Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 501
Filter
1.
Int J Biol Macromol ; 266(Pt 1): 131003, 2024 May.
Article in English | MEDLINE | ID: mdl-38521326

ABSTRACT

High-purity pulp fibers can be obtained by using chlorine dioxide to oxidize lignin. However, organic halogen compounds (AOX) are generated from chlorination side reactions during the lignin oxidation process. In this study, phenolic lignin model compounds with different substituents were selected. The effects of substituent position on the production of free radicals and oxidative ring opening in benzene rings were analyzed. It was found that the structural transformation of lignin and the reaction consumption of ClO2 were significantly changed under high concentration of ClO2. The molar consumption ratio of compound to ClO2 was increased from 1:2 to 1:3. Quinone, an intermediate product that promotes the formation of phenoxy radicals, was found to be stabilized in the reaction. This is attributed to that the benzene ring of lignin is activated through long-range electrostatic interactions. The formation of free radicals and the oxidative ring-opening reaction of benzene rings were facilitated. The efficient oxidation of lignin by ClO2 was fulfilled. Chlorination reactions of lignin were suppressed at elevated oxidation efficiency. The pollution load of wastewater was significantly reduced. AOX generation was reduced by 69.27 %. This provides a new method for efficient oxidative degradation of lignin and preparation of high purity pulp fiber.


Subject(s)
Chlorine Compounds , Lignin , Oxidation-Reduction , Oxides , Lignin/chemistry , Chlorine Compounds/chemistry , Oxides/chemistry , Halogenation , Wastewater/chemistry
2.
Environ Pollut ; 339: 122736, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37838321

ABSTRACT

Recently, it has been reported that chlorine dioxide (ClO2) and (bi)sulfite/ClO2 showed excellent performance in micropollutant removal from water; however, the degradation mechanisms and application boundaries of the two system have not been identified. In this study, bisphenol A (BPA) was chosen as the target contaminant to give multiple comparisons of ClO2 and S(IV)/ClO2 process regarding the degradation performance of contaminant, generation of reactive species, transformation of products and toxicity variation. Both ClO2 and S(IV)/ClO2 can degrade BPA within 3 min. The BPA degradation mechanism was mainly based on direct oxidation in ClO2 process while it was attributed to radicals (especially SO4·-) generation in S(IV)/ClO2 process. Meanwhile, the effect of pH and coexisting substances (Cl-, Br-, HCO3- and HA) were evaluated. It was found that ClO2 preferred the neutral and alkaline condition and S(IV)/ClO2 preferred the acidic condition for BPA degradation. An unexpected speed-up of BPA degradation was observed in ClO2 process in the presence of Br-, HCO3- and HA. In addition, the intermediate products in BPA degradation were identified. Three exclusive products were found in ClO2 process, in which p-benzoquinone was considered to be the reason of the acute toxicity increase in ClO2 process.


Subject(s)
Chlorine Compounds , Water Pollutants, Chemical , Water Purification , Oxides/toxicity , Oxides/chemistry , Chlorine Compounds/toxicity , Chlorine Compounds/chemistry , Phenols/toxicity , Oxidation-Reduction , Chlorine/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 57(32): 12063-12071, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37531609

ABSTRACT

The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3-) into produce, this study evaluated whether switching to chlorine dioxide (ClO2) could reduce chlorate concentrations within the produce. Because ClO2 exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO3- can form through several pathways, particularly by reactions between ClO2 and the chlorine used to generate ClO2 via reaction with chlorite (ClO2-) or chlorine that forms when ClO2 reacts with produce. This study demonstrates that purging ClO2 from the chlorine and ClO2- mixture used for its generation through a trap containing ClO2- can scavenge chlorine, substantially reducing ClO3- concentrations in ClO2 stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO3- formation by binding the chlorine produced by ClO2 reactions with produce as inactive chloramines without scavenging ClO2. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO3- concentrations were below regulatory guidelines for each of these vegetables when treated with ClO2 together with these two purification measures. Switching to purified ClO2 also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce.


Subject(s)
Chlorine Compounds , Disinfectants , Water Purification , Disinfection , Chlorates , Chlorine , Chlorine Compounds/chemistry , Oxides/chemistry , Disinfectants/chemistry
4.
Water Res ; 242: 120231, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37385073

ABSTRACT

Chlorine dioxide (ClO2) is a widely used sterilizer and a disinfectant across a multitude of industries. When using ClO2, it is imperative to measure the ClO2 concentration to abide by the safety regulations. This study presents a novel, soft sensor method based on Fourier transform infrared spectroscopy (FTIR) spectroscopy for measurement of ClO2 concentration in different water samples varying from milli Q to wastewater. Six distinct artificial neural network models were constructed and evaluated based on three overarching statistical standards to select the optimal model. The OPLS-RF model outperformed all other models with R2, RMSE, and NRMSE values of 0.945, 0.24, and 0.063, respectively. The developed model demonstrated limit of detection and limit of quantification values of 0.1 and 0.25 ppm, respectively, for water. Furthermore, the model also exhibited good reproducibility and precision as measured by the BCMSEP (0.064). The soft sensor-based method presented in the study offers significant advantages in terms of simplicity and speedy detection. In summary, the study presents development of a soft sensor that is capable of predicting the trace content of chlorine dioxide ranging between 0.1 to 5 ppm in a water sample by connecting FTIR with an OPLS-RF model.


Subject(s)
Chlorine Compounds , Disinfectants , Water Purification , Water , Reproducibility of Results , Oxides/chemistry , Chlorine Compounds/chemistry , Chlorine
5.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555303

ABSTRACT

This review examines the role of chlorine dioxide (ClO2) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO2 helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.8 ppm. In any case, human consumption must be strictly regulated since, given its highly reactive nature, it can react with and oxidize many of the inorganic compounds found in natural waters. Simultaneously, chlorine dioxide reacts with natural organic matter in water, including humic and fulvic acids, forming oxidized organic compounds such as aldehydes and carboxylic acids, and rapidly oxidizes phenolic compounds, amines, amino acids, peptides, and proteins, as well as the nicotinamide adenine dinucleotide NADH, responsible for electron and proton exchange and energy production in all cells. The influence of ClO2 on biomolecules is derived from its interