Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 738
Filter
1.
PLoS One ; 19(5): e0302028, 2024.
Article in English | MEDLINE | ID: mdl-38718094

ABSTRACT

Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.


Subject(s)
Chiroptera , Predatory Behavior , Spiders , Animals , Chiroptera/parasitology , Chiroptera/physiology , Cattle , Spiders/physiology , Feeding Behavior , Seasons , Diet , Diptera/physiology , Belgium , Ecosystem
2.
Vet Parasitol Reg Stud Reports ; 51: 101031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772647

ABSTRACT

The Mexican free-tailed bat (Tadarida brasiliensis) is one of the most abundant mammals in North America. Mexican free-tailed bats have a wide geographic range stretching from northern South America to the western United States. Bats are theorized to be the original hosts for Trypanosoma cruzi -the causative agent of Chagas disease- and can serve as a source of infection to triatomine insect vectors that feed upon them. Chagas disease is a neglected tropical disease across the Americas where triatomines are present, including the southern United States, where Texas reports this highest number of locally-acquired human cases. To learn more about the role of bats in the ecology of Chagas disease in Texas, we surveyed a colony of Mexican free-tailed bats from Brazos County, Texas, for T. cruzi using carcasses salvaged after an extreme weather event. A total of 283 Mexican free-tailed bats collected in February 2021 were dissected and DNA from the hearts and kidneys was used for T. cruzi detection via qPCR. None of the bat hearts or kidneys tested positive for T. cruzi; this sample size affords 95% confidence that the true prevalence of T. cruzi in this population does not exceed 1%. Future sampling of multiple bat species as well as migrant and resident colonies of Mexican free-tailed bats across different times of the year over a broader geographic range would be useful in learning more about the role of bats in the ecology of Chagas disease in Texas.


Subject(s)
Chagas Disease , Chiroptera , Trypanosoma cruzi , Animals , Chiroptera/parasitology , Texas/epidemiology , Trypanosoma cruzi/isolation & purification , Chagas Disease/veterinary , Chagas Disease/epidemiology , Chagas Disease/parasitology , Male , Female
3.
Syst Parasitol ; 101(4): 43, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805139

ABSTRACT

Ochoterenatrema Caballero, 1943 is a genus of lecithodendriid digeneans that prior to this study included 8 species parasitic in bats in the Western Hemisphere. Species of Ochoterenatrema possess a unique morphological feature in form of the pseudogonotyl on the sinistral side of the ventral sucker. In this study, we describe 2 new species of Ochoterenatrema from bats in Ecuador. The new species are readily differentiated from their congeners by a combination of morphological characters, including the distribution of vitelline follicles, length of oesophagus, sucker ratio and the body shape, among other features. We have generated partial nuclear 28S rDNA and mitochondrial cox1 gene DNA sequences from both new species. The newly obtained sequences were used to differentiate among species and study the phylogenetic interrelationships among Ochoterenatrema spp. The internal topology of the clade was weakly supported, although the cox1 tree was much better resolved than the 28S tree. Comparison of sequences revealed 0-1.2% interspecific divergence in 28S and 3.3-20.5% interspecific divergence in cox1 among Ochoterenatrema spp. The new findings demonstrate that bats in South America likely harbor multiple additional undescribed species of Ochoterenatrema. More extensive sampling from broader geographic and host ranges, especially in North America, should allow for a better understanding of the evolution of host associations and morphological traits of this lineage of lecithodendriid digeneans.


Subject(s)
Chiroptera , Phylogeny , RNA, Ribosomal, 28S , Species Specificity , Trematoda , Animals , Chiroptera/parasitology , Trematoda/classification , Trematoda/genetics , Trematoda/anatomy & histology , RNA, Ribosomal, 28S/genetics , Ecuador
4.
Parasitol Res ; 123(5): 223, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805058

