Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Biomembr ; 1862(6): 183238, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32119864

ABSTRACT

Acid-secreting intercalated cells of the collecting duct express the chloride/bicarbonate kidney anion exchanger 1 (kAE1) as well as SLC26A7, two proteins that colocalize in the basolateral membrane. The latter protein has been reported to function either as a chloride/bicarbonate exchanger or a chloride channel. Both kAE1 and SLC26A7 are detected in the renal medulla, an environment hyper-osmotic to plasma. Individuals with mutations in the SLC4A1 gene encoding kAE1 and mice lacking Slc26a7 develop distal renal tubular acidosis (dRTA). Here, we aimed to (i) confirm that SLC26A7 can function as chloride/bicarbonate exchanger in Madin-Darby canine kidney (MDCK) cells, and (ii) examine the behavior of SLC26A7 relative to kAE1 wild type or carrying the dRTA mutation R901X in iso- or hyper-osmotic conditions mimicking the renal medulla. Although we found that SLC26A7 abundance increases in hyper-osmotic growth medium, it is reduced in low pH growth conditions mimicking acidosis when expressed at high levels in MDCK cells. In these cells, SLC26A7 exchange activity was independent from extracellular osmolarity. When SLC26A7 protein was co-expressed with kAE1 WT or the R901X dRTA mutant, the cellular chloride/bicarbonate exchange rate was not additive compared to when proteins are expressed individually, possibly reflecting a decreased overall protein expression. Furthermore, the cellular chloride/bicarbonate exchange rate was osmolarity-independent. Together, these results show that (i) in MDCK cells, SLC26A7 is a chloride/bicarbonate exchanger whose abundance is up-regulated by high osmolarity growth medium and (ii) acidic extracellular pH decreases the abundance of SLC26A7 protein.


Subject(s)
Chloride-Bicarbonate Antiporters/analysis , Hydrogen-Ion Concentration , Kidney/cytology , Osmolar Concentration , Animals , Antiporters/analysis , Cell Culture Techniques/methods , Culture Media/chemistry , Dogs , Epithelial Cells/chemistry , Gene Expression Regulation , Madin Darby Canine Kidney Cells , Sulfate Transporters/analysis
2.
J Dent Res ; 94(3): 412-20, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25535204

ABSTRACT

Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways. To investigate this, we measured the mineral and chloride content in incisor enamel of amelogenin-knockout (AmelX(-/-)) mice and determined the pH of enamel by staining with methyl-red. Ameloblasts were immunostained for anion exchanger-2 (Ae2), a transmembrane pH regulator sensitive for acid that secretes bicarbonate in exchange for chloride. The enamel of AmelX(-/-) mice was 10-fold thinner, mineralized in the secretory stage 1.8-fold more than wild-type enamel and containing less chloride (suggesting more bicarbonate secretion). Enamel of AmelX(-/-) mice stained with methyl-red contained no acidic bands in the maturation stage as seen in wild-type enamel. Secretory ameloblasts of AmelX(-/-) mice, but not wild-type mice, were immunopositive for Ae2, and stained more intensely in the maturation stage compared with wild-type mice. Exposure of AmelX(-/-) mice to fluoride enhanced the mineral content in the secretory stage, lowered chloride, and intensified Ae2 immunostaining in the enamel organ in comparison with non-fluorotic mutant teeth. The results suggest that unprotonated amelogenins may regulate the pH of forming enamel in situ. Without amelogenins, Ae2 could compensate for the pH drop associated with crystal formation.


Subject(s)
Amelogenesis/physiology , Amelogenin/physiology , Ameloblasts/chemistry , Ameloblasts/ultrastructure , Amelogenesis/drug effects , Amelogenin/genetics , Animals , Azo Compounds , Buffers , Chloride-Bicarbonate Antiporters/analysis , Chlorides/analysis , Coloring Agents , Crystallization , Dental Enamel/chemistry , Dental Enamel/ultrastructure , Electron Probe Microanalysis/methods , Enamel Organ/drug effects , Enamel Organ/ultrastructure , Fluorides/pharmacology , Hydrogen-Ion Concentration , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Minerals/analysis , X-Ray Microtomography/methods
3.
J Dent Res ; 93(1): 96-102, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24170372

ABSTRACT

Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl(-) for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b (-/-) mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b(-/-) mice and was strongly correlated with Cl(-). Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl(-) levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins.


