Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13472, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866811

ABSTRACT

Waddlia chondrophila is a possible cause of fetal death in humans. This Chlamydia-related bacterium is an emergent pathogen that causes human miscarriages and ruminant abortions, which results in financial losses. Despite the years of efforts, the underlying mechanism behind the pathogenesis of W. chondrophila is little known which hindered the development of novel treatment options. In the framework of current study, computational approaches were used to identify novel inhibitors (phytocompounds) and drug targets against W. chondrophila. At first, RNA polymerase sigma factor SigA and 3-deoxy-D-manno-octulosonic acid transferase were identified through subtractive proteomics pipeline. Afterwards, extensive docking and simulation analyses were conducted to optimize potentially novel phytocompounds by assessing their binding affinity to target proteins. A 100ns molecular dynamics simulation well complimented the compound's binding affinity and indicated strong stability of predicted compounds at the docked site. The calculation of binding free energies with MMGBSA corroborated the significant binding affinity between phytocompounds and target protein binding sites. The proposed phytocompounds may be a viable treatment option for patients infected with W. chondrophila; however, further research is required to ensure their safety.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Chlamydiales/chemistry , Chlamydiales/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Protein Binding , Drug Evaluation, Preclinical , Pharmacophore
2.
Chem Biol ; 22(9): 1217-27, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26364930

ABSTRACT

Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced cytokinetic machine collectively coordinates the invagination of the envelope has not yet been explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor points that connect the outer membrane to the peptidoglycan during constriction using the Pal-Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to the chlamydial division septum along with other components of the Pal-Tol complex. Together, our PGLS characterization and peptidoglycan-binding assays support the notion that diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate the invagination of all envelope layers with the conserved Pal-Tol complex, even during osmotically protected intracellular growth.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chlamydiales/drug effects , Chlamydiales/metabolism , Peptidoglycan/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cell Division/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Chlamydiales/chemistry , Conserved Sequence , Diaminopimelic Acid/metabolism , Lipoproteins/metabolism , Peptidoglycan/isolation & purification , Protein Binding
3.
Nat Commun ; 4: 2856, 2013.
Article in English | MEDLINE | ID: mdl-24292151

ABSTRACT

Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.


Subject(s)
Bacterial Proteins/metabolism , Chlamydiales/metabolism , Cytoskeletal Proteins/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/genetics , Cell Wall/chemistry , Cell Wall/metabolism , Cell Wall/ultrastructure , Chlamydiales/chemistry , Chlamydiales/classification , Chlamydiales/ultrastructure , Cytoskeletal Proteins/genetics , Peptidoglycan/chemistry
4.
PLoS One ; 7(1): e28605, 2012.
Article in English | MEDLINE | ID: mdl-22238579

ABSTRACT

Evidence is growing for a role of Waddlia chondrophila as an agent of adverse pregnancy outcomes in both humans and ruminants. This emerging pathogen, member of the order Chlamydiales, is also implicated in bronchiolitis and lower respiratory tract infections. Until now, the serological diagnosis of W. chondrophila infection has mainly relied on manually intensive tests including micro-immunofluorescence and Western blotting. Thus, there is an urgent need to establish reliable high throughput serological assays. Using a combined genomic and proteomic approach, we detected 57 immunogenic proteins of W. chondrophila, of which 17 were analysed by mass spectrometry. Two novel hypothetical proteins, Wim3 and Wim4, were expressed as recombinant proteins in Escherichia coli, purified and used as antigens in an ELISA test. Both proteins were recognized by sera of rabbits immunized with W. chondrophila as well as by human W. chondrophila positive sera but not by rabbit pre-immune sera nor human W. chondrophila negative sera. These results demonstrated that the approach chosen is suitable to identify immunogenic proteins that can be used to develop a serological test. This latter will be a valuable tool to further clarify the pathogenic potential of W. chondrophila.


Subject(s)
Antigens, Bacterial/analysis , Antigens, Bacterial/isolation & purification , Chlamydiales/chemistry , Chlamydiales/immunology , Animals , Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Chlamydiales/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Mass Spectrometry , Pregnancy , Proteomics , Rabbits , Serologic Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Validation Studies as Topic
6.
ISME J ; 5(2): 196-208, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20703314

ABSTRACT

Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.


