Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.224
Filter
1.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703204

ABSTRACT

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Subject(s)
Apoptosis , Cathepsin K , Chlorides , Disease Models, Animal , Ferric Compounds , Thrombosis , Animals , Humans , Male , Mice , ADAMTS13 Protein/metabolism , ADAMTS13 Protein/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Chlorides/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Stress, Psychological/complications , Stress, Psychological/metabolism , Thrombosis/metabolism , Thrombosis/pathology , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics
2.
Biochem Biophys Res Commun ; 718: 150078, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735140

ABSTRACT

Among the environmental factors contributing to myopia, the role of correlated color temperature (CCT) of ambient light emerges as a key element warranting in-depth investigation. The choroid, a highly vascularized and dynamic structure, often undergoes thinning during the progression of myopia, though the precise mechanism remains elusive. The retinal pigment epithelium (RPE), the outermost layer of the retina, plays a pivotal role in regulating the transport of ion and fluid between the subretinal space and the choroid. A hypothesis suggests that variations in choroidal thickness (ChT) may be modulated by transepithelial fluid movement across the RPE. Our experimental results demonstrate that high CCT illumination significantly compromised the integrity of tight junctions in the RPE and disrupted chloride ion transport. This functional impairment of the RPE may lead to a reduction in fluid transfer across the RPE, consequently resulting in choroidal thinning and potentially accelerating axial elongation. Our findings provide support for the crucial role of the RPE in regulating ChT. Furthermore, we emphasize the potential hazards posed by high CCT artificial illumination on the RPE, the choroid, and refractive development, underscoring the importance of developing eye-friendly artificial light sources to aid in the prevention and control of myopia.


Subject(s)
Chlorides , Choroid , Ion Transport , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/radiation effects , Retinal Pigment Epithelium/pathology , Choroid/metabolism , Choroid/radiation effects , Choroid/pathology , Animals , Ion Transport/radiation effects , Chlorides/metabolism , Lighting/methods , Temperature , Color , Tight Junctions/metabolism , Myopia/metabolism , Myopia/pathology , Myopia/etiology
3.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791326

ABSTRACT

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Subject(s)
Manganese Compounds , Manganese , Mice, Inbred C57BL , Vanadium , Animals , Mice , Manganese/toxicity , Vanadium/toxicity , Male , Olfactory Bulb/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/pathology , Dopamine/metabolism , Vanadium Compounds , Oxidative Stress/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , alpha-Synuclein/metabolism , Chlorides/toxicity , Chlorides/metabolism , Tyrosine 3-Monooxygenase/metabolism , Aldehydes/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Disease Models, Animal , 3,4-Dihydroxyphenylacetic Acid/metabolism
4.
J Thromb Haemost ; 22(6): 1749-1757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811291

ABSTRACT

BACKGROUND: An iron overload status induces ferroptosis, an iron-dependent nonapoptotic cell death, in various pathological conditions. We previously reported that hemin (heme), protoporphyrin-IX with ferric iron, activates platelets via C-type lectin-like receptor-2 (CLEC-2) and glycoprotein VI/FcRγ, but protoporphyrin-IX alone blocks CLEC-2-dependent platelet activation. Therefore, we hypothesized that free iron has the ability to activate platelets. OBJECTIVES: This study aimed to elucidate platelet activation mechanisms of iron (ferric chloride), including the identification of signaling pathways and receptors, and to examine whether platelets regulate ferroptosis. METHODS: Platelet aggregometry, platelet activation marker expression, and protein phosphorylation were examined in ferric chloride-stimulated human and murine platelets. Inhibitors of platelet activation signaling pathways and receptor-deleted platelets were utilized to identify the responsible signaling pathway and receptor. The effect of platelets on ferroptosis of endothelial cells was investigated in vitro. RESULTS: Ferric chloride induced platelet activation dependent on Src family kinase pathways in humans and mice. Ferric chloride-induced platelet aggregation was almost lost in CLEC-2-depleted murine platelets and wild-type platelets preincubated with recombinant CLEC-2 proteins. Furthermore, coculture of wild-type platelets, but not CLEC-2-deficient platelets, attenuated ferroptosis of endothelial cells in vitro. CONCLUSION: Ferric chloride activates platelets via CLEC-2 and Src family kinase pathways, and platelets have a protective role in the ferroptosis of endothelial cells dependent on CLEC-2.