ABSTRACT

The primarily bat-associated argasid tick, Secretargas transgariepinus (White, 1846), is a member of the Afrotropical and southern Palaearctic fauna. Probably because of its secretive life style, little is known about this species and records of its collection are scant. Based on morphological revisions of the available specimens, we report new Middle Eastern records for this tick species that had been misidentified as other bat-associated argasid taxa. These specimens are larvae from three localities, and represent the first records of S. transgariepinus from two countries: one larva from Sabratha (Libya) was collected from an unidentified bat species (possibly Eptesicus isabellinus), seven larvae from Azraq-Shishan (Jordan), and 78 larvae from Shamwari (Jordan) were all collected from Otonycteris hemprichii. Twenty larvae from Shamwari were also tested for the presence of both, viral or bacterial microorganisms by PCR. Three ticks were found to be infected with the Murid gammaherpesvirus 68 (MHV-68), one with Borrelia burgdorferi sensu lato, and four with a Rickettsia sp. closely related to Rickettsia slovaca. The findings represent a first evidence for the occurrence of these possible pathogens in S. transgariepinus.


Subject(s)
Argasidae , Chiroptera , Larva , Animals , Jordan , Larva/microbiology , Libya , Chiroptera/parasitology , Argasidae/microbiology , Polymerase Chain Reaction
5.
Acta Trop ; 254: 107186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513912

ABSTRACT

Bats stand as one of the most diverse groups in the animal kingdom and are key players in the global transmission of emerging pathogens. However, their role in transmitting Enterocytozoon bieneusi and Cryptosporidium spp. remains unclear. This study aimed to evaluate the occurrence and genetic diversity of the two pathogens in fruit bats (Rousettus leschenaultii) in Hainan, China. Ten fresh fecal specimens of fruit bats were collected from Wanlvyuan Gardens, Haikou, China. The fecal samples were tested for E. bieneusi and Cryptosporidium spp. using Polymerase Chain Reaction (PCR) analysis and sequencing the internal transcribed spacer (ITS) region and partial small subunit of ribosomal RNA (SSU rRNA) gene, respectively. Genetic heterogeneity across Cryptosporidium spp. isolates was assessed by sequencing 4 microsatellite/minisatellite loci (MS1, MS2, MS3, and MS16). The findings showed that out of the ten specimens analyzed, 2 (20 %) and seven (70.0 %) were tested positive for E. bieneusi and Cryptosporidium spp., respectively. DNA sequence analysis revealed the presence of two novel Cryptosporidium genotypes with 94.4 to 98.6 % sequence similarity to C. andersoni, named as Cryptosporidium bat-genotype-XXI and bat-genotype-XXII. Three novel sequences of MS1, MS2 and MS16 loci identified here had 95.4 to 96.9 % similarity to the known sequences, which were deposited in the GenBank. Two genotypes of E. bieneusi were identified, including a novel genotype named HNB-I and a zoonotic genotype PigEbITS7. The discovery of these novel sequences provides meaningful data for epidemiological studies of the both pathogens. Meanwhile our results are also presented that the fruit bats infected with E. bieneusi, but not with Cryptosporidium, should be considered potential public health threats.


Subject(s)
Chiroptera , Cryptosporidiosis , Cryptosporidium , Enterocytozoon , Feces , Genotype , Microsporidiosis , Animals , Chiroptera/parasitology , Chiroptera/microbiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Cryptosporidium/genetics , Cryptosporidium/classification , Cryptosporidium/isolation & purification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/parasitology , Microsporidiosis/microbiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , Feces/parasitology , Feces/microbiology , Genetic Variation , Phylogeny , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , Polymerase Chain Reaction , DNA, Fungal/genetics , Microsatellite Repeats , DNA, Protozoan/genetics , Parks, Recreational
6.
Acta Parasitol ; 69(1): 865-873, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466509

