Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.665
Filter
1.
PLoS One ; 19(6): e0303352, 2024.
Article in English | MEDLINE | ID: mdl-38870118

ABSTRACT

Mosquito-borne diseases pose a global health threat, with pathogens like Malaria, Dengue fever, and others transmitted by mosquitoes. Our study focuses on evaluating the toxicity of genetically engineered mosquito larvicidal algae (Chlamydomonas reinhardtii) to non-target organisms, specifically Zebrafish. We conducted a 90-day experiment, feeding Zebrafish different combinations of larvicidal algae and commercial fish feed. Statistical analysis revealed no significant differences in mortality, allergenicity, or moribundity among groups. Hematology, molecular analysis, and necropsy showed no physiological differences. Our findings indicate that the transgenic algae (TN72.cry11Ba) had no adverse effects on adult Zebrafish or their larvae. This study confirmed the safety of algae on non-target organisms, such as zebrafish.


Subject(s)
Chlamydomonas reinhardtii , Larva , Zebrafish , Animals , Chlamydomonas reinhardtii/genetics , Embryo, Nonmammalian/drug effects , Culicidae , Administration, Oral , Insecticides/toxicity
2.
Environ Int ; 189: 108813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878502

ABSTRACT

Mercury is a highly toxic trace metal that can accumulate in aquatic ecosystems and when resent at high concentrations can pose risks to both aquatic life and humans consuming contaminated fish. This research explores the use of the metalloregulatory protein MerR, known for its high affinity and selectivity toward mercury, in a novel application. Through a cell surface engineering approach, MerR was displayed on cells of green alga Chlamydomonas reinhardtii. A hydroxyproline-rich GP1 protein was used as an anchor to construct the engineered strains GP1-MerR that expresses the fluorescent protein mVenus. The surface engineered GP1-MerR strain led up to five folds higher Hg2+ accumulation compared to the WT strain at concentration range from 10-9 to 10-7 M Hg2+. The binding of Hg2+ via MerR was specific and did not get significantly affected by major freshwater water quality variables such as Ca2+ and dissolved organic matter. The presence of other trace metals (Zn2+, Cu2+, Ni2+, Pb2+, Cd2+) in a same concentration range even resulted in 30-40 % increase in the accumulated Hg. Further, the engineered cells also demonstrated the ability to accumulate Hg2+ from the water extracts of the Hg-contaminated sediment samples. These results demonstrate a novel approach utilizing the cell surface display system in C. reinhardtii for its potential application in bioremediation.


Subject(s)
Chlamydomonas reinhardtii , Mercury , Water Pollutants, Chemical , Chlamydomonas reinhardtii/metabolism , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Bacterial Proteins/metabolism , Biodegradation, Environmental , DNA-Binding Proteins
3.
Sci Rep ; 14(1): 12836, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834660

ABSTRACT

This study introduces an evaluation methodology tailored for bioreactors, with the aim of assessing the stress experienced by algae due to harmful contaminants released from antifouling (AF) paints. We present an online monitoring system equipped with an ultra-sensitive sensor that conducts non-invasive measurements of algal culture's optical density and physiological stage through chlorophyll fluorescence signals. By coupling the ultra-sensitive sensor with flash-induced chlorophyll fluorescence, we examined the dynamic fluorescence changes in the green microalga Chlamydomonas reinhardtii when exposed to biocides. Over a 24-h observation period, increasing concentrations of biocides led to a decrease in photosynthetic activity. Notably, a substantial reduction in the maximum quantum yield of primary photochemistry (FV/FM) was observed within the first hour of exposure. Subsequently, we detected a partial recovery in FV/FM; however, this recovery remained 50% lower than that of the controls. Integrating the advanced submersible sensor with fluorescence decay kinetics offered a comprehensive perspective on the dynamic alterations in algal cells under the exposure to biocides released from antifouling coatings. The analysis of fluorescence relaxation kinetics revealed a significant shortening of the fast and middle phases,  along with an increase in the duration of the slow phase, for the coating with the highest levels of biocides. Combining automated culturing and measuring methods, this approach has demonstrated its effectiveness as an ultrasensitive and non-invasive tool for monitoring the physiology of photosynthetic cultures. This is particularly valuable in the context of studying microalgae and their early responses to various environmental conditions, as well as the potential to develop an AF system with minimal harm to the environment.