Subject(s)
Chloride-Bicarbonate Antiporters/drug effects , Fluorides/adverse effects , Fluorosis, Dental/etiology , Ameloblasts/drug effects , Ameloblasts/pathology , Amelogenesis/drug effects , Amelogenesis/genetics , Animals , Bicarbonates/analysis , Chloride-Bicarbonate Antiporters/analysis , Chloride-Bicarbonate Antiporters/genetics , Chlorides/analysis , Coloring Agents , Dental Enamel/chemistry , Dental Enamel/drug effects , Dental Enamel/pathology , Dental Enamel Proteins/analysis , Diffusion , Female , Fluorosis, Dental/genetics , Fluorosis, Dental/pathology , Heterozygote , Homozygote , Hydrogen-Ion Concentration , Indicators and Reagents , Mice , Mice, Knockout , Minerals/analysis , Phenotype , Rats , Rats, Wistar , Tooth Calcification/drug effects , Tooth Calcification/genetics
4.
J Comp Neurol ; 520(7): 1481-92, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22102085

ABSTRACT

The sodium-driven chloride/bicarbonate exchanger (NDCBE), a member of the SLC4 family of bicarbonate transporters, was recently found to modulate excitatory neurotransmission in hippocampus. By using light and electron microscopic immunohistochemistry, we demonstrate here that NDCBE is expressed throughout the adult rat brain, and selectively concentrates in presynaptic terminals, where it is closely associated with synaptic vesicles. NDCBE is in most glutamatergic axon terminals, and is also present in the terminals of parvalbumin-positive γ-aminobutyric acid (GABA)ergic cells. These findings suggest that NDCBE can regulate glutamatergic transmission throughout the brain, and point to a role for NDCBE as a possible regulator of GABAergic neurotransmission.


Subject(s)
Chloride-Bicarbonate Antiporters/biosynthesis , GABAergic Neurons/metabolism , Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , Animals , Chloride-Bicarbonate Antiporters/analysis , GABAergic Neurons/ultrastructure , Hippocampus/metabolism , Hippocampus/ultrastructure , Immunohistochemistry , Male , Microscopy, Electron, Transmission , Presynaptic Terminals/ultrastructure , Rats , Rats, Sprague-Dawley
5.
Acta Physiol (Oxf) ; 189(4): 359-68, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17367404

ABSTRACT

AIMS: Hypercalcaemia is known to be associated with systemic metabolic alkalosis, although the underlying mechanism is uncertain. Therefore, we aimed to examine whether hypercalcaemia was associated with changes in the expression of acid-base transporters in the kidney. METHODS: Rats were infused with human parathyroid hormone (PTH, 15 microg kg(-1) day(-1)), or vehicle for 48 h using osmotic minipumps. RESULTS: The rats treated with PTH developed hypercalcaemia and exhibited metabolic alkalosis (arterial HCO: 31.1 +/- 0.8 vs. 28.1 +/- 0.8 mmol L(-1) in controls, P < 0.05, n = 6), whereas the urine pH of 6.85 +/- 0.1 was significantly decreased compared with the pH of 7.38 +/- 0.1 in controls (P < 0.05, n = 12). The observed alkalosis was associated with a significantly increased expression of the B1-subunit of the H(+)-ATPase in kidney inner medulla (IM, 233 +/- 45% of the control level). In contrast, electroneutral Na(+)-HCO cotransporter NBCn1 and Cl(-)/HCO anion exchanger AE2 expression was markedly reduced in the inner stripe of the outer medulla (to 26 +/- 9% and 65 +/- 6%, respectively). These findings were verified by immunohistochemistry. CONCLUSIONS: (1) hypercalcaemia-induced metabolic alkalosis was associated with increased urinary excretion of H(+); (2) the increased H(+)-ATPase expression in IM may partly explain the enhanced urinary acidification, which is speculated to prevent stone formation because of hypercalciuria and (3) the decreased expression of outer medullary AE2 suggests a compensatory reduction of the transepithelial bicarbonate transport.


