Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
1.
PLoS One ; 19(5): e0301913, 2024.
Article in English | MEDLINE | ID: mdl-38787834

ABSTRACT

Small lentic water bodies are important emitters of methane (CH4) and carbon dioxide (CO2), but the processes regulating their dynamics and susceptibility to human-induced stressors are not fully understood. Bioturbation by chironomid larvae has been proposed as a potentially important factor controlling the dynamics of both gases in aquatic sediments. Chironomid abundance can be affected by the application of biocides for mosquito control, such as Bti (Bacillus thuringiensis var. israelensis). Previous research has attributed increases in CH4 and CO2 emissions after Bti application to reduced bioturbation by chironomids. In this study, we separately tested the effect of chironomid bioturbation and Bti addition on CH4 production and emission from natural sediments. In a set of 15 microcosms, we compared CH4 and CO2 emission and production rates with high and low densities of chironomid larvae at the bioturbating stage, and standard and five times (5x) standard Bti dose, with control sediments that contained neither chironomid larvae nor Bti. Regardless of larvae density, chironomid larvae did not affect CH4 nor CO2 emission and production of the sediment, although both rates were more variable in the treatments with organisms. 5xBti dosage, however, led to a more than three-fold increase in CH4 and CO2 production rates, likely stimulated by bioavailable dissolved carbon in the Bti excipient and priming effects. Our results suggest weak effects of bioturbating chironomid larvae on the CH4 and CO2 dynamics in aquatic ecosystems. Furthermore, our results point out towards potential functional implications of Bti for carbon cycling beyond those mediated by changes in the macroinvertebrate community.


Subject(s)
Carbon Dioxide , Chironomidae , Fresh Water , Geologic Sediments , Larva , Methane , Animals , Chironomidae/metabolism , Chironomidae/drug effects , Chironomidae/growth & development , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Larva/drug effects , Larva/metabolism , Methane/metabolism , Geologic Sediments/chemistry , Bacillus thuringiensis/metabolism , Disinfectants/pharmacology , Mosquito Control/methods , Culicidae/drug effects , Culicidae/metabolism
2.
Chemosphere ; 358: 142242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710409

ABSTRACT

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 µg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.


Subject(s)
Benzo(a)pyrene , Chironomidae , Oxidative Stress , Animals , Benzo(a)pyrene/toxicity , Chironomidae/drug effects , Chironomidae/genetics , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , Whole Genome Sequencing , Mutagens/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Mutagenicity Tests
3.
Environ Toxicol Chem ; 43(6): 1378-1389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661477

ABSTRACT

Octahydro-tetramethyl-naphthalenyl-ethanone (OTNE) is a high-production volume fragrance material used in various down-the-drain consumer products. To assess aquatic risk, the Research Institute for Fragrance Materials (RIFM) uses a tiered data-driven framework to determine a risk characterization ratio, where the ratio of the predicted-environmental concentration to the predicted-no-effect concentration (PNEC) of <1 indicates an acceptable level of risk. Owing to its high production volume and the conservative nature of the RIFM framework, RIFM identified the need to utilize a species sensitivity distribution (SSD) approach to reduce the PNEC uncertainty for OTNE. Adding to the existing Daphnia magna, Danio rerio, and Desmodesmus subspicatus chronic studies, eight new chronic toxicity studies were conducted on the following species: Navicula pelliculosa, Chironomus riparius, Lemna gibba, Ceriodaphnia dubia, Hyalella azteca, Pimephales promelas, Anabaena flos-aquae, and Daphnia pulex. All toxicity data were summarized as chronic 10% effect concentration estimates using the most sensitive biological response. Daphnia magna was the most sensitive (0.032 mg/L), and D. subspicatus was the least sensitive (>2.6 mg/L, the OTNE solubility limit). The 5th percentile hazardous concentration (HC5) derived from the cumulative probability distribution of the chronic toxicity values for the 11 species was determined to be 0.0498 mg/L (95% confidence interval 0.0097-0.1159 mg/L). A series of "leave-one-out" and "add-one-in" simulations indicated the SSD was stable and robust. Add-one-in simulations determined that the probability of finding a species sensitive enough to lower the HC5 two- or threefold was 1/504 and 1/15,300, respectively. Given the high statistical confidence in this robust SSD, an additional application factor protection is likely not necessary. Nevertheless, to further ensure the protection of the environment, an application factor of 2 to the HC5, resulting in a PNEC of 0.0249 mg/L, is recommended. When combined with environmental exposure information, the overall hazard assessment is suitable for a probabilistic environmental risk assessment. Environ Toxicol Chem 2024;43:1378-1389. © 2024 SETAC.


