Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 227: 106231, 2023 03.
Article in English | MEDLINE | ID: mdl-36462760

ABSTRACT

BACKGROUND: Vitamin D receptor (VDR) and SLC26A3 (DRA) have been identified as pivotal protective factors in maintaining gut homeostasis in IBD patients. However, the specific mechanism underlying the increased intestinal susceptibility to inflammation induced by the loss of VDR and whether DRA participates in the role of VDR regulating intestinal epithelial barrier function are undefined. AIM: The current study is undertaken to elucidate the regulatory effects of VDR on DRA and VDR prevents intestinal epithelial barrier dysfunction via up-regulating the expression of DRA. METHODS: WT and VDR-/- mice are used as models for intestinal epithelial response. Paracellular permeability is measured by TEER and FD-4 assays. Immunohistochemistry, immunofluorescence, qPCR and immunoblotting are performed to determine the effects of VDR and DRA on gut epithelial barrier function. RESULTS: VDR-/- mice exhibits significant hyperpermeability of intestine with greatly decreased levels of ZO-1 and Claudin1 proteins. DRA is located on the intestinal epithelial apical membrane and is tightly modulated by VDR in vivo and in vitro via activating ERK1/2 MAPK signaling pathway. Notably, the current study for the first time demonstrates that VDR maintains intestinal epithelial barrier integrity via up-regulating DRA expression and the lack of DRA induced by VDR knockdown leads to a more susceptive condition for intestine to DSS-induced colitis. CONCLUSION: Our study provides evidence and deep comprehension regarding the role of VDR in modulating DRA expression in gut homeostasis and makes novel contributions to better generally understanding the links between VDR, DRA and intestinal epithelial barrier function.


Subject(s)
Antiporters , Colitis , Receptors, Calcitriol , Sulfate Transporters , Animals , Humans , Mice , Antiporters/adverse effects , Antiporters/metabolism , Caco-2 Cells , Chloride-Bicarbonate Antiporters/metabolism , Chloride-Bicarbonate Antiporters/pharmacology , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Receptors, Calcitriol/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism
2.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046015

ABSTRACT

SLC26A3 (downregulated in adenoma; DRA) is a Cl-/anion exchanger expressed in the luminal membrane of intestinal epithelial cells, where it facilitates electroneutral NaCl absorption. SLC26A3 loss of function in humans or mice causes chloride-losing diarrhea. Here, we identified slc26a3 inhibitors in a screen of 50,000 synthetic small molecules done in Fischer rat thyroid (FRT) cells coexpressing slc26a3 and a genetically encoded halide sensor. Structure-activity relationship studies were done on the most potent inhibitor classes identified in the screen: 4,8-dimethylcoumarins and acetamide-thioimidazoles. The dimethylcoumarin DRAinh-A250 fully and reversibly inhibited slc26a3-mediated Cl- exchange with HCO3-, I-, and thiocyanate (SCN-), with an IC50 of ~0.2 µM. DRAinh-A250 did not inhibit the homologous anion exchangers slc26a4 (pendrin) or slc26a6 (PAT-1), nor did it alter activity of other related proteins or intestinal ion channels. In mice, intraluminal DRAinh-A250 blocked fluid absorption in closed colonic loops but not in jejunal loops, while the NHE3 (SLC9A3) inhibitor tenapanor blocked absorption only in the jejunum. Oral DRAinh-A250 and tenapanor comparably reduced signs of constipation in loperamide-treated mice, with additive effects found on coadministration. DRAinh-A250 was also effective in loperamide-treated cystic fibrosis mice. These studies support a major role of slc26a3 in colonic fluid absorption and suggest the therapeutic utility of SLC26A3 inhibition in constipation.


Subject(s)
Antiporters/pharmacology , Constipation/drug therapy , Sulfate Transporters/antagonists & inhibitors , Sulfate Transporters/metabolism , Animals , Antiporters/antagonists & inhibitors , Antiporters/chemistry , Antiporters/genetics , Antiporters/metabolism , Chloride-Bicarbonate Antiporters/pharmacology , Chlorides/metabolism , Cystic Fibrosis , Disease Models, Animal , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Epithelial Cells/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Ion Transport , Loperamide/pharmacology , Mice , Rats , Rats, Inbred F344 , Sodium-Hydrogen Exchanger 3/pharmacology , Sulfate Transporters/genetics , Sulfate Transporters/pharmacology
3.
Glia ; 65(8): 1361-1375, 2017 08.
Article in English | MEDLINE | ID: mdl-28568893

ABSTRACT

The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-ß) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H(+ ) recording using the H(+ ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-ß signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-ß receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-ß. TGF-ß increased the rate and amplitude of intracellular H+ changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-ß signaling. The data show for the first time that NBCe1 is a direct target of TGF-ß/Smad4 signaling. Through activation of the canonical pathway TGF-ß acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity.