ABSTRACT

BACKGROUND: Two new species of chiggers in the two genera (Chiroptella Vercammen-Grandjean, 1960 and Rudnicula Vercammen-Grandjean, 1964) have been described in Indonesia since 2020. The checklist of all known bat-infesting chiggers has also been compiled for Indonesia. It summarizes 16 species in 9 genera of chiggers parasitizing 12 bat species belonging to 5 families collected on 8 Indonesian islands. Nine specimens collected in 2020 on Nusa Penida Island were not included in the checklist because of their uncertain taxonomy. In the current paper, we resolve the taxonomy of these specimens belonging to Trombicula sensu stricto group. We also revise the existing characters of this group and provide new characters helping with the clear definition of this taxa. METHODS: Hosts and chiggers were captured in February 2020 in Nusa Penida Islands in Indonesia using standard bat-capturing and parasite-collecting methods. For the specimens examined in this study were provided drawings, measurements, and microscopy images. This type material is deposited in the Slovak and Czech National museums. RESULTS: In the paper, we describe a new species parasitizing diadem leaf-nosed bat in the Goa Peteng cave on Nusa Penida Island (Lesser Sunda Islands, East Indonesia). This new species differs from all related species by the presence of a very long tarsala I (S1). A key to the larvae of all seven known Trombicula s. s. species is provided. The differentiation of Trombicula s. s. group is based on leg segmentation fsp = 6.6.6, rugose scutum with complete AM, AL and PL setation, and fT = 5B, 5BN or 4B2N. CONCLUSION: A new species within the genus Trombicula, group minor has been described. The new species also increases the number of known chiggers in Indonesia and the number of species parasitizing the host species Hipposideros diadema. Trombicula s. s. has also been revised and more clearly defined.


Subject(s)
Trombiculidae , Animals , Indonesia , Trombiculidae/classification , Trombiculidae/anatomy & histology , Chiroptera/parasitology , Female , Male
7.
Infect Genet Evol ; 118: 105563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301855

ABSTRACT

Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.


Subject(s)
Chagas Disease , Chiroptera , Leishmania infantum , Trypanosoma cruzi , Animals , Humans , Chiroptera/parasitology , Brazil/epidemiology , Trypanosoma cruzi/genetics , Chagas Disease/epidemiology , Chagas Disease/veterinary , Chagas Disease/parasitology , Mammals
8.
Zootaxa ; 5397(3): 301-341, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38221200

ABSTRACT

A parasite-host, host-parasite and distribution-based checklist of helminths found in bats (Chiroptera) of North America north of Mexico is presented. The parasite-host checklist includes a total of 93 species (including records without a species identification) of helminth parasites reported in the literature from 30 species of bats. These include 54 trematodes, 11 cestodes, and 28 nematodes. Each helminth species is listed under its most current accepted name, with all known synonyms, distribution by state/province, and references for each geographic location. Lists of helminths reported from individual species of bats as well as states of the United States and provinces/territories of Canada are also provided. The following new combinations are proposed: Paralecithodendrium alaskensis (Neiland, 1962) n. comb. for Prosthodendrium alaskensis Neiland, 1962; Paralecthodendrium longiforme (Bhalerao, 1926) n. comb. for Lecithodendrium longiforme Bhalerao, 1926; and Paralecithodendrium singularium (Byrd & Macy, 1942) n. comb. for Prosthodendrium singularium Byrd & Macy, 1942. The state of knowledge of helminths of bats in North America is briefly discussed.


Subject(s)
Chiroptera , Helminths , Parasites , Trematoda , Animals , Chiroptera/parasitology , Mexico , North America
9.
Ticks Tick Borne Dis ; 15(2): 102303, 2024 03.
Article in English | MEDLINE | ID: mdl-38113807

ABSTRACT

Ticks are obligate hematophagous parasites that can transmit to vertebrate hosts several pathogens, including viruses, bacteria, protozoa and helminths. Among these agents, some Borrelia species some Borrelia species cause disease in humans and other vertebrate hosts; therefore, they have medical and veterinary health importance. To gather additional information on Borrelia species in Brazil, the current study aimed to detect the presence of these species in Ornithodoros cavernicolous ticks collected in September 2019 from cement pipes that are used by bats as shelter in a farm located in the midwestern region of Brazil. DNA samples obtained from 18 specimens of O. cavernicolous were subjected of two polymerase chain reactions, targeting a segment of the Borrelia fla B gene. Of the samples tested, only one (6 %, 1/18) showed amplification. The nucleotide sequence of the amplified DNA showed more than 97 % (293/300) identity with a sequence of a Borrelia sp. detected in blood collected from a bat from Macaregua Cave, Colombia, and more than 97 % (292/300) detected in lungs from vampire bats from northeastern Brazil. The deduced amino acid sequences were identical to each other. Phylogenetic analysis indicated that these sequences formed a group of Borrelia species (putatively associated with bats) that is closely related to sequences of Borrelia species of the Lyme borreliosis group. Further investigations should be carried out in order to determine whether the sequence of the Borrelia sp. we found belongs to a new taxon. It will also be of great importance to determine which vertebrate hosts, besides bats, O. cavernicolous ticks can parasitize in order to investigate whether the Borrelia sp. we found may be transmitted and cause disease to the other vertebrate hosts.