Subject(s)
Naphthalenes , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Risk Assessment , Naphthalenes/toxicity , Naphthalenes/chemistry , Daphnia/drug effects , Perfume/toxicity , Toxicity Tests, Chronic , Chironomidae/drug effects , Zebrafish , Cladocera/drug effects
4.
Chemosphere ; 359: 142149, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685334

ABSTRACT

Global climate change as well as human activities have been reported to increase the frequency and severity of both salinization and harmful algal blooms (HABs) in many freshwater systems, but their co-effect on benthic invertebrates has rarely been studied. This study simultaneously examined the joint toxicity of salinity and different cyanobacterial diets on the behavior, development, select biomarkers, and partial life cycle of Chironomus pallidivittatus (Diptera). High concentrations of salts (e.g., 1 g/L Ca2+ and Mg2+) and toxic Microcystis had synergistic toxicity, inhibiting development, burrowing ability and causing high mortality of C. pallidivittatus, especially for the Mg2+ treatment, which caused around 90% death. Low Ca2+ concentration (e.g., 0.01 g/L) promoted larval burrowing ability and inhibited toxin accumulation, which increased the tolerance of Chironomus to toxic Microcystis. However, low Mg2+ concentration (e.g., 0.01 g/L) was shown to inhibit the behavior, development and increase algal toxicity to Chironomus. Toxic Microcystis resulted in microcystin (MC) accumulation, inhibited the burrowing ability of larvae, and increased the proportion of male adults (>50%). The combined toxicity level from low to high was verified by the weight of evidence and the grey TOPSIS model, which integrated five lines of evidence to increase the risk assessment accuracy and efficiency. This is the first study that provided insights into ecological risk arising from the joint effect of salinity and harmful algae on benthic organisms. We suggest that freshwater salinization and HABs should be considered together when assessing ecological threats that arise from external stress.


Subject(s)
Chironomidae , Fresh Water , Harmful Algal Bloom , Salinity , Animals , Chironomidae/drug effects , Chironomidae/physiology , Microcystis/drug effects , Microcystis/physiology , Larva/drug effects , Microcystins/toxicity , Cyanobacteria/physiology
5.
Ecotoxicol Environ Saf ; 277: 116355, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38669871

ABSTRACT

The neonicotinoid insecticide thiamethoxam (TMX) is widely used to protect crops against insect pests. Despite some desirable properties such as its low toxicity to birds and mammals, concerns have been raised about its toxicity to non-target arthropods, including freshwater insects like chironomids. Whereas multiple studies have investigated chronic effects of neonicotinoids in chironomid larvae at standardized laboratory conditions, a better understanding of their chronic toxicity under variable temperatures and exposure is needed for coherent extrapolation from the laboratory to the field. Here, we developed a quantitative mechanistic effect model for Chironomus riparius, to simulate the species' life history under dynamic temperatures and exposure concentrations of TMX. Laboratory experiments at four different temperatures (12, 15, 20, 23 °C) and TMX concentrations between 4 and 51 µg/L were used to calibrate the model. Observed concentration-dependent effects of TMX in C. riparius included slower growth, later emergence, and higher mortality rates with increasing concentrations. Furthermore, besides a typical accelerating effect on the organisms' growth and development, higher temperatures further increased the effects associated with TMX. With some data-informed modeling decisions, most prominently the inclusion of a size dependence that makes larger animals more sensitive to TMX, the model was parametrized to convincingly reproduce the data. Experiments at both a constant (20 °C) and a dynamically increasing temperature (15-23 °C) with pulsed exposure were used to validate the model. Finally, the model was used to simulate realistic exposure conditions using two reference exposure scenarios measured in Missouri and Nebraska, utilizing a moving time window (MTW) and either a constant temperature (20 °C) or the measured temperature profiles belonging to each respective scenario. Minimum exposure multiplication factors leading to a 10% effect (EP10) in the survival at pupation, i.e., the most sensitive endpoint found in this study, were 25.67 and 21.87 for the Missouri scenario and 38.58 and 44.64 for the Nebraska scenario, when using the respective temperature assumptions. While the results illustrate that the use of real temperature scenarios does not systematically modify the EPx in the same direction (making it either more or less conservative when used as a risk indicator), the advantage of this approach is that it increases the realism and thus reduces the uncertainty associated with the model predictions.


