spread globally with a remarkably high attack rate. Infection causes arthralgic sequelae that can last for years. Nevertheless, there are no specific drugs or vaccines to contain the virus. Understanding the biology of the virus, such as its replication cycle, is a powerful tool to identify new drugs and comprehend virus-host interactions. Even though the chikungunya virus has been known for a long time (it was first described in 1952), many aspects of the replication cycle remain unclear. Furthermore, part of the cycle is based on observations of other alphaviruses. In this study, we used electron and scanning microscopy, as well as biological assays, to analyze and investigate the stages of the chikungunya virus replication cycle. Based on our data, we found infection cellular activities other than those usually described for the chikungunya virus replication cycle, i.e., we show particles enveloping intracellularly without budding in a membrane-delimited morphogenesis area, and we also observed virion release by membrane protrusions. Our work provides novel details regarding the biology of chikungunya virus and fills gaps in our knowledge of its replication cycle. These findings may contribute to a better understanding of virus-host interactions and support the development of antivirals. IMPORTANCE The understanding of virus biology is essential to containing virus dissemination, and exploring the virus replication cycle is a powerful tool to do this. There are many points in the biology of the chikungunya virus that need to be clarified, especially regarding its replication cycle. Our incomplete understanding of chikungunya virus infection stages is based on studies with other alphaviruses. We systematized the chikungunya virus replication cycle using microscopic imaging in the order of infection stages, as follows: entry, replication, protein synthesis, assembly/morphogenesis, and release. The imaging evidence shows novel points in the replication cycle of enveloping without budding, as well as particle release by cell membrane protrusion.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/physiology , Chikungunya virus/ultrastructure , Virus Physiological Phenomena , Virus Replication , Animals , Cells, Cultured , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Vacuoles/ultrastructure , Vero Cells , Virus Release
20.
J Virol ; 96(4): e0158621, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935436

ABSTRACT

Chikungunya virus (CHIKV) is a reemerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intrahost evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, cooccurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by antiglycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The reemerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has only been attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 interspike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further define the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.


Subject(s)
Chikungunya virus/physiology , Chikungunya virus/pathogenicity , Viral Envelope Proteins/metabolism , Virus Attachment , Aedes/virology , Animals , Antibodies, Monoclonal/immunology , Chikungunya Fever/pathology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/immunology , Disease Models, Animal , Heparin/metabolism , Humans , Inflammation , Mice , Mutation , Neutralization Tests , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Virus Internalization , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...