Subject(s)
Bioreactors , Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Disinfectants/pharmacology , Fluorescence , Photosynthesis/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/analysis
4.
Physiol Plant ; 176(3): e14401, 2024.
Article in English | MEDLINE | ID: mdl-38899462

ABSTRACT

Metacaspases are cysteine proteases present in plants, fungi and protists. While the association of metacaspases with cell death is studied in a range of organisms, their native substrates are largely unknown. Here, we explored the in vivo proteolytic landscape of the two metacaspases, CrMCA-I and CrMCA-II, present in the green freshwater alga Chlamydomonas reinhardtii, using mass spectrometry-based degradomics approach, during control conditions and salt stress. Comparison between the cleavage events of CrMCA-I and CrMCA-II in metacaspase mutants revealed unique cleavage preferences and substrate specificity. Degradome analysis demonstrated the relevance of the predicted metacaspase substrates to the physiology of C. reinhardtii cells and its adaptation during salt stress. Functional enrichment analysis indicated an involvement of CrMCA-I in the catabolism of carboxylic acids, while CrMCA-II plays an important role in photosynthesis and translation. Altogether, our findings suggest distinct cellular functions of the two metacaspases in C. reinhardtii during salt stress response.


Subject(s)
Chlamydomonas reinhardtii , Proteolysis , Salt Stress , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/enzymology , Chlamydomonas reinhardtii/metabolism , Proteolysis/drug effects , Caspases/metabolism , Caspases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
5.
Nat Commun ; 15(1): 5211, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890314

ABSTRACT

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.


Subject(s)
Chlamydomonas reinhardtii , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Thylakoids/metabolism , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochrome b Group/metabolism , Cytochrome b Group/genetics , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Light
6.
Bioresour Technol ; 403: 130904, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801957

ABSTRACT

Chlamydomonas reinhardtii prefers ammonium (NH4+) as a nitrogen source, but its late-stage growth under high-NH4+ concentrations (0.5 âˆ¼ 1 g/L) is retarded due to medium acidification. In this study, oyster shell powders were shown to increase the tolerance of C. reinhardtii to NH4+ supplementation at 0.7 g/L in TAP medium in 1-L bubble-column bioreactors, resulting in a 22.9 % increase in biomass production, 62.1 % rise in unsaturated fatty acid accumulation, and 19.2 % improvement in harvesting efficiency. Powdered oyster shell mitigated medium acidification (pH 7.2-7.8) and provided dissolved inorganic carbon up to 8.02 × 103 µmol/L, facilitating a 76.3 % NH4+ consumption, release of up to 189 mg/L of Ca2+, a 42.1 % reduction in ζ-potential and 27.7 % increase in flocculation activity of microalgae cells. This study highlights a promising approach to utilize powdered oyster shell as a liming agent, supplement carbon source, and bio-flocculant for enhancing biomass production and microalgae harvesting in NH4+-rich environments.


Subject(s)
Ammonium Compounds , Biomass , Chlamydomonas reinhardtii , Ostreidae , Animals , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/growth & development , Animal Shells , Powders , Flocculation , Carbon , Hydrogen-Ion Concentration , Bioreactors , Nitrogen
7.
Nat Commun ; 15(1): 4437, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789432

ABSTRACT

Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.


Subject(s)
Carotenoids , Chlamydomonas reinhardtii , Energy Transfer , Chlamydomonas reinhardtii/metabolism , Carotenoids/metabolism , Carotenoids/chemistry , Thylakoids/metabolism , Photosynthesis , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/genetics , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Light , Kinetics , Chlorophyll/metabolism , Chlamydomonas/metabolism
8.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763078

ABSTRACT

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Subject(s)
Chlamydomonas reinhardtii , Light-Harvesting Protein Complexes , Osmotic Pressure , Photosystem II Protein Complex , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosynthesis/radiation effects , Light , Chlorophyll/metabolism
9.
Int J Biol Macromol ; 271(Pt 1): 132505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768911