Subject(s)
Chironomidae , Insecticides , Larva , Temperature , Thiamethoxam , Animals , Thiamethoxam/toxicity , Chironomidae/drug effects , Insecticides/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Life Cycle Stages/drug effects , Neonicotinoids/toxicity
6.
Aquat Toxicol ; 235: 105822, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33823484

ABSTRACT

Unintentional environmental consequences caused by neonicotinoids reinforce the development of safer alternatives. Sulfoxaflor is considered such an alternative. However, ecological risk of sulfoxaflor remains largely unknown. Here, we investigated the acute and chronic toxicity of sulfoxaflor to a benthic invertebrate, Chironomus kiinensis. Sulfoxaflor showed lower lethality than imidacloprid to midges, with LC50 values of 84.1 (81.5-87.3), 66.3 (34.8-259), and 47.5 (29.5-306) µg/L for 96-h, 10-d, and 23-d exposures, respectively. Conversely, sulfoxaflor significantly inhibited C. kiinensis growth and emergence in chronic exposures when concentrations were above 20 µg/L. Effects on energy production were assessed through in vitro tests using mitochondria isolated from C. kiinensis. Sulfoxaflor disrupted mitochondrial state-3 respiration, meanwhile, adenosine triphosphatase (ATPase) activity and adenosine triphosphate (ATP) production were both inhibited in a dose-dependent manner. The observed mitochondrial dysfunction may be related to the decreased organismal growth and emergence, which could further influence biodiversity. Interestingly, sulfoxaflor uptake in C. kiinensis was detected even after emergence, implying its potential to be transported along food webs and among environmental compartments. This study provides thorough investigations on the toxicity of an emerging neonicotinoid alternative to Chironomidae. Data derived from the current study are useful to inform future ecological risk assessment and benefit problem-solving to the overall agriculture-environment nexus.


Subject(s)
Chironomidae/physiology , Insecticides/toxicity , Neonicotinoids/toxicity , Pyridines/toxicity , Sulfur Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chironomidae/drug effects , Invertebrates/drug effects , Mitochondria , Nitro Compounds , Risk Assessment
7.
Mol Ecol Resour ; 21(6): 1996-2012, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33710757

ABSTRACT

Chironomidae species are universally used for studying the impact of pollutants in aquatic systems. The nonbiting midge Propsilocerus akamusi is often found in urban streams and is suitable for use as a toxicological bioindicator. However, few studies have previously examined metal stress in this species. We sequenced the genome of this urban midge to address this question. Here, we present the first chromosome-level genome of P. akamusi, obtained from Illumina short-read and PacBio long-read sequences with Hi-C technology. The size of the very small assembled genome was 85.83 Mb with a contig N50 of 6.2 Mb and a scaffold N50 of 26.1 Mb. This assembly revealed significant expansion of haemoglobin (Hb) genes, some of which formed large tandem repeats. Transcriptomic studies for copper tolerance identified four genes in the tandem array that were highly expressed, all of which presented intron loss. This characteristic might highlight the potential role of Hb genes in copper tolerance. Additionally, detoxification genes, chemosensory genes and heat shock protein genes of this midge were identified, some of which are associated with metal stress. The high-quality assembled genome of P. akamusi and the transcriptomic analyses provide new insight into the molecular mechanisms of heavy metal stress. Our comparison of the P. akamusi genome with other dipteran genomes provides valuable resources for understanding the evolutionary history, genetics, and ecology of this species as well as those of other midges.


Subject(s)
Chironomidae , Genome, Insect , Metals, Heavy , Animals , Chironomidae/drug effects , Chironomidae/genetics , Chromosomes, Insect , Metals, Heavy/toxicity , Transcriptome
8.
Aquat Toxicol ; 233: 105783, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33662881

ABSTRACT

Pesticides occur in the environment as mixtures, yet the joint toxicity of pesticide mixtures remains largely under-explored and is usually overlooked in ecological risk assessment. In the current study, joint toxicity of a neonicotinoid insecticide (imidacloprid, IMI) and a strobilurin fungicide (azoxystrobin, AZO) was investigated with Chironomus dilutus over a wide range of concentrations and at different effect levels (organism, cell, and gene levels). The two pesticides, both individually and in combination, were found to induce oxidative stress and cause lethality in C. dilutus. Median lethal concentrations for IMI and AZO were 3.98 ± 1.17 and 52.9 ± 1.1 µg/L, respectively. Mixtures of the two pesticides presented synergetic effects at environmentally relevant concentrations whilst antagonistic effects at high concentrations, showing concentration-dependent joint toxicity. Investigation on the expressions of 12 genes (cyt b, coi, cox1, cyp4, cyp12m1, cyp9au1, cyp6fv1, cyp315, gst, Zn/Cu-sod, Mn-sod, and cat) revealed that the two pesticides impaired mitochondrial respiration, detoxification, and antioxidant system of C. dilutus, and the joint effects of the two pesticides were likely due to an interplay between their respective influences on these physiological processes. Collectively, the synergistic effects of the two pesticides at environmentally relevant concentrations highlight the importance to incorporate combined toxicity studies into ecological risk assessment of pesticides.