Subject(s)
Blood Platelets , Chlorides , Ferric Compounds , Ferroptosis , Lectins, C-Type , Mice, Inbred C57BL , Platelet Activation , Platelet Aggregation , Signal Transduction , Animals , Blood Platelets/metabolism , Blood Platelets/drug effects , Ferric Compounds/pharmacology , Humans , Platelet Activation/drug effects , Lectins, C-Type/metabolism , Chlorides/metabolism , Platelet Aggregation/drug effects , Ferroptosis/drug effects , src-Family Kinases/metabolism , Phosphorylation , Mice, Knockout , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice , Human Umbilical Vein Endothelial Cells/metabolism
5.
Genes (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790184

ABSTRACT

The ionic toxicity induced by salinization has adverse effects on the growth and development of crops. However, researches on ionic toxicity and salt tolerance in plants have focused primarily on cations such as sodium ions (Na+), with very limited studies on chloride ions (Cl-). Here, we cloned the homologous genes of Arabidopsis thaliana AtCLCc, GhCLCc-1A/D, from upland cotton (Gossypium hirsutum), which were significantly induced by NaCl or KCl treatments. Subcellular localization showed that GhCLCc-1A/D were both localized to the tonoplast. Complementation of Arabidopsis atclcc mutant with GhCLCc-1 rescued its salt-sensitive phenotype. In addition, the silencing of the GhCLCc-1 gene led to an increased accumulation of Cl- in the roots, stems, and leaves of cotton seedlings under salt treatments, resulting in compromised salt tolerance. And ectopic expression of the GhCLCc-1 gene in Arabidopsis reduced the accumulation of Cl- in transgenic lines under salt treatments, thereby enhancing salt tolerance. These findings elucidate that GhCLCc-1 positively regulates salt tolerance by modulating Cl- accumulation and could be a potential target gene for improving salt tolerance in plants.


Subject(s)
Arabidopsis , Chloride Channels , Chlorides , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Salt Tolerance/genetics , Chloride Channels/genetics , Chloride Channels/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Chlorides/metabolism , Plants, Genetically Modified/genetics , Sodium Chloride/metabolism
6.
Biochem Biophys Res Commun ; 710: 149892, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38581951

ABSTRACT

Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Chlorides/metabolism , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/metabolism , Bacterial Proteins/metabolism , Amino Acids/metabolism
7.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1138-1156, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658154

ABSTRACT

Manganese (Mn) is an essential element for plants and plays a role in various metabolic processes. However, excess manganese can be toxic to plants. This study aimed to analyze the changes in various physiological activities and the transcriptome of Arabidopsis under different treatments: 1 mmol/L MnCl2 treatment for 1 day or 3 days, and 1 day of recovery on MS medium after 3 days of MnCl2 treatment. During the recovery phase, minor yellowing symptoms appeared on the leaves of Arabidopsis, and the content of chlorophyll and carotenoid decreased significantly, but the content of malondialdehyde and soluble sugar increased rapidly. Transcriptome sequencing data shows that the expression patterns of differentially expressed genes exhibit three major models: initial response model, later response model, recovery response model. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis identified several affected metabolic pathways, including plant hormone signal transduction mitosolysis activates protein kinase (MAPK) phytohormone signaling, phenylpropanoid biosynthesis, ATP binding cassette transporters (ABC transporter), and glycosphingolipid biosynthesis. Differential expressed genes (DEGs) involved in phenylpropanoid biosynthesis, ABC transporter, and glycosphingolipid biosynthesis, were identified. Sixteen randomly selected DEGs were validated through qRT-PCR and showed consistent results with RNA-seq data. Our findings suggest that the phenylpropanoid metabolic pathway is activated to scavenge reactive oxygen species, the regulation of ABC transporter improves Mn transport, and the adjustment of cell membrane lipid composition occurs through glycerophospholipid metabolism to adapt to Mn stress in plants. This study provides new insights into the molecular response of plants to Mn stress and recovery, as well as theoretical cues for cultivating Mn-resistant plant varieties.


Subject(s)
Arabidopsis , Manganese , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Manganese/metabolism , Gene Expression Regulation, Plant , Transcriptome , Gene Expression Profiling , Chlorides/metabolism , Manganese Compounds/metabolism , Signal Transduction/drug effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Plant Growth Regulators/metabolism , Carotenoids/metabolism
8.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568964

ABSTRACT

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Subject(s)
Chlorides , Protein Serine-Threonine Kinases , Mice , Animals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Chlorides/metabolism , Endothelial Cells/metabolism , TRPV Cation Channels/metabolism , Signal Transduction/physiology
9.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673775

ABSTRACT

Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.


Subject(s)
Sulfate Transporters , Humans , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Animals , Kidney/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Chloride-Bicarbonate Antiporters/genetics , Organ Specificity , Chlorides/metabolism , Ion Transport
10.
J Neurosci ; 44(22)2024 May 29.
Article in English | MEDLINE | ID: mdl-38684364

ABSTRACT

Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl-) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na+-K+-Cl- cotransporter 1 (NKCC1) allowing intracellular Cl- accumulation. However, we did not find expression of the K+-Cl- cotransporter 2 (KCC2) responsible for Cl- efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl- extrusion capacity in CSF-cNs under high Cl- load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl- concentration, we found that the activation of ionotropic GABAA receptors (GABAA-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABAB receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K+ currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABAA-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.


Subject(s)
Solute Carrier Family 12, Member 2 , Spinal Cord , Symporters , Animals , Mice , Spinal Cord/metabolism , Female , Male , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , K Cl- Cotransporters , Signal Transduction/physiology , Neurons/metabolism , Neurons/physiology , gamma-Aminobutyric Acid/metabolism , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/physiology , Mice, Inbred C57BL , Receptors, GABA-A/metabolism , Chlorides/metabolism , Chlorides/cerebrospinal fluid , Chlorides/pharmacology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology
11.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38573803

ABSTRACT

Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.


Subject(s)
Chlorides , Humans , Chlorides/metabolism , Animals , Homeostasis , Chloride Channels/metabolism , Chloride Channels/genetics , Signal Transduction , Extracellular Fluid/metabolism , Ion Transport
12.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674160

ABSTRACT

Slc4a genes encode various types of transporters, including Na+-HCO3- cotransporters, Cl-/HCO3- exchangers, or Na+-driven Cl-/HCO3- exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl-/HCO3- exchanger, which can be driven by either Na+ or K+, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na+ or K+ drive Cl-/HCO3- exchanger activity in cells overexpressing Slc4a8 or Slc4a10. Further characterization of cation-driven Cl-/HCO3- exchange demonstrated that Slc4a8 and Slc4a10 also mediate Cl- and HCO3--dependent K+ transport. Full-atom molecular dynamics simulation on the recently solved structure of Slc4a8 supports the coordination of K+ at the Na+ binding site in S1. Sequence analysis shows that the critical residues coordinating monovalent cations are conserved among mouse Slc4a8 and Slc4a10 proteins. Together, our results suggest that Slc4a8 and Slc4a10 might transport K+ in the same direction as HCO3- ions in a similar fashion to that described for Na+ transport in the rat Slc4a8 structure.


Subject(s)
Potassium , Sodium-Bicarbonate Symporters , Animals , Mice , Bicarbonates/metabolism , Binding Sites , Chloride-Bicarbonate Antiporters/metabolism , Chloride-Bicarbonate Antiporters/genetics , Chlorides/metabolism , Ion Transport , Molecular Dynamics Simulation , Potassium/metabolism , Sodium/metabolism , Sodium-Bicarbonate Symporters/metabolism , Sodium-Bicarbonate Symporters/genetics
13.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658537

ABSTRACT

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Subject(s)
Caenorhabditis elegans , Neurons , Optogenetics , Zebrafish , Animals , Caenorhabditis elegans/genetics , Neurons/metabolism , Neurons/physiology , Optogenetics/methods , Channelrhodopsins/metabolism , Channelrhodopsins/genetics , Humans , Drosophila , Potassium Channels/metabolism , Potassium Channels/genetics , Chlorides/metabolism , Animals, Genetically Modified , Behavior, Animal , HEK293 Cells , Drosophila melanogaster
14.
Bioessays ; 46(6): e2400004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615322

ABSTRACT

The way the central nervous system (CNS) responds to diverse stimuli is contingent upon the specific brain state of the individual, including sleep and wakefulness. Despite the wealth of readout parameters and data delineating the brain states, the primary mechanisms are yet to be identified. Here we highlight the role of astrocytes, with a specific emphasis on chloride (Cl-) homeostasis as a modulator of brain states. Neuronal activity is regulated by the concentration of ions that determine excitability. Astrocytes, as the CNS homeostatic cells, are recognised for their proficiency in maintaining dynamic homeostasis of ions, known as ionostasis. Nevertheless, the contribution of astrocyte-driven ionostasis to the genesis of brain states or their response to sleep-inducing pharmacological agents has been overlooked. Our objective is to underscore the significance of astrocytic Cl- homeostasis, elucidating how it may underlie the modulation of brain states. We endeavour to contribute to a comprehensive understanding of the interplay between astrocytes and brain states.