ABSTRACT

Proteases, essential regulators of plant stress responses, remain enigmatic in their precise functional roles. By employing activity-based probes for real-time monitoring, this study aimed to delve into protease activities in Chlamydomonas reinhardtii exposed to oxidative stress induced by hydrogen peroxide. However, our work revealed that the activity-based probes strongly labelled three non-proteolytic proteins-PsbO, PsbP, and PsbQ-integral components of photosystem II's oxygen-evolving complex. Subsequent biochemical assays and mass spectrometry experiments revealed the involvement of CrCEP1, a previously uncharacterized papain-like cysteine protease, as the catalyst of this labelling reaction. Further experiments with recombinant CrCEP1 and PsbO proteins replicated the reaction in vitro. Our data unveiled that endopeptidase CrCEP1 also has transpeptidase activity, ligating probes and peptides to the N-termini of Psb proteins, thereby expanding the repertoire of its enzymatic activities. The hitherto unknown transpeptidase activity of CrCEP1, working in conjunction with its proteolytic activity, unveils putative complex and versatile roles for proteases in cellular processes during stress responses.


Subject(s)
Chlamydomonas reinhardtii , Cysteine Proteases , Cysteine Proteases/metabolism , Cysteine Proteases/chemistry , Chlamydomonas reinhardtii/enzymology , Oxidative Stress , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Plant Proteins/metabolism , Plant Proteins/chemistry , Hydrogen Peroxide/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry
10.
J Phycol ; 60(3): 755-767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738959

ABSTRACT

Samarium (Sm) is a rare-earth element recently included in the list of critical elements due to its vital role in emerging new technologies. With an increasing demand for Sm, microbial bioremediation may provide a cost-effective and a more ecologically responsible alternative to remove and recover Sm. We capitalized on a previously selected Chlamydomonas reinhardtii strain tolerant to Sm (1.33 × 10-4 M) and acidic pH and carried out settling selection to increase the Sm uptake performance. We observed a rapid response to selection in terms of cellular phenotype. Cellular size decreased and circularity increased in a stepwise manner with every cycle of selection. After four cycles of selection, the derived CSm4 strain was significantly smaller and was capable of sequestrating 41% more Sm per cell (1.7 × 10-05 ± 1.7 × 10-06 ng) and twice as much Sm in terms of wet biomass (4.0 ± 0.4 mg Sm · g-1) compared to the ancestral candidate strain. The majority (~70%) of the Sm was bioaccumulated intracellularly, near acidocalcisomes or autophagic vacuoles as per TEM-EDX microanalyses. However, Sm analyses suggest a stronger response toward bioabsorption resulting from settling selection. Despite working with Sm and pH-tolerant strains, we observed an effect on fitness and photosynthesis inhibition when the strains were grown with Sm. Our results clearly show that phenotypic selection, such as settling selection, can significantly enhance Sm uptake. Laboratory selection of microalgae for rare-earth metal bioaccumulation and sorption can be a promising biotechnological approach.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Biodegradation, Environmental , Selection, Genetic
11.
Mol Biol Cell ; 35(7): ar90, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38758663

ABSTRACT

Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on ß-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of ß-tubulin.


Subject(s)
Axoneme , Cilia , Flagella , Microtubules , Protein Processing, Post-Translational , Tubulin , Cilia/metabolism , Tubulin/metabolism , Flagella/metabolism , Axoneme/metabolism , Microtubules/metabolism , Chlamydomonas reinhardtii/metabolism , Dyneins/metabolism , Chlamydomonas/metabolism , Mutation , Axonemal Dyneins/metabolism
12.
J R Soc Interface ; 21(214): 20240046, 2024 May.
Article in English | MEDLINE | ID: mdl-38774961

ABSTRACT

Many microorganisms propel themselves through complex media by deforming their flagella. The beat is thought to emerge from interactions between forces of the surrounding fluid, the passive elastic response from deformations of the flagellum and active forces from internal molecular motors. The beat varies in response to changes in the fluid rheology, including elasticity, but there are limited data on how systematic changes in elasticity alter the beat. This work analyses a related problem with fixed-strength driving force: the emergence of beating of an elastic planar filament driven by a follower force at the tip of a viscoelastic fluid. This analysis examines how the onset of oscillations depends on the strength of the force and viscoelastic parameters. Compared to a Newtonian fluid, it takes more force to induce the instability in viscoelastic fluids, and the frequency of the oscillation is higher. The linear analysis predicts that the frequency increases with the fluid relaxation time. Using numerical simulations, the model predictions are compared with experimental data on frequency changes in the bi-flagellated alga Chlamydomonas reinhardtii. The model shows the same trends in response to changes in both fluid viscosity and Deborah number and thus provides a possible mechanistic understanding of the experimental observations.