Subject(s)
Biomass , Chlamydiales/chemistry , Pectobacterium carotovorum/chemistry , Spectrum Analysis, Raman , Carbohydrates/analysis , Chlamydiales/growth & development , Discriminant Analysis , Macromolecular Substances/chemistry , Nucleic Acids/analysis , Pectobacterium carotovorum/growth & development , Principal Component Analysis , Proteins/analysis
7.
Proteomics ; 10(24): 4363-76, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21136591

ABSTRACT

Chlamydiae are obligate intracellular bacteria, comprising some of the most important bacterial pathogens of animals and humans. During their unique developmental cycle they have to attach to and enter their eukaryotic host cells, a process mediated by proteins in the chlamydial outer membrane. So far the only experimental data for chlamydial outer membrane proteins are available from members of the Chlamydiaceae, a family comprising exclusively human and animal pathogens. To get further insights into the evolution of the protein composition of the chlamydial outer membrane and into host-dependent differences, we performed an extensive experimental analysis of outer membrane fractions of Protochlamydia amoebophila elementary bodies, which constitute the infectious form of this non-pathogenic member of the Chlamydiae that thrives as a symbiont in Acanthamoeba spp. We used 1-D and 2-DE in combination with MALDI-TOF, MALDI-TOF/TOF and nanoLC-ESI-MS/MS, and compared our experimental results with a previously published in silico analysis of chlamydial outer membrane proteins. This resulted in the identification of 38 proteins supported by both studies and therefore very likely to be located in the P. amoebophila outer membrane. The obtained experimental data provide the first comprehensive overview of outer membrane proteins of a chlamydial organism outside the Chlamydiaceae. They reveal both fundamental differences and convergent evolution between pathogenic and symbiotic chlamydiae.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Chlamydiales/chemistry , Proteome/chemistry , Acanthamoeba/microbiology , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/classification , Chlamydiales/ultrastructure , Life Cycle Stages , Molecular Sequence Data
8.
ISME J ; 4(11): 1366-74, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20485385

ABSTRACT

The free-living but facultatively pathogenic amoebae of the genus Acanthamoeba are frequently infected with bacterial endosymbionts that can have a profound influence on the physiology and viability of their host. Parachlamydia acanthamoebae, a chlamydial endosymbiont in acanthamoebae, is known to be either symbiotic or lytic to its host, depending on the ambient conditions, for example, temperature. Moreover, parachlamydiae can also inhibit the encystment process in Acanthamoeba, an essential survival strategy of their host for the evasion of chemotherapeutic agents, heat, desiccation and radiation. To obtain a more detailed picture of the intracellular interactions of parachlamydiae and acanthamoebae, we studied parachlamydial infection in several Acanthamoeba isolates at the proteomic level by means of two-dimensional gel electrophoresis (2DE) and mass spectrometry. We observed that P. acanthamoebae can infect all three morphological subtypes of the genus Acanthamoeba and that the proteome pattern of released P. acanthamoebae elementary bodies was always practically identical regardless of the Acanthamoeba strain infected. Moreover, by comparing proteome patterns of encysting cells from infected and uninfected Acanthamoeba cultures, it was shown that encystment is blocked by P. acanthamoebae at a very early stage. Finally, on 2D-gels of purified P. acanthamoebae from culture supernatants, a subunit of the NADH-ubiquinone oxidoreductase complex, that is, an enzyme that has been described as an indicator for bacterial virulence was identified by a mass spectrometric and bioinformatic approach.


Subject(s)
Acanthamoeba/microbiology , Bacterial Proteins/metabolism , Chlamydiales/physiology , Host-Parasite Interactions , Proteome/analysis , Protozoan Proteins/metabolism , Animals , Chlamydiales/chemistry , Chlamydiales/growth & development , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry
9.
Res Microbiol ; 153(9): 563-7, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12455703

ABSTRACT

Chlamydiales are important intracellular bacterial pathogens, causing a wide variety of diseases in vertebrates, including humans. Besides the well-known species in the family Chlamydiaceae, new chlamydial organisms have recently been discovered, forming three new families: Parachlamydiaceae, Simkaniaceae and Waddliaceae. Parachlamydia acanthamoebae and Simkania negevensis are currently investigated as emerging human respiratory pathogens. Additional chlamydial lineages have been discovered by 16S rDNA-based molecular studies, and their implication in human infections is poorly known. By using a pan-chlamydia 16S rDNA PCR, we have searched for the presence of chlamydiae in 228 clinical samples that all previously had been shown to be PCR-negative for Chlamydophila pneumoniae: 170 respiratory samples, 45 atheromatic plaques and 13 peripheral blood mononuclear cell samples. Nine respiratory samples tested positive. Sequence analysis has allowed us to assign four sequences to Chlamydophila psittaci, three sequences to Chlamydophila felis, and two sequences to two novel phylotypes belonging to the Parachlamydiaceae. These latter sequences showed similarity values of more than 93% with each other and with the P. acanthamoebae sequence, thus belonging to novel, unrecognized species. In conclusion, this report showed that a variety of non-C. pneumoniae chlamydial respiratory infection is present in humans, and that new parachlamydiae distinct from P. acanthamoebae may be detected in human clinical samples. Future studies will be of interest in order to estimate the diversity of these novel chlamydiae in both clinical and environmental samples, as well as their possible clinical implication in human and animal infections.


Subject(s)
Chlamydia Infections/microbiology , Chlamydiales/genetics , DNA, Bacterial/genetics , Adolescent , Adult , Base Sequence , Child , Child, Preschool , Chlamydiales/chemistry , Chlamydiales/classification , DNA, Bacterial/chemistry , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Humans , Infant , Male , Middle Aged , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...