Subject(s)
Chironomidae/drug effects , Gene Expression/drug effects , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Pesticides/toxicity , Pyrimidines/toxicity , Strobilurins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chironomidae/cytology , Chironomidae/genetics , Drug Synergism , Hydrogen Peroxide/metabolism , Lethal Dose 50 , Malondialdehyde/metabolism , Models, Theoretical
9.
Ecotoxicol Environ Saf ; 211: 111953, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33482495

ABSTRACT

In-vitro effects of sub-lethal concentrations of malathion, phenanthrene (Phe) and cadmium (Cd) were tested on Chironomus sancticaroli larvae in acute bioassays by measuring biochemical and molecular parameters. Malathion was evaluated at 0.001, 0.0564 and 0.1006 mg L-1; Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 0.001, 3.2 and 7.4 mg L-1. The recovery test carried out at the highest concentration of each compound showed that survival of larvae exposed to Phe ranged from 4% to 5%, while the effects of malathion and Cd were irreversible, not allowing the emergence of adults. Results showed that malathion and Cd inhibited AChE, EST-α and ES-ß activities at the two highest concentrations. Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 3.2 and 7.4 mg L-1 inhibited glutathione S-transferase activity. Oxidative stress was exclusively induced by the lowest concentration of malathion considering SOD activity once CAT was unaffected by the stressors. Lipid peroxidation was registered exclusively by malathion at the two highest concentrations, and total hemoglobin content was only reduced by Cd at the two highest concentrations. The relationship among biochemical results, examined using the PCA, evidenced that malathion and Cd concentrations were clustered into two groups, while Phe only formed one group. Four hemoglobin genes of C. sancticaroli were tested for the first time in this species, with Hemoglobin-C being upregulated by malathion. The toxicity ranking was malathion > Phe > Cd, while biochemical and molecular results showed the order malathion > Cd > Phe. Our results highlight the importance of combining different markers to understand the effects of the diverse compounds in aquatic organisms.


Subject(s)
Chironomidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Cadmium/toxicity , Larva/drug effects , Lipid Peroxidation , Malathion/toxicity , Oxidative Stress/drug effects , Phenanthrenes/toxicity
10.
Ecotoxicol Environ Saf ; 209: 111778, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33338803

ABSTRACT

Increased use of pesticides in conventional agriculture implies potential risks to the environment. In aquatic ecosystems, benthic organisms may be exposed to pesticides via contaminated water and sediment, leading to several potential cascading effects on the food web. The aim of this study was to assess the functional implications of environmental realistic concentrations of the herbicide 2,4-D and the insecticide fipronil (alone and in combination) to the native tropical chironomid Chironomus sancticaroli. These two pesticides are widely applied to different crops and have frequently been detected (together) in surface water bodies in Brazil and elsewhere. Commercial products containing fipronil (Regent® 800WG) and 2,4-D (DMA® 806BR) were evaluated in 8-day toxicity tests for their effects on larval survival, growth (body length and biomass), head capsule width, development, and mentum deformities. Fipronil decreased the larval survival at the highest test concentration and the effective concentrations (EC) after eight days of exposure were: EC10 = 0.48 µg L-1 (0.395-0.565), EC20 = 1.06 µg L-1 (0.607-1.513), and EC50 = 3.70 µg L-1 (1.664-5.736). All sublethal test concentrations of fipronil decreased the larval growth, causing reductions in biomass up to 72%. The two highest test concentrations of fipronil decreased the head capsule width and after exposure to 3.7 µg fipronil L-1, only half of the larvae reached the fourth instar. The incidence of deformities was increased by fipronil in a concentration dependent manner with an increase ranging from 23% to 75%. The highest test concentration of 2.4-D (426 µg L-1) decreased the head capsule width, but larval development was unaffected at all concentrations evaluated. In the mixture tests, antagonism was observed at lower fipronil concentrations and synergism at higher fipronil concentrations for growth. The incidence of deformities rose with increasing fipronil concentrations. The results showed that environmental realistic concentrations of fipronil may have serious ecological implications for C. sancticaroli populations and that a mixture with the herbicide 2,4-D can have synergistic effects, potentiating the risks to the aquatic ecosystem.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Chironomidae/drug effects , Pesticides/toxicity , Pyrazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brazil , Chironomidae/growth & development , Ecosystem , Insecticides , Larva , Toxicity Tests , Water Pollution
11.
Aquat Toxicol ; 230: 105701, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33249296