Subject(s)
Acari , Argasidae , Borrelia , Chiroptera , Ornithodoros , Humans , Animals , Ornithodoros/microbiology , Argasidae/genetics , Borrelia/genetics , Acari/genetics , Brazil/epidemiology , Chiroptera/parasitology , Phylogeny , DNA
10.
Ticks Tick Borne Dis ; 15(1): 102283, 2024 01.
Article in English | MEDLINE | ID: mdl-38029454

ABSTRACT

Babesia vesperuginis is an intraerythrocytic protozoan parasite that circulates among bats and ticks in many countries worldwide. However, the distribution of B. vesperuginis in the Baltic region has not been studied. A total of 86 dead bats from eight different species were collected and screened for Babesia spp. using real-time PCR. Overall, 52.3% (45/86) of the bats were found positive for Babesia spp. The prevalence of Babesia spp. in different organs varied, with the highest prevalence observed in heart tissues (37.0%) and the lowest in liver tissues (22.2%). However, the observed differences in prevalence among organs were not statistically significant. Blood samples from 125 bats of nine different species were also analyzed for Babesia spp. prevalence using real-time PCR and nested PCR. The results showed a prevalence of 35.2% and 22.4%, respectively. Moreover, 28.3% (17/60) of the examined blood samples were confirmed positive for Babesia spp. through blood smear analysis. The total of 32 partial sequences of the 18S rRNA gene derived in this study were 100% identical to B. vesperuginis sequences from GenBank. In eight species of bats, Pipistrellus nathusii, Pipistrellus pipistrellus, Pipistrellus pygmaeus, Vespertilio murinus, Eptesicus nilssonii, Eptesicus serotinus, Myotis daubentonii and Nyctalus noctula, Babesia parasites were identified. In E. nilssonii, Babesia spp. was identified for the first time.


Subject(s)
Babesia , Babesiosis , Chiroptera , Animals , Babesia/genetics , Chiroptera/parasitology , Lithuania/epidemiology , Phylogeny , Real-Time Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Babesiosis/epidemiology , Babesiosis/parasitology
11.
Acta Trop ; 251: 107113, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38157924

ABSTRACT

Bats are one of the groups of mammals with the highest number of associated Trypanosoma taxa. There are 50 Trypanosoma species and genotypes infecting more than 75 species of bats across five continents. However, in Mexico, the inventory of species of the genus Trypanosoma associated with bats is limited to only two species (Trypanosoma vespertilionis and Trypanosoma cruzi) even though 140 species of bats inhabit this country. Specifically, 91 bat species have been recorded in the state of Veracruz, but records of trypanosomatids associated with this mammalian group are absent. Due to the complex Trypanosoma-bat relationship, the high diversity of bat species in Veracruz, as well as the lack of records of trypanosomatids associated with bats for this state, the aim of this work was to analyze the diversity of species of the genus Trypanosoma and their presence from a bat community in the central area of the state of Veracruz, Mexico. During the period of January to August 2022 in the Tequecholapa Environmental Management Unit where bats were collected using mist nets and blood samples were obtained from their thumbs. We extracted genetic material and amplified a fragment of 800 bp of the 18S ribosomal gene of the genus Trypanosoma by conventional PCR. The positive amplicons were sequenced, and phylogenetic reconstruction was performed to identify the parasite species. A total of 285 bats (149♀, 136♂) belonging to 13 species from 10 genera and a single family (Phyllostomidae) were collected. Twenty-three specimens from six species tested positive for the presence of Trypanosoma dionisii, Trypanosoma sp. Neobat 4, and a potential novelty species provisionally named as Trypanosoma sp. Neobat 6. The results of the present work increase the number of species of the genus Trypanosoma infecting bats in Mexico and in the Neotropical region.