Subject(s)
Alkalosis/metabolism , Hypercalcemia/metabolism , Kidney/metabolism , Proton-Translocating ATPases/analysis , Alkalosis/blood , Animals , Anion Exchange Protein 1, Erythrocyte/analysis , Anion Transport Proteins/analysis , Antiporters/analysis , Chloride-Bicarbonate Antiporters/analysis , Hypercalcemia/blood , Immunohistochemistry/methods , Infusions, Parenteral , Kidney/enzymology , Kidney Cortex/enzymology , Kidney Cortex/metabolism , Kidney Medulla/enzymology , Kidney Medulla/metabolism , Male , Parathyroid Hormone/administration & dosage , Rats , Rats, Wistar , SLC4A Proteins , Sodium-Bicarbonate Symporters/analysis , Sulfate Transporters , Vacuoles/enzymology
6.
J Am Soc Nephrol ; 17(8): 2153-63, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16825334

ABSTRACT

Recent studies indicate that pendrin, an apical Cl-/HCO3- exchanger, mediates chloride reabsorption in the connecting tubule and the cortical collecting duct and therefore is involved in extracellular fluid volume regulation. The purpose of this study was to test whether pendrin is regulated in vivo primarily by factors that are associated with changes in renal chloride transport, by aldosterone, or by the combination of both determinants. For achievement of this goal, pendrin protein abundance was studied by semiquantitative immunoblotting in different mouse models with altered aldosterone secretion or tubular chloride transport, including NaCl loading, hydrochlorothiazide administration, NaCl co-transporter knockout mice, and mice with Liddle's mutation. The parallel regulation of the aldosterone-regulated epithelial sodium channel (ENaC) was examined as a control for biologic effects of aldosterone. Major changes in pendrin protein expression were found in experimental models that are associated with altered renal chloride transport, whereas no significant changes were detected in pendrin protein abundance in models with altered aldosterone secretion. Moreover, in response to hydrochlorothiazide administration, pendrin was downregulated despite a marked secondary hyperaldosteronism. In contrast, alpha-ENaC was markedly upregulated, and the molecular weight of a large fraction of gamma-ENaC subunits was shifted from 85 to 70 kD, consistent with previous results from rat models with elevated plasma aldosterone levels. These results suggest that factors that are associated with changes in distal chloride delivery govern pendrin expression in the connecting tubule and cortical collecting duct.


Subject(s)
Chloride-Bicarbonate Antiporters/analysis , Chlorides/metabolism , Homeostasis/physiology , Kidney/metabolism , Aldosterone/blood , Animals , Chloride-Bicarbonate Antiporters/antagonists & inhibitors , Chlorides/administration & dosage , Disease Models, Animal , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Homeostasis/drug effects , Hydrochlorothiazide/administration & dosage , Immunoblotting , Immunohistochemistry , Kidney/cytology , Kidney/drug effects , Kidney Tubules, Collecting/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Sodium/metabolism
7.
J Gen Physiol ; 127(5): 511-24, 2006 May.
Article in English | MEDLINE | ID: mdl-16606687

ABSTRACT

The SLC26 transporters are a family of mostly luminal Cl- and HCO3- transporters. The transport mechanism and the Cl-/HCO3- stoichiometry are not known for any member of the family. To address these questions, we simultaneously measured the HCO3- and Cl- fluxes and the current or membrane potential of slc26a3 and slc26a6 expressed in Xenopus laevis oocytes and the current of the transporters expressed in human embryonic kidney 293 cells. slc26a3 mediates a coupled 2Cl-/1HCO3- exchanger. The membrane potential modulated the apparent affinity for extracellular Cl- of Cl-/HCO3- exchange by slc26a3. Interestingly, the replacement of Cl- with NO3- or SCN- uncoupled the transport, with large NO3- and SCN- currents and low HCO3- transport. An apparent uncoupled current was also developed during the incubation of slc26a3-expressing oocytes in HCO3--buffered Cl--free media. These findings were used to develop a turnover cycle for Cl- and HCO3- transport by slc26a3. Cl- and HCO3- flux measurements revealed that slc26a6 mediates a 1Cl-/2HCO3- exchange. Accordingly, holding the membrane potential at 40 and -100 mV accelerated and inhibited, respectively, Cl--mediated HCO3- influx, and holding the membrane potential at -100 mV increased HCO3--mediated Cl- influx. These findings indicate that slc26a6 functions as a coupled 1Cl-/2HCO3- exchanger. The significance of isoform-specific Cl- and HCO3- transport stoichiometry by slc26a3 and slc26a6 is discussed in the context of diseases of epithelial Cl- absorption and HCO3- secretion.