ABSTRACT

Neonicotinoids are neuroactive insecticides commonly detected in freshwater ecosystems. Recent studies have indicated that these compounds are markedly toxic to Chironomidae, a widespread family of ecologically important aquatic insects. However, despite their sensitivity, the pharmacological mechanisms driving neonicotinoid toxicity have yet to be characterized in these insect species. Here, we used a combination of saturation and competition binding studies to characterize neonicotinoid binding properties to nicotinic acetylcholine receptors (nAChR) in two different Chironomidae (Chironomus riparius and Chironomus dilutus) at two different life stages (larval and adult). Using radiolabeled imidacloprid ([3H]-IMI), we characterized and compared receptor density (Bmax), imidacloprid binding affinity (KD), and receptor binding affinity (Ki) to three different neonicotinoid competitors (imidacloprid, clothianidin, and thiamethoxam). We then compared receptor density and binding affinity parameters derived for Chironomidae to data previously generated for other dipterans and agricultural pests. We found that there were limited differences in neonicotinoid binding between C. riparius and C. dilutus, with both organisms demonstrating high affinities for imidacloprid (KD = 0.22-0.87 nM) and high receptor densities (Bmax = 0.92-6.53 pmol/mg). However, there were significant differences between life-stages, with larvae expressing higher densities of nicotinic acetylcholine receptors and higher imidacloprid affinities than adults. Moreover, there were compound-specific differences in receptor affinity, with larval stages displaying relative affinities (Ki) that generally correlated with acute neonicotinoid toxicity (e.g. clothianidin ≥ imidacloprid >>> thiamethoxam). Finally, compared to other dipterans and agricultural pests, Chironomidae display very high densities of high affinity nicotinic acetylcholine receptors, which likely contribute to their sensitivity. Results indicated that receptor-level differences in neonicotinoid binding may be responsible for ecotoxicological differences amongst distinct insect species, and they likely play a role in life stage-, and compound-level toxicity differences previously observed for Chironomidae. Overall, this study highlights the value of understanding the toxicological mechanisms of action of neonicotinoids in sensitive, non-target aquatic insects, to better predict adverse effects associated with unintentional neonicotinoid exposure.


Subject(s)
Chironomidae/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Receptors, Nicotinic/metabolism , Water Pollutants, Chemical/toxicity , Animals , Binding, Competitive , Chironomidae/metabolism , Ecosystem , Larva/drug effects , Larva/metabolism , Protein Binding
12.
Environ Toxicol Pharmacol ; 81: 103537, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33157253

ABSTRACT

The concern about pharmaceuticals has been increased over the last decade due to their burgeoning consumption. Ibuprofen has an extensive presence in surface water with risks for the aquatic biota. This study focuses on the effects of ibuprofen at environmental concentrations on the survival, transcriptional level, and enzymatic activity for 24, 96 h on Chironomus riparius. Ibuprofen developed a substantial effect on survival by all the conditions. mRNA levels of EcR, Dronc, and Met (endocrine system), hsp70, hsp24, and hsp27 (stress response), and Proph and Def (immune system) were modified, joined to increased GST and PO activity. The results confirmed alterations on the development of C. riparius, as well as two essential mechanisms, involved in protection against external toxicological challenge. Ibuprofen poses an incipient risk to C. riparius and could at an organismal level by compromising their survival, development, and ability to respond to adverse conditions on the future populations.


Subject(s)
Chironomidae/drug effects , Ibuprofen/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chironomidae/genetics , Chironomidae/metabolism , Gene Expression Regulation/drug effects , Glutathione Transferase/metabolism , Heat-Shock Proteins/genetics , Insect Proteins/genetics , Monophenol Monooxygenase/metabolism
13.
Aquat Toxicol ; 228: 105618, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32937231

ABSTRACT

Bifenthrin is a second generation synthetic pyrethroid insecticide that is widely used in Australia and worldwide. It is frequently found in urban freshwater sediments at concentrations likely to impact biota as it is highly toxic to fish and macroinvertebrates, such as chironomids. Our main goal was to evaluate if oxidative stress and hydrolase enzymes are useful biomarkers of effect of synthetic pyrethroids exposure under different scenarios. Chironomus tepperi larvae (5 days old) were exposed to sub-lethal sediment concentrations of bifenthrin for 5 days under controlled laboratory conditions. A field-based microcosm exposure with bifenthrin-spiked sediments (using the same concentrations as the laboratory exposure) was carried out at a clean field site for four weeks to allow for colonization and development of resident chironomid larvae. At the end of both experiments, Chironomus larvae (C. tepperi in the laboratory exposures and C. oppositus in the microcosm exposures) were collected and oxidative stress enzymes (Glutathione-s-Transferase, Glutathione Reductase and Glutathione Peroxidase) and hydrolase enzymes (Acetylcholinesterase and Carboxylesterase) were measured. Only the Glutathione Peroxidase activity was significantly impacted in larvae from the laboratory exposure. On the contrary, significant changes were observed in all the measured enzymes from the field-based microcosm exposure. This is likely because exposure was throughout the whole life cycle, from egg mass to fourth instar, showing a more realistic exposure scenario. Furthermore, this is the first time that changes in oxidative stress and hydrolase enzymes have been shown to occur in Australian non-biting midges exposed under field-based microcosm conditions. Thus, this study demonstrated the usefulness of these enzymes as biomarkers of effect following bifenthrin exposure in microcosms. It also highlights the importance of using a range of different biochemical endpoints to get a more holistic understanding of pesticide effects and the pathways involved.