Subject(s)
Chiroptera , Trypanosoma cruzi , Trypanosoma , Animals , Chiroptera/parasitology , Phylogeny , Mexico , Trypanosoma/genetics , Trypanosoma cruzi/genetics , Base Sequence
12.
Turkiye Parazitol Derg ; 47(4): 240-243, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38149446

ABSTRACT

Objective: A total of 357 specimens belonging to nineteen species of bats collected from Bursa and Kütahya Provinces, Türkiye, were examined for mite ectoparasites. Methods: Related bat species were collected and studied about ectoparasitologically. For this purpose stereo and light microscopic methods used. Bat species, bat number, acari species, acari number and their gender, infected numbers were determined. Results: The bats were found to harbour nine acarid species: Eyndhovenia euryalis, E. myoti, Steatonyssus noctulus, Steatonyssus sp., Ixodes vespertilionis, Dermanyssus sp., Ornithonyssus desultarius, Anchystropus zelebarii and Macronyssus aristippe. Conclusion: To the best of our knowledge, this is the first report of acarids on Rhinolophus euryale and Myotis daubentoni. New area and host records are reported.


Subject(s)
Chiroptera , Mites , Ticks , Animals , Chiroptera/parasitology , Turkey
13.
Parasitol Res ; 122(12): 3121-3129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847392

ABSTRACT

Bats are hosts to a large diversity of eukaryotic protozoan blood parasites that comprise species of Trypanosoma and different haemosporidian parasite taxa and bats have played an important role in the evolutionary history of both parasite groups. However, bats in several geographical areas have not been investigated, including in Burkina Faso, where no information about malaria parasites and trypanosomes of bats exists to date.In this study, we collected data on the prevalence and the phylogenetic relationships of protozoan blood parasites in nine different bat species in Burkina Faso. Hepatocystis parasites were detected in two species of epauletted fruit bats, and a relatively high diversity of trypanosome parasites was identified in five bat species. The phylogenetic analyses recovered the trypanosome parasites of the bat species Rhinolophus alcyone and Nycteris hispida as close relatives of T. livingstonei, the trypanosome infections in Scotophilus leucogaster as closely related to the species T. vespertilionis and the trypanosomes from Pipistrellus nanulus and Epomophorus gambianus might present the species T. dionisii. These findings of the first investigation in Burkina Faso present a first snapshot of the diversity of protozoan blood parasites in bats in this country.


Subject(s)
Chiroptera , Haemosporida , Parasites , Trypanosoma , Animals , Chiroptera/parasitology , Phylogeny , Burkina Faso/epidemiology , Trypanosoma/genetics
14.
Acta Trop ; 248: 107025, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769863

ABSTRACT

A wide variety of mammals, including domestic and wild species, have been considered potential hosts and reservoirs for Leishmania. Bats have longevity, dispersal capacity, and adaptability to synotropic environments, characteristics that may favor their role in maintaining the life cycle of parasites. Therefore, the objective of this study was to carry out a worldwide systematic review of the occurrence of Leishmania species in bats, as well as to identify associations between eating habits and the type of sample collected with the occurrence of the infection. Data were obtained from a bibliographic search for studies that used molecular methods to identify parasites, employing the keywords "bats" AND "Leishmania" and their synonyms. We found 68 original studies, of which 20 were included in this review. Most studies were conducted in Brazil (60 %) and only 10 % were conducted in Old World countries. In all, 48 bat species were recorded that hosted seven Leishmania species, resulting in 62 different host-parasite interactions, and the Leishmania infantum interaction with bat species presented higher frequency. There was no significant difference between Leishmania species richness, infection percentage, and type of sample analyzed, but in general, it is observed that the use of different biological samples seems to expand the possibility of parasite detection. The patterns observed here indicate that bats can become infected with a wide variety of Leishmania species and likely play an important role in maintaining the parasite's life cycle. Thus, we suggest that studies aimed at understanding the transmission cycle of leishmaniasis include the investigation of bats as potential hosts or reservoirs of Leishmania.