Subject(s)
Antiporters/physiology , Chloride-Bicarbonate Antiporters/physiology , Membrane Potentials/physiology , Membrane Transport Proteins/physiology , Animals , Antiporters/analysis , Bicarbonates/analysis , Cell Line , Chloride-Bicarbonate Antiporters/analysis , Chlorides/analysis , Female , Humans , Hydrogen-Ion Concentration , Kidney/chemistry , Kidney/cytology , Kidney/embryology , Kidney/physiology , Mathematics , Membrane Transport Proteins/analysis , Oocytes/chemistry , Oocytes/cytology , Oocytes/physiology , Patch-Clamp Techniques , Protein Isoforms , Sulfate Transporters , Xenopus Proteins/analysis , Xenopus Proteins/physiology , Xenopus laevis
8.
Am J Physiol Renal Physiol ; 290(4): F937-45, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16263805

ABSTRACT

Previous studies have indicated that a major fraction of the filtered Cl(-) is reabsorbed via apical membrane Cl(-)/base exchange in the proximal tubule. Recent studies in Slc26a6 null mice have suggested that this transporter mediates only a portion of proximal tubule Cl(-)/base exchange, raising the possibility that one or more unidentified apical membrane transporters may additionally contribute. Recent studies have identified Slc26a7 as another Cl(-)/base exchanger expressed in the kidney. We therefore generated Slc26a7-specific polyclonal and monoclonal antibodies to examine cellular and subcellular sites of expression in mouse kidney. The specificity of each antibody was verified by immunoblotting and immunofluorescence of COS-7 cells transiently transfected with mouse Slc26a7. Immunofluorescence microscopy of mouse kidney detected the expression of Slc26a7 subapically in proximal tubule cells, and on the basolateral surface of thick ascending limb cells. Similar staining patterns were demonstrated with two antibodies shown to react with different epitopes on Slc26a7. Immunolocalization of Slc26a7 to proximal tubule and thick ascending limb was also observed in rat kidney. We conclude that Slc26a7 is expressed in the proximal tubule and thick ascending limb of the loop of Henle, and it may therefore contribute to anion transport in these nephron segments.


Subject(s)
Chloride-Bicarbonate Antiporters/biosynthesis , Ion Transport/physiology , Kidney Tubules, Proximal/physiology , Loop of Henle/physiology , Animals , Anions , Chloride-Bicarbonate Antiporters/analysis , Fluorescent Antibody Technique , Kidney Tubules, Proximal/chemistry , Loop of Henle/chemistry , Mice , Sulfate Transporters
9.
Am J Physiol Renal Physiol ; 287(6): F1179-88, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15292050

ABSTRACT

Pendrin (Pds; Slc26A4) is a new anion exchanger that is believed to mediate apical Cl(-)/HCO(3)(-) exchange in type B and non-A-non-B intercalated cells of the connecting tubule and cortical collecting duct. Recently, it has been proposed that this transporter may be involved in NaCl balance and blood pressure regulation in addition to its participation in the regulation of acid-base status. The purpose of our study was to determine the regulation of Pds protein abundance during chronic changes in chloride balance. Rats were subjected to either NaCl, NH(4)Cl, NaHCO(3), KCl, or KHCO(3) loading for 6 days or to a low-NaCl diet or chronic furosemide administration. Pds protein abundance was estimated by semiquantitative immunoblotting in renal membrane fractions isolated from the cortex of treated and control rats. We observed a consistent inverse relationship between Pds expression and diet-induced changes in chloride excretion independent of the administered cation. Conversely, NaCl depletion induced by furosemide was associated with increased Pds expression. We conclude that Pds expression is specifically regulated in response to changes in chloride balance.