Subject(s)
Biological Monitoring/methods , Chironomidae/drug effects , Larva/drug effects , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Animals , Australia , Biomarkers/metabolism , Chironomidae/enzymology , Geologic Sediments/chemistry , Glutathione Transferase/metabolism , Larva/enzymology , Life Cycle Stages , Oxidative Stress/drug effects
14.
Ecotoxicol Environ Saf ; 206: 111199, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32889307

ABSTRACT

Living organisms are exposed to mixtures of pollutants in the wild. Inland aquatic ecosystems contain many compounds from different sources that pollute the water column and the sediment. However, majority of toxicological research is focused on the effects of single exposures to toxicants. Furthermore, studies have been principally oriented toward ecologically relevant effects of intoxication, and lack an analysis of the cellular and molecular mechanisms involved in the response to toxicants. Effects of single, binary, and ternary mixtures of three compounds, bisphenol A, octocrylene, and 2'-ethylhexyl 4- (dimethylamino)benzoate, were assessed using a Real-Time PCR array. Forty genes, and additional six reference genes, were included in the array. The genes were selected based on their association with hormone responses, detoxification mechanisms, the stress response, DNA repair, and the immune system. The study was performed on Chironomus riparius, a benthic dipteran with an essential role in the food web. Transcriptional responses were assessed both 24 and 96 h post-exposure, to determinate short- and medium-term cellular responses. Individual fourth instar larvae were exposed to 0.1 and 1 mg/L of each of the toxic compounds and compound mixtures. A weak response was detected at 24 h, which was stronger in larvae exposed to mixtures than to individual toxicants. The response at 96 h was complex and principally involved genes related to the endocrine system, detoxification mechanisms, and the stress response. Furthermore, exposure to mixtures of compounds altered the expression patterns of an increased number of genes than did individual compound exposures, which suggested complex interactions between compounds affected the regulation of transcriptional activity. The results obtained highlight the importance of analyzing the mechanisms involved in the response to mixtures of compounds over extended periods and offer new insights into the basis of the physiological responses to pollution.


Subject(s)
Acrylates/toxicity , Benzhydryl Compounds/toxicity , Chironomidae/drug effects , Phenols/toxicity , Transcription, Genetic/drug effects , Water Pollutants, Chemical/toxicity , para-Aminobenzoates/toxicity , Animals , Chironomidae/genetics , Drug Synergism , Ecosystem , Endocrine System/drug effects , Larva/drug effects , Larva/genetics
15.
Ecotoxicol Environ Saf ; 202: 110906, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32800241

ABSTRACT

The nonsteroidal anti-inflammatory drug diclofenac (DCF) is considered a contaminant of emerging concern. DCF can co-exist with heavy metals in aquatic environments, causing unexpected risks to aquatic organisms. This study aimed to assess the combined effects of DCF and cadmium (Cd) at environmentally relevant concentrations on the bioconcentration and status of oxidative stress and detoxification in Chironomus riparius larvae. The larvae were exposed to DCF (2 and 20 µg L-1) and Cd (5 and 50 µg L-1) alone or in mixtures for 48 h. The combined exposure to DCF and Cd was found to reciprocally facilitate the accumulation of each compound in larvae compared with single exposures. As indicated by the antioxidant enzyme activities, reduced glutathione levels, and malondialdehyde contents, the low concentration of the mixture (2 µg L-1 DCF + 5 µg L-1 Cd) did not alter the oxidative stress status in larvae, while the high concentration of the mixture (20 µg L-1 DCF + 50 µg L-1 Cd) induced stronger oxidative damage to larvae compared with single exposures. The expression levels of eight genes (CuZnSOD, MnSOD, CAT, GSTd3, GSTe1, GSTs4, CYP4G, and CYP9AT2) significantly decreased due to the high concentration of the mixture compared with single exposures in most cases. Overall, the results suggest that the mixture of DCF and Cd might exert greater ecological risks to aquatic insects compared with their individual compounds.