Subject(s)
Astrocytes , Brain , Chlorides , Homeostasis , Astrocytes/metabolism , Chlorides/metabolism , Brain/metabolism , Humans , Animals , Neurons/metabolism , Neurons/physiology , Sleep/physiology , Wakefulness/physiology
15.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38433340

ABSTRACT

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Subject(s)
Sharks , Animals , Sharks/metabolism , Salt Gland/metabolism , Chlorides/metabolism , Chlorides/pharmacology , Dogfish/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/pharmacology , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/pharmacology , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology , Sodium/metabolism , Sodium/pharmacology , Potassium/metabolism , Potassium/pharmacology
16.
Exp Neurol ; 376: 114754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493983

ABSTRACT

Spasticity is a complex and multidimensional disorder that impacts nearly 75% of individuals with spinal cord injury (SCI) and currently lacks adequate treatment options. This sensorimotor condition is burdensome as hyperexcitability of reflex pathways result in exacerbated reflex responses, co-contractions of antagonistic muscles, and involuntary movements. Transcutaneous spinal cord stimulation (tSCS) has become a popular tool in the human SCI research field. The likeliness for this intervention to be successful as a noninvasive anti-spastic therapy after SCI is suggested by a mild and transitory improvement in spastic symptoms following a single stimulation session, but it remains to be determined if repeated tSCS over the course of weeks can produce more profound effects. Despite its popularity, the neuroplasticity induced by tSCS also remains widely unexplored, particularly due to the lack of suitable animal models to investigate this intervention. Thus, the basis of this work was to use tSCS over multiple sessions (multi-session tSCS) in a rat model to target spasticity after SCI and identify the long-term physiological improvements and anatomical neuroplasticity occurring in the spinal cord. Here, we show that multi-session tSCS in rats with an incomplete (severe T9 contusion) SCI (1) decreases hyperreflexia, (2) increases the low frequency-dependent modulation of the H-reflex, (3) prevents potassium-chloride cotransporter isoform 2 (KCC2) membrane downregulation in lumbar motoneurons, and (4) generally augments motor output, i.e., EMG amplitude in response to single pulses of tSCS, particularly in extensor muscles. Together, this work displays that multi-session tSCS can target and diminish spasticity after SCI as an alternative to pharmacological interventions and begins to highlight the underlying neuroplasticity contributing to its success in improving functional recovery.


Subject(s)
Homeostasis , Rats, Sprague-Dawley , Reflex, Abnormal , Spinal Cord Injuries , Spinal Cord Stimulation , Animals , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Rats , Homeostasis/physiology , Reflex, Abnormal/physiology , Spinal Cord Stimulation/methods , Female , Chlorides/metabolism , Muscle Spasticity/etiology , Muscle Spasticity/therapy , Neuronal Plasticity/physiology
17.
J Biol Chem ; 300(4): 107210, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519030

ABSTRACT

Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and ß-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.


Subject(s)
Bacterial Proteins , Flavins , Oxidoreductases , Streptomyces , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Flavins/metabolism , Flavins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Streptomyces/enzymology , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared/methods , Halogenation , Bromides/chemistry , Bromides/metabolism , Tryptophan/metabolism , Tryptophan/chemistry , Binding Sites , Chlorides/metabolism , Chlorides/chemistry
18.
Nat Commun ; 15(1): 2085, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453905

ABSTRACT

Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.