Subject(s)
Chiroptera , Leishmania infantum , Leishmaniasis , Animals , Chiroptera/parasitology , Leishmaniasis/epidemiology , Mammals , Brazil/epidemiology
15.
Acta Parasitol ; 68(3): 676-682, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531008

ABSTRACT

PURPOSE: Cryptosporidiosis is a zoonotic infectious disease caused by the protozoan parasite Cryptosporidium spp., frequently found in several animal species, including bats. Several Cryptosporidium genotypes have been described in bats worldwide, suggesting that bats are infected by host-specific Cryptosporidium spp. To date, there are no published reports about Cryptosporidium spp. in bats from Colombia. Therefore, this study aimed to determine the presence and molecular diversity of Cryptosporidium spp. in Colombian bats. METHODS: A total of 63 gut samples from three bat species served for molecular detection of Cryptosporidium spp. 18S rDNA gene by qPCR. The sequenced amplicons were used in subsequent phylogenetic analyses to identify them as species or genotypes. RESULTS: Cryptosporidium spp. qPCR detection occurred in 9.5% (6/63) of bat intestines, and four sequences represented two new genotypes, called Cryptosporidium bat genotypes XIX and XX, were identified. CONCLUSIONS: This study describes the detection of two novel Cryptosporidium bat genotypes, in two species of bats from a region of Colombia, requiring further studies to determine the relationhip between Cryptosporidium and bats in Colombia.


Subject(s)
Chiroptera , Cryptosporidiosis , Cryptosporidium , Animals , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Chiroptera/parasitology , Colombia/epidemiology , Genotype , Phylogeny , Feces/parasitology
16.
Parasitol Int ; 96: 102769, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37301363

ABSTRACT

In recent years, the global pandemic of bat-associated pathogens has led to increasing attention on bat ectoparasites. Numerous studies have identified human-associated pathogens in Nycteribiidae, indicating their potential as vectors. In this study, the first complete sequencing of the mitochondrial genome of Nycteribia allotopa Speiser, 1901 was sequenced and analyzed. We also compared the mitochondrial sequences of N. allotopa with those available in the database for other Nycteribiidae species. The complete mitochondrial genome of N. allotopa was found to be 15,161 bp in size with an A + T content of 82.49%. Nucleotide polymorphism analysis of 13 protein-coding genes from five species of Nycteribiidae showed that nad6 exhibited the most significant variation, while cox1 was the most conserved. Furthermore, selection pressure analysis revealed cox1 to exhibit the strongest purifying selection, while atp8, nad2, nad4L, and nad5 showed slightly looser purifying selection. Pairwise genetic distances indicated that cox1 and cox2 were evolving comparatively slowly, whereas atp8, nad2, and nad6 were evolving comparatively quickly. Phylogenetic trees constructed using Bayesian inference and maximum likelihood methods demonstrated that all four families within the superfamily Hippoboscoidea clustered into one branch each, indicating their monophyly. N. allotopa was found to be most closely related to the same genus N. parvula. This study significantly enriches the molecular database for Nycteribiidae and provides invaluable reference data for future species identification, phylogenetic analysis, and exploration of their potential as vectors for human-associated pathogens.


Subject(s)
Chiroptera , Diptera , Genome, Mitochondrial , Animals , Humans , Diptera/genetics , Phylogeny , Chiroptera/parasitology , Bayes Theorem
17.
Parasitol Res ; 122(8): 1851-1861, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37233818

ABSTRACT

The high diversity of bats in the Neotropics is primarily associated with various ectoparasite species on their bodies. Interactions between these animals need to be comprehensively investigated at landscape scales, focusing on understanding the patterns of diversity of species. We sought to evaluate, througt bat captures and ectoparasite sampling, the determinants of the composition of ectoparasitic flies species present in bats in in the Amazon and Cerrado biomes and ecotone areas. We used a generalized dissimilarity model (GDM) to verify what factors explained the composition of ectoparasitic flies of bats using landscape metrics, geographic distance, biome, and host composition. Twenty-four bat species haboured a total of 33 species of ectoparasitic flies. Host composition was the best predictor of fly composition, followed by the environmental variables and by biome. Geographical distance presented negligible effects. Studies on large scales tend to reveal a wide diversity of ectoparasitic flies. Host composition, as the best predictor of fly composition, may be associated with interspecific characteristics among species. We recommend studies focusing on the landscape to understand better the parasitic associations of bats and their distribution across environments.