Subject(s)
Cadmium/toxicity , Chironomidae/physiology , Diclofenac/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cadmium/metabolism , Chironomidae/drug effects , Diclofenac/metabolism , Inactivation, Metabolic/drug effects , Larva/drug effects , Malondialdehyde/metabolism , Metals, Heavy/metabolism , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/metabolism
16.
Aquat Toxicol ; 227: 105593, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32861021

ABSTRACT

Along with traditional ecotoxicological approaches in model organisms, toxicological studies in non-model organisms are being taken into consideration in order to complement them and contribute to more robust approaches. This allows us to figure out the complexity of the exposures involved in natural ecosystems. In this context, in the present research we have used the model species Chironomus riparius (Chironomidae, Diptera) and the non-model species Prodiamesa olivacea (Chironomidae, Diptera) to assess the aquatic toxic effects of acute 4-h and 24-h exposures to 1 µgL-1 of three common environmental pollutants: butyl benzyl phthalate (BBP), bisphenol A (BPA), and benzophenone 3 (BP3). Individuals of both species were collected from a contaminated river (Sar) in Galicia (Spain). Regarding Chironomus, there are four OECD standardized tests for the evaluation of water and sediment toxicity, in which different species in this genus can be used to assess classical toxicity parameters such as survival, immobilization, reproduction, and development. In contrast, Prodiamesa is rarely used in toxicity studies, even though it is an interesting toxicological species because it shares habitats with Chironomus but requires less extreme conditions (e.g., contamination) and higher oxygen levels. These different requirements are particularly interesting in assessing the different responses of both species to pollutant exposure. Quantitative real-time PCR was used to evaluate the transcriptional changes caused by xenobiotics in different genes of interest. Since information about P. olivacea in genomic databases is scarce, its transcriptome was obtained using de novo RNAseq. Genes involved in biotransformation pathways and the oxidative stress response (MnSOD, CAT, PHGPx, Cyp4g15, Cyp6a14-like and Cyp6a2-like) were de novo identified in this species. Our results show differential toxic responses depending on the species and the xenobiotic, being P. olivacea the dipteran that showed the most severe effects in most of the studied biomarker genes. This work represents a multi-species approach that allows us to deepen in the toxicity of BBP, BPA, and BP3 at the molecular level. Besides, it provides an assessment of the tolerance/sensitivity of natural populations of model and non-model insect species chronically exposed to complex mixtures of pollutants in natural scenarios. These findings may have important implications for understanding the adverse biological effects of xenobiotics on P. olivacea, providing new sensitive biomarkers of exposure to BBP, BPA, and BP3. It also highlights the suitability of Prodiamesa for ecotoxicological risk assessment, especially in aquatic ecosystems.


Subject(s)
Biomarkers/metabolism , Chironomidae/physiology , Environmental Biomarkers , Water Pollutants, Chemical/toxicity , Animals , Benzhydryl Compounds , Benzophenones , Chironomidae/drug effects , Ecosystem , Larva/drug effects , Phenols , Phthalic Acids , Rivers , Sentinel Species , Xenobiotics/metabolism
17.
Chemosphere ; 259: 127456, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32593829

ABSTRACT

Secondary microplastics (MP) produced by fragmentation of plastic in the environment or as a result of human activities can easily be taken up by organisms. The harmful effects of MP depend on e.g., the type, dimensions, sorption capacity and concentration of MP. In this study the ingestion of virgin irregularly-shaped polyamide microplastics (PA-MP; up to180 µm) by two different species was evaluated: 3rd - 4th instar larvae of midge Chironomus riparius and adult fish Danio rerio. More specifically, in the case of C. riparius larvae their feeding strategy, i.e. the ability to differentiate between food and non-food material (PA-MP) and the impact of pseudo-satiation by PA-MP on larval growth, development and emergence was evaluated. Two feeding regimes (with and without food supply) and two PA-MP concentrations (100 mg kg-1 and 1000 mg kg-1) were applied. Fish were exposed to two PA-MP concentrations (30 and 330 mg L-1) for 48 h followed by 48 h of depuration. The fish were fed during both periods. Both, chironomid larvae and adult zebrafish actively ingested PA-MP. Remarkably more PA-MP was ingested when larvae were not fed during the exposure to PA-MP. In the case of fish, the ingested particles were effectively evacuated from the gastrointestinal tract. Even the highest PA-MP concentrations did not cause obvious harmful effects to either species. The obtained data are informative for risk evaluation of PA-MP as polyamide is registered in the database of the European Chemicals Agency (ECHA) in the framework of the EU's REACH (Registration, Evaluation, Authorization & Restriction of Chemicals) regulation.