Subject(s)
Caenorhabditis elegans , Chlorides , Animals , Chlorides/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Chloride Channels/metabolism , Liposomes
19.
Environ Toxicol ; 39(5): 2937-2947, 2024 May.
Article in English | MEDLINE | ID: mdl-38308452

ABSTRACT

Mercury chloride is a type of heavy metal that causes the formation of free radicals, causing hepatotoxicity, nephrotoxicity and apoptosis. In this study, the effects of naringenin on oxidative stress and apoptosis in the liver and kidney of rats exposed to mercury chloride were investigated. In the study, 41 2-month-old male Wistar-Albino rats were divided into five groups. Accordingly, group 1 was set as control group, group 2 as naringenin-100, group 3 as mercury chloride, group 4 as mercury chloride + naringenin-50, and group 5 as mercury chloride + naringenin-100. For the interventions, 1 mL/kg saline was administered to the control, 0.4 mg/kg/day mercury (II) chloride to the mercury chloride groups by i.p., and 50 and 100 mg/kg/day naringenin prepared in corn oil to the naringenin groups by gavage. All the interventions lasted for 20 days. Mercury chloride administration was initiated 1 h following the administration of naringenin. When mercury chloride and the control group were compared, a significant increase in plasma urea, liver and kidney malondialdehyde (MDA) levels, in kidney superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities (p < .001), and a significant decrease in liver and kidney glutathione (GSH) levels (p < .001), in liver catalase (CAT) activity (p < .01) were observed. In addition, histopathological changes and a significant increase in caspase-3 levels were detected (p < .05). When mercury chloride and treatment groups were compared, the administration of naringenin caused a decrease aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) (p < .01), urea, creatinine levels (p < .001) in plasma, MDA levels in liver and kidney, SOD, GSH-Px, GST activities in kidney (p < .001), and increased GSH levels in liver and kidney. The addition of naringenin-100 increased GSH levels above the control (p < .001). The administration of naringenin was also decreased histopathological changes and caspase-3 levels (p < .05). Accordingly, it was determined that naringenin is protective and therapeutic against mercury chloride-induced oxidative damage and apoptosis in the liver and kidney, and 100 mg/kg naringenin is more effective in preventing histopathological changes and apoptosis.


Subject(s)
Chlorides , Flavanones , Mercury , Rats , Male , Animals , Chlorides/metabolism , Caspase 3/metabolism , Rats, Wistar , Mercuric Chloride/toxicity , Mercuric Chloride/metabolism , Oxidative Stress , Antioxidants/metabolism , Kidney , Liver , Glutathione/metabolism , Superoxide Dismutase/metabolism , Apoptosis , Mercury/metabolism , Mercury/pharmacology , Urea
20.
J Comp Physiol B ; 194(1): 21-32, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308715

ABSTRACT

In salivary acinar cells, cholinergic stimulation induces elevations of cytosolic [Ca2+]i to activate the apical exit of Cl- through TMEM16A Cl- channels, which acts as a driving force for fluid secretion. To sustain the Cl- secretion, [Cl-]i must be maintained to levels that are greater than the electrochemical equilibrium mainly by Na+-K+-2Cl- cotransporter-mediated Cl- entry in basolateral membrane. Glucose transporters carry glucose into the cytoplasm, enabling the cells to produce ATP to maintain Cl- and fluid secretion. Sodium-glucose cotransporter-1 is a glucose transporter highly expressed in acinar cells. The salivary flow is suppressed by the sodium-glucose cotransporter-1 inhibitor phlorizin. However, it remains elusive how sodium-glucose cotransporter-1 contributes to maintaining salivary fluid secretion. To examine if sodium-glucose cotransporter-1 activity is required for sustaining Cl- secretion to drive fluid secretion, we analyzed the Cl- currents activated by the cholinergic agonist, carbachol, in submandibular acinar cells while comparing the effect of phlorizin on the currents between the whole-cell patch and the gramicidin-perforated patch configurations. Phlorizin suppressed carbachol-induced oscillatory Cl- currents by reducing the Cl- efflux dependent on the Na+-K+-2Cl- cotransporter-mediated Cl- entry in addition to affecting TMEM16A activity. Our results suggest that the sodium-glucose cotransporter-1 activity is necessary for maintaining the oscillatory Cl- secretion supported by the Na+-K+-2Cl- cotransporter activity in real time to drive fluid secretion. The concerted effort of sodium-glucose cotransporter-1, Na+-K+-2Cl- cotransporter, and apically located Cl- channels might underlie the efficient driving of Cl- secretion in different secretory epithelia from a variety of animal species.


Subject(s)
Acinar Cells , Phlorhizin , Animals , Mice , Acinar Cells/metabolism , Carbachol/pharmacology , Chlorides/metabolism , Glucose , Phlorhizin/pharmacology , Sodium/metabolism , Sodium-Potassium-Chloride Symporters
SELECTION OF CITATIONS
SEARCH DETAIL
...