Subject(s)
Chlamydomonas reinhardtii , Elasticity , Models, Biological , Chlamydomonas reinhardtii/physiology , Viscosity , Flagella/physiology , Rheology
13.
Elife ; 132024 May 16.
Article in English | MEDLINE | ID: mdl-38752724

ABSTRACT

Eukaryotes swim with coordinated flagellar (ciliary) beating and steer by fine-tuning the coordination. The model organism for studying flagellate motility, Chlamydomonas reinhardtii, employs synchronous, breaststroke-like flagellar beating to swim, and it modulates the beating amplitudes differentially to steer. This strategy hinges on both inherent flagellar asymmetries (e.g. different response to chemical messengers) and such asymmetries being effectively coordinated in the synchronous beating. In C. reinhardtii, the synchrony of beating is known to be supported by a mechanical connection between flagella; however, how flagellar asymmetries persist in the synchrony remains elusive. For example, it has been speculated for decades that one flagellum leads the beating, as its dynamic properties (i.e. frequency, waveform, etc.) appear to be copied by the other one. In this study, we combine experiments, computations, and modeling efforts to elucidate the roles played by each flagellum in synchronous beating. With a non-invasive technique to selectively load each flagellum, we show that the coordinated beating essentially only responds to load exerted on the cis flagellum; and that such asymmetry in response derives from a unilateral coupling between the two flagella. Our results highlight a distinct role for each flagellum in coordination and have implication for biflagellates' tactic behaviors.


Many single-cell organisms use tiny hair-like structures called flagella to move around. To direct this movement, the flagella must work together and beat in a synchronous manner. In some organisms, coordination is achieved by each flagellum reacting to the flow generated by neighbouring flagella. In others, flagella are joined together by fiber connections between their bases, which allow movement to be coordinated through mechanical signals sent between flagella. One such organism is Chlamydomonas reinhardtii, a type of algae frequently used to study flagellar coordination. Its two flagella ­ named trans and cis because of their positions relative to the cell's eyespot ­ propel the cell through water using breaststroke-like movements. To steer, C. reinhardtii adjusts the strength of the strokes made by each flagellum. Despite this asymmetry, the flagella must continue to beat in synchrony to move efficiently. To understand how the cell manages these differences, Wei et al. exposed each flagellum to carefully generated oscillations in water so that each was exposed to different forces and their separate responses could be measured. A combination of experiments, modelling and computer simulations were then used to work out how the two flagella coordinate to steer the cell. Wei et al. found that only the cis flagellum coordinates the beating, with the trans flagellum simply copying the motion of the cis. A direct consequence of such one-way coupling is that only forces on the cis flagellum influence the coordinated beating dynamics of both flagella. These findings shed light on the unique roles of each flagellum in the coordinated movement in C. reinhardtii and have implications for how other organisms with mechanically-connected flagella navigate their environments.


Subject(s)
Chlamydomonas reinhardtii , Flagella , Chlamydomonas reinhardtii/physiology , Flagella/physiology
14.
J Am Chem Soc ; 146(21): 14468-14478, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757172

ABSTRACT

Many biological mechanisms rely on the precise control of conformational changes in proteins. Understanding such dynamic processes requires methods for determining structures and their temporal evolution. In this study, we introduce a novel approach to time-resolved ion mobility mass spectrometry. We validated the method on a simple photoreceptor model and applied it to a more complex system, the animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY), to determine the role of specific amino acids affecting the conformational dynamics as reaction to blue light activation. In our setup, using a high-power LED mounted in the source region of an ion mobility mass spectrometer, we allow a time-resolved evaluation of mass and ion mobility spectra. Cryptochromes like CraCRY are a widespread type of blue light photoreceptors and mediate various light-triggered biological functions upon excitation of their inbuilt flavin chromophore. Another hallmark of cryptochromes is their flexible carboxy-terminal extension (CTE), whose structure and function as well as the details of its interaction with the photolyase homology region are not yet fully understood and differ among different cryptochromes types. Here, we addressed the highly conserved C-terminal domain of CraCRY, to study the effects of single mutations on the structural transition of the C-terminal helix α22 and the attached CTE upon lit-state formation. We show that D321, the putative proton acceptor of the terminal proton-coupled electron transfer event from Y373, is essential for triggering the large-scale conformational changes of helix α22 and the CTE in the lit state, while D323 influences the timing.


Subject(s)
Chlamydomonas reinhardtii , Cryptochromes , Protein Conformation , Cryptochromes/chemistry , Cryptochromes/metabolism , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/metabolism , Mass Spectrometry/methods , Ion Mobility Spectrometry/methods , Models, Molecular
15.
Physiol Plant ; 176(3): e14311, 2024.
Article in English | MEDLINE | ID: mdl-38715208

ABSTRACT

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Subject(s)
CRISPR-Cas Systems , Chlamydomonas reinhardtii , Cytokinins , Disease Resistance , Nicotiana , Plant Diseases , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/immunology , Cytokinins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Mutation
16.
Chemosphere ; 358: 142220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710410

ABSTRACT

Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.


Subject(s)
Chlamydomonas reinhardtii , Microplastics , Photosynthesis , Polystyrenes , Proteomics , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/growth & development , Polystyrenes/toxicity , Polystyrenes/chemistry , Microplastics/toxicity , Photosynthesis/drug effects , Oxidative Stress/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Plastics/toxicity , Particle Size , Photosystem II Protein Complex/metabolism
17.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612934

ABSTRACT

We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.


Subject(s)
Chlamydomonas reinhardtii , Photosystem I Protein Complex , Chlorophyll A , Energy Transfer , Kinetics
18.
Methods Mol Biol ; 2790: 121-132, 2024.
Article in English | MEDLINE | ID: mdl-38649569

ABSTRACT

The Clark-type electrode can be used to assess the rates of photosynthesis by detecting changes in O2 concentration in a culture. This chapter describes a method for a liquid phase measurement of light and dissolved inorganic carbon-dependent photosynthesis using the model green alga Chlamydomonas reinhardtii. The technique can be used to evaluate the presence or efficiency of carbon-concentrating mechanisms.


Subject(s)
Chlamydomonas reinhardtii , Electrodes , Oxygen , Photosynthesis , Chlamydomonas reinhardtii/metabolism , Oxygen/metabolism , Carbon/metabolism , Carbon/chemistry , Light
19.
J Magn Reson ; 362: 107689, 2024 May.
Article in English | MEDLINE | ID: mdl-38677224

ABSTRACT

ß-Lactamases (EC 3.5.2.6) confer resistance against ß-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against ß-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative ß-lactamase activity, sulbactam binding (a ß-lactam analogue) in the low µM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known ß-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its ß-lactamase activity. Current study is the first report on ß-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for ß-lactamase activity.


Subject(s)
Chlamydomonas reinhardtii , beta-Lactamases , Chlamydomonas reinhardtii/enzymology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Binding Sites , Nuclear Magnetic Resonance, Biomolecular/methods , Sulbactam/chemistry , Sulbactam/pharmacology , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Amino Acid Sequence , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding
20.
Bioresour Technol ; 401: 130757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688392

ABSTRACT

The photosynthetic autotrophic production of microalgae is limited by the effective supply of carbon and light energy, and the production efficiency is lower than the theoretical value. Represented by methanol, C1 compounds have been industrially produced by artificial photosynthesis with a solar energy efficiency over 10%, but the complexity of artificial products is weak. Here, based on a construction of chloroplast factory, green microalgae Chlamydomonas reinhardtii CC137c was modified for the bioconversion of formate for biomass production. By screening the optimal combination of chloroplast transport peptides, the cabII-1 cTP1 fusion formate dehydrogenase showed significant enhancement on the conversion of formate with a better performance in the maintenance of light reaction activity. This work provided a new way to obtain bioproducts from solar energy and CO2 with potentially higher-than-nature efficiency by the artificial-natural hybrid photosynthesis.


Subject(s)
Chlamydomonas reinhardtii , Chloroplasts , Formates , Chloroplasts/metabolism , Formates/metabolism , Chlamydomonas reinhardtii/metabolism , Photosynthesis , Formate Dehydrogenases/metabolism , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...