Subject(s)
Chironomidae/physiology , Microplastics/analysis , Water Pollutants, Chemical/analysis , Zebrafish/physiology , Animals , Chironomidae/drug effects , Eating , Humans , Larva/drug effects , Nylons , Plastics/pharmacology
18.
Chemosphere ; 256: 127171, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32470743

ABSTRACT

Freshwater ecosystems are vulnerable to residual concentrations of chemical agents from anthropogenic activities, and the real impacts of such compounds can only be evaluated accurately using ecotoxicological tests. The assessment of ecotoxicological effects of peracetic acid (PAA) and the active chlorine of calcium hypochlorite (Ca(ClO)2) on the insect Chironomus xanthus Meigen (Diptera: Chironomidae) is highly relevant as there are few reports on its effects in fresh water ecosystems. To our best knowledge, this is the first study to assess the chronic toxicity of the compounds to C. xanthus. The toxicity bioassays for C. xanthus included the acute effect (CL50) and the chronic effects based on body length, head width, and cumulative emergence. The results obtained in the acute effect tests indicated that the active chlorine of Ca(ClO)2 is 14 fold more toxic than PAA to C. xanthus. In sublethal evaluations, the active chlorine of Ca(ClO)2 presented higher toxicity than PAA in terms of percentage emergence, body development, and head width. In general, the results showed lower PAA toxicity relative to the active chlorine of Ca(ClO)2, demonstrating that PAA is a promising substitute for chlorinated disinfectants. In addition, the study facilitates the establishment of reference values for the safe release of effluents treated with PAA into water bodies.


Subject(s)
Calcium Compounds/toxicity , Chironomidae/drug effects , Chlorine/toxicity , Disinfectants/toxicity , Peracetic Acid/toxicity , Animals , Chlorides , Ecosystem , Ecotoxicology/methods , Fresh Water/chemistry , Halogenation
19.
Ecotoxicol Environ Saf ; 197: 110602, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32315785

ABSTRACT

There is much interest in converting natural nanoclay into modified forms for a variety of applications. Aquatic organisms have been exposed to natural nanoclay throughout their entire evolutionary history, but concerns have been raised about the effects of modified nanoclay on aquatic organisms. We investigated the potential toxicity of a natural nanoclay (Na+ montmorillonite) and two modified nanoclays (Cloisite® 30B and NovaclayTM) on survivorship and body growth of Daphnia magna and Chironomus dilutus. Natural nanoclay had no harmful effect on C. dilutus but reduced the survival (~1mgL-1) and body growth (~100 mgL-1) of D. magna. NovaclayTM had no harmful effects on C. dilutus or the body growth of D. magna but an intermediate concentration (1 mgL-1) caused a stronger reduction in D. magna survival during chronic exposure than did natural nanoclay. Cloisite® 30B adversely affected D. magna survival at concentrations as low as 0.01 mgL-1 and nearly all D. magna died when exposed to concentrations of Cloisite® 30B that exceeded 10 mgL-1 during acute exposure and 1 mgL-1 during chronic exposure. Though Cloisite® 30B appeared to have no effect on the body growth of surviving D. magna, Cloisite® 30B reduced C. dilutus body growth (100 mgL-1). Cloisite® 30B likely has higher toxic effects due to the presence of quaternary ammonium compounds and/or particle stability. Our work demonstrates that natural nanoclay has harmful effects on aquatic animals and that the different ways of converting natural nanoclay into different types of modified nanoclays augments the toxic effect of nanoclay to differing degrees.


Subject(s)
Clay , Nanoparticles/toxicity , Animals , Bentonite , Chironomidae/drug effects , Clay/chemistry , Daphnia/drug effects , Quaternary Ammonium Compounds/toxicity
20.
Chemosphere ; 254: 126746, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32339800

ABSTRACT

A variety of chemicals are capable of provoking mitochondrial dysfunction and thereby contribute to metabolic disorder related effects in wildlife and human. For better identifying new mitochondrial toxicants and assessing mitochondria-related risk, an in-depth understanding of toxic mechanisms and biomarkers should be attained. In the current study, a representative mitotoxicant, azoxystrobin, was assessed for lethal and sublethal outcomes in Chironomus dilutus after 96-h exposure and the toxic mechanism was explored. Global transcriptomic profiles by RNA-sequencing revealed that ampk, acc1, atp2a, gsk3b, pi3k, fak, atr, chk1, and map3k5 were the key genes which involved in the toxic action of azoxystrobin and could serve as potential molecular biomarkers. A major network of common toxicity pathways was then developed for mitotoxicants towards aquatic insects. In particular, calcium ion-PI3K/AKT and cAMP-AMPK-lethality pathways were demonstrated, in addition to the well-known mitochondrial electron transfer-oxidative damage-apoptosis pathway. These analyses could help developing adverse outcome pathways that integrate toxicological information at various levels and support more effective risk assessment and management of mitotoxicants.


Subject(s)
Chironomidae/physiology , Hazardous Substances/toxicity , Mitochondria/physiology , Oxidative Stress/physiology , Animals , Biomarkers/metabolism , Chironomidae/drug effects , Hazardous Substances/metabolism , Humans , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pyrimidines , Strobilurins , Toxicity Tests , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...