Subject(s)
Chiroptera , Diptera , Ectoparasitic Infestations , Animals , Chiroptera/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Host-Parasite Interactions , Ecosystem
18.
Parasitol Res ; 122(6): 1391-1402, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37039866

ABSTRACT

Human land use causes habitat loss and fragmentation, influencing host-parasite associations through changes in infestation rates, host mortality and possibly local extinction. Bat-ectoparasite interactions are an important host-parasite model possibly affected by such changes, as this system acts as both reservoirs and vectors of several pathogens that can infect different wild and domestic species. This study aimed to assess how the prevalence and abundance of bat ectoparasites respond to forest loss, fragmentation, and edge length. Bats and ectoparasites were sampled at twenty sites, forming a gradient of forest cover, in southwestern Brazil during two wet (2015 and 2016) and two dry (2016 and 2017) seasons. Effects of landscape metrics on host abundance as well as parasite prevalence and abundance were assessed through structural equation models. Nine host-parasite associations provided sufficient data for analyses, including one tick and eight flies on four bat species. Forest cover positively influenced the prevalence or abundance of three fly species, but negatively influenced one fly and the tick species. Prevalence or abundance responded positively to edge length for three fly species, and negatively for the tick. In turn, number of fragments influenced the prevalence or abundance of four fly species, two positively and two negatively. Our results support species-specific responses of ectoparasites to landscape features, and a tendency of host-generalist ticks to benefit from deforestation while most host-specialist flies are disadvantaged. Differences in host traits and abundance, along with parasite life cycles and environmental conditions, are possible explanations to our findings.


Subject(s)
Chiroptera , Diptera , Ticks , Animals , Humans , Chiroptera/parasitology , Forests , Ecosystem , Host-Parasite Interactions , Diptera/physiology
19.
Parasitol Res ; 122(6): 1271-1281, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004575

ABSTRACT

The soft ticks of the genus Reticulinasus Schulze, 1941 (family Argasidae Koch, 1844) are ectoparasites of the fruit bats of the Old World (Pteropodidae). Reticulinasus salahi (Hoogstraal, 1953) is the only representative of this genus that occurs in the western part of the Palaearctic. This unusual distribution reflects the distributon range of its primary host, Rousettus aegyptiacus (Geoffroy, 1810). In this contribution, we present a revised review of records of this tick that were made in two periods, 1951-1966 (records from Egypt, Israel, Jordan, Spain) and 2005-2019 (Cyprus, Iran, Oman), and additionally, we present notes, re-determinations, new records, and summary of hosts of this tick. Besides the primary host, the revised list of hosts comprises two bats (Taphozous perforatus Geoffroy, 1818, Otonycteris hemprichii Peters, 1859) and the human (Homo sapiens Linnaeus, 1758). We also tried to identify pathogens in specimens of this tick collected from R. aegyptiacus in Oman. The DNA of the Mouse herpesvirus strain 68 (MHV-68), of two bacteria, Borellia burgdorferii sensu lato, and Ehrlichia sp. almost identical (98%) with Candidatus Ehrlichia shimanensis was detected in several larvae specimens.


Subject(s)
Argasidae , Chiroptera , Ticks , Animals , Mice , Humans , Chiroptera/parasitology , Bacteria/genetics , Ehrlichia
20.
Parasitology ; 150(7): 623-630, 2023 06.
Article in English | MEDLINE | ID: mdl-36971298

ABSTRACT

In recent years, bat-associated pathogens, such as 2019 novel coronavirus, have been ravaging the world, and ectoparasites of bats have received increasing attention. Penicillidia jenynsii is a member of the family Nycteribiidae which is a group of specialized ectoparasites of bats. In this study, the complete mitochondrial genome of P. jenynsii was sequenced for the first time and a comprehensive phylogenetic analysis of the superfamily Hippoboscoidea was conducted. The complete mitochondrial genome of P. jenynsii is 16 165 base pairs (bp) in size, including 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region. The phylogenetic analysis based on 13 PCGs of the superfamily Hippoboscoidea known from the NCBI supported the monophyly of the family Nycteribiidae, and the family Nycteribiidae was a sister group with the family Streblidae. This study not only provided molecular data for the identification of P. jenynsii, but also provided a reference for the phylogenetic analysis of the superfamily Hippoboscoidea.


Subject(s)
COVID-19 , Chiroptera , Diptera , Genome, Mitochondrial , Animals , Diptera/genetics , Phylogeny , Chiroptera/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...