Subject(s)
Chloride-Bicarbonate Antiporters/analysis , Chlorides/metabolism , Homeostasis/physiology , Kidney/chemistry , Ammonium Chloride/administration & dosage , Animals , Bicarbonates/administration & dosage , Cell Membrane/chemistry , Chlorides/administration & dosage , Diet , Furosemide/administration & dosage , Homeostasis/drug effects , Immunoblotting , Male , Potassium Chloride/administration & dosage , Potassium Compounds/administration & dosage , Rats , Rats, Sprague-Dawley , Sodium Bicarbonate/administration & dosage , Sodium Chloride/administration & dosage , Sodium Chloride, Dietary/administration & dosage , Sulfate Transporters
10.
Biochim Biophys Acta ; 1566(1-2): 182-93, 2002 Nov 13.
Article in English | MEDLINE | ID: mdl-12421549

ABSTRACT

Intestinal fluids of most marine teleosts are alkaline (pH 8.4-9.0) and contain high levels of HCO(3)(-) equivalents (40-130 mM) which are excreted at a significant rate (>100 microEq kg(-1) h(-1)). Recent research reveals the following about this substantial HCO(3)(-) secretion: (1) It is not involved in acid-base regulation or neutralisation of stomach acid, but increases in parallel with drinking rate at elevated ambient salinities suggesting a role in osmoregulation; (2) In species examined so far, all sections of the intestine can secrete bicarbonate; (3) The secretion is dependent on mucosal Cl(-), sensitive to mucosal DIDS, and immuno-histochemistry indicates involvement of an apical Cl(-)/HCO(3)(-) exchanger. In addition, hydration of CO(2) via carbonic anhydrase in combination with proton extrusion appears to be essential for bicarbonate secretion. The mode of proton extrusion is currently unknown but potential mechanisms are discussed. One consequence of the luminal alkalinity and high bicarbonate concentrations is precipitation of calcium and magnesium as carbonate complexes. This precipitation is hypothesised to reduce the osmolality of intestinal fluids and thus play a potential role in water absorption and osmoregulation. The present studies on European flounder reveal that elevated luminal calcium (but not magnesium) concentrations stimulate intestinal bicarbonate secretion both acutely and chronically, in vitro and in vivo. At the whole animal level, the result of this elevated bicarbonate secretion was increased calcium precipitation with an associated reduction in the osmolality of rectal fluids and plasma. These observations suggest direct functional links between intestinal bicarbonate secretion, divalent cation precipitation and osmoregulation in marine teleost fish.


Subject(s)
Bicarbonates/metabolism , Fishes/metabolism , Intestinal Mucosa/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/metabolism , Animals , Calcium Carbonate/analysis , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Cations, Divalent , Chloride-Bicarbonate Antiporters/analysis , Chloride-Bicarbonate Antiporters/metabolism , Chlorides/metabolism , Drinking , Fishes/blood , Flounder , Fluorescent Antibody Technique , Hydrogen-Ion Concentration , In Vitro Techniques , Magnesium/chemistry , Magnesium/metabolism , Osmolar Concentration , Perfusion , Seawater , Sodium-Potassium-Exchanging ATPase/analysis , Sodium-Potassium-Exchanging ATPase/metabolism , Water-Electrolyte Balance
11.
Am J Physiol Gastrointest Liver Physiol ; 282(3): G573-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11842009

ABSTRACT

HCO3(-) secretion is the most important defense mechanism against acid injury in the duodenum. However, the identity of the transporter(s) mediating apical HCO3(-) secretion in the duodenum remains unknown. A family of anion exchangers, which include downregulated in adenoma (DRA or SLC26A3), pendrin (PDS or SLC26A4), and the putative anion transporter (PAT1 or SLC26A6) has recently been identified. DRA and pendrin mediate Cl(-)/base exchange; however, the functional identity and distribution of PAT1 (SLC26A6) is not known. In these studies, we investigated the functional identity, tissue distribution, and membrane localization of PAT1. Expression studies in Xenopus oocytes demonstrated that PAT1 functions in Cl(-)/HCO3(-) exchange mode. Tissue distribution studies indicated that the expression of PAT1 is highly abundant in the small intestine but is low in the colon, a pattern opposite that of DRA. PAT1 was also abundantly detected in stomach and heart. Immunoblot analysis studies identified PAT1 as a approximately 90 kDa protein in the duodenum. Immunohistochemical studies localized PAT1 to the brush border membranes of the villus cells of the duodenum. We propose that PAT1 is an apical Cl(-)/HCO3(-) exchanger in the small intestine.