Subject(s)
Astrocytes/metabolism , Gene Expression Regulation/physiology , Signal Transduction/physiology , Sodium-Bicarbonate Symporters/metabolism , Transforming Growth Factor beta/metabolism , 4-Aminopyridine/pharmacology , Aldehyde Dehydrogenase 1 Family , Animals , Benzamides/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Chloride-Bicarbonate Antiporters/pharmacology , Dioxoles/pharmacology , Female , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/cytology , Hydrogen-Ion Concentration , Isoenzymes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Potassium Channel Blockers/pharmacology , Retinal Dehydrogenase/metabolism , Signal Transduction/drug effects , Smad4 Protein/metabolism , Sodium-Bicarbonate Symporters/antagonists & inhibitors , Sodium-Bicarbonate Symporters/genetics , Transforming Growth Factor beta/genetics
4.
Transl Stroke Res ; 8(3): 284-293, 2017 06.
Article in English | MEDLINE | ID: mdl-27988839

ABSTRACT

Stroke induces a catastrophic immune response that involves the global activation of peripheral leukocytes, especially T cells. The human leukocyte antigen-DRα1 domain linked to MOG-35-55 peptide (DRα1-MOG-35-55) is a partial major histocompatibility complex (MHC) class II construct which can inhibit neuroantigen-specific T cells and block binding of the cytokine/chemokine macrophage migration inhibitory factor (MIF) to its CD74 receptor on monocytes and macrophages. Here, we evaluated the therapeutic effect of DRα1-MOG-35-55 in a mouse model of permanent distal middle cerebral artery occlusion (dMCAO). DRα1-MOG-35-55 was administered to WT C57BL/6 mice by subcutaneous injection starting 4 h after the onset of ischemia followed by three daily injections. We demonstrated that DRα1-MOG-35-55 post treatment significantly reduced brain infarct volume, improved functional outcomes, and inhibited the accumulation of CD4+ and CD8+ T cells and expression of pro-inflammatory cytokines in the ischemic brain 96 h after dMCAO. In addition, DRα1-MOG-35-55 treatment shifted microglia/macrophages in the ischemic brain to a beneficial M2 phenotype without changing their total numbers in the brain or blood. This study demonstrates for the first time the therapeutic efficacy of the DRα1-MOG-35-55 construct in dMCAO across MHC class II barriers in C57BL/6 mice. This MHC-independent effect obviates the need for tissue typing and will thus greatly expedite treatment with DRα1-MOG-35-55 in human stroke subjects. Taken together, our findings suggest that DRα1-MOG-35-55 treatment may reduce ischemic brain injury by regulating post-stroke immune responses in the brain and the periphery.


Subject(s)
Chloride-Bicarbonate Antiporters/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Macrophages/drug effects , Microglia/drug effects , Myelin-Oligodendrocyte Glycoprotein/pharmacology , Stroke/drug therapy , Animals , Disease Models, Animal , Macrophages/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Peptide Fragments/pharmacology , Sulfate Transporters
5.
J Physiol ; 550(Pt 2): 419-29, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12754312

ABSTRACT

Recent studies have suggested that aquaporin-1 (AQP1) as well as the HCO3(-)-Cl- transporter may be involved in CO2 transport across biological membranes, but the physiological importance of this route of gas transport remained unknown. We studied CO2 transport in human red blood cell ghosts at physiological temperatures (37 degrees C). Replacement of inert with CO2-containing gas above a stirred cell suspension caused an outside-to-inside directed CO2 gradient and generated a rapid biphasic intracellular acidification. The gradient of the acidifying gas was kept small to favour high affinity entry of CO2 passing the membrane. All rates of acidification except that of the approach to physicochemical equilibrium of the uncatalysed reaction were restricted to the intracellular environment. Inhibition of carbonic anhydrase (CA) demonstrated that CO2-induced acidification required the catalytic activity of CA. Blockade of the function of either AQP1 (by HgCl2 at 65 microM) or the HCO3(-)-Cl- transporter (by DIDS at 15 microM) completely prevented fast acidification. These data indicate that, at low chemical gradients for CO2, nearly the entire CO2 transport across the red cell membrane is mediated by AQP1 and the HCO3--Cl- transporter. Therefore, these proteins may function as high affinity sites for CO2 transport across the erythrocyte membrane.


Subject(s)
Aquaporins/pharmacology , Carbon Dioxide/blood , Chloride-Bicarbonate Antiporters/pharmacology , Erythrocyte Membrane/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Adult , Aquaporin 1 , Biological Transport, Active/drug effects , Blood Group Antigens , Carbonic Anhydrase Inhibitors/pharmacology , Erythrocyte Membrane/drug effects , Fluoresceins , Fluorescent Dyes , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Kinetics , Mercuric Chloride/pharmacology , Microscopy, Fluorescence , Sodium-Calcium Exchanger/antagonists & inhibitors , Sodium-Calcium Exchanger/metabolism , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...