Subject(s)
Carrier Proteins/analysis , Chloride-Bicarbonate Antiporters/analysis , Intestine, Small/chemistry , Membrane Proteins/analysis , Membrane Transport Proteins , Amino Acid Sequence , Animals , Bicarbonates/metabolism , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Membrane/chemistry , Colon/chemistry , Gene Expression , Humans , Immunohistochemistry , Intestine, Small/metabolism , Membrane Proteins/genetics , Membrane Proteins/physiology , Mice , Molecular Sequence Data , Oocytes/metabolism , Sulfate Transporters , Tissue Distribution , Transfection , Xenopus
12.
Acta Otolaryngol ; 122(8): 866-71, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12542207

ABSTRACT

Electrolyte transport by nasal epithelia has been suggested to be important for controlling the quantity and composition of the nasal fluid and may play an important role in the development of nasal polyps. One of a number of mechanisms involving translocation of Na+ and Cl- across cell membranes includes electroneutral processes, such as Na+/H+ exchange (NHE) and Cl-/HCO3- exchange (AE). The present study evaluated the presence of mRNAs for various members of the human NHE and AE gene families in human inferior turbinate mucosa and nasal polyp using reverse transcriptase polymerase chain reaction and in situ hybridization. The mRNA for NHE1 was detected in human turbinate mucosa and nasal polyp while the mRNAs for NHE2 and NHE3 could not be detected in any of the samples examined. Of the AE isoforms, AE2 mRNA was expressed in inferior turbinate mucosa but not in nasal polyp. In situ hybridization revealed that NHE1 mRNA in the turbinate mucosa and nasal polyp was localized in the epithelial layer and submucosal glands. AE2 mRNA was also expressed in the epithelial layer and submucosal glands of inferior turbinate mucosa. Taken together, these results indicate that the expression of AE2 mRNA is altered in nasal polyp compared with inferior turbinate mucosa, suggesting that the altered expression of these genes in nasal polyp may cause impaired electrolyte and water transport across the epithelial cells.


Subject(s)
Chloride-Bicarbonate Antiporters/analysis , Nasal Mucosa/chemistry , RNA, Messenger/analysis , Sodium-Hydrogen Exchangers/analysis , Adult , Chloride-Bicarbonate Antiporters/genetics , Female , Gene Expression , Humans , In Situ Hybridization , Male , Middle Aged , Nasal Polyps/metabolism , Protein Isoforms/analysis , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sodium-Hydrogen Exchangers/genetics
13.
JOP ; 2(4 Suppl): 285-90, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11875273

ABSTRACT

Molecular species of the Na(+)-H(+) exchanger (NHE) and anion exchanger (AE) gene families and their relative abundance in the human airway regions were assessed utilizing RT-PCR and the RNase protection assay, respectively. Organ donor lung epithelia from various bronchial regions (small, medium, and large bronchi and trachea) were harvested for RNA extraction. Gene-specific primers for the human NHE and AE isoforms were utilized for RT-PCR. Our results demonstrated that NHE1, AE2, and brain AE3 isoforms were expressed in all regions of the human airway, whereas NHE2, NHE3, AE1, and cardiac AE3 were not detected. RNase protection studies for NHE1 and AE2, utilizing glyceraldehyde-3-phosphate dehydrogenase as an internal standard, demonstrated that there were regional differences in the NHE1 mRNA levels in human airways. In contrast, the levels of AE2 mRNA remained unchanged. Differential regional expression of NHE1 isoform may be related to a higher acid load in the tracheal epithelial cells than in epithelia of distal airways. Fluctuations in PCO(2) during inspiration and expiration are probably larger in the tracheal lumen than in the lumen of distal airways with associated larger swings in intracellular pH with each respiratory cycle. Immunohistochemical staining for AE2 protein demonstrated localization to the epithelial cells of human bronchial mucosa.


Subject(s)
Chloride-Bicarbonate Antiporters/analysis , Respiratory Mucosa/chemistry , Sodium-Hydrogen Exchangers/analysis , Bronchi/chemistry , Bronchi/metabolism , Chloride-Bicarbonate Antiporters/biosynthesis , Chloride-Bicarbonate Antiporters/genetics , DNA/genetics , DNA Footprinting , Female , Humans , Immunohistochemistry , Male , Middle Aged , Respiratory Mucosa/metabolism , Sodium-Hydrogen Exchangers/biosynthesis , Sodium-Hydrogen Exchangers/genetics , Trachea/chemistry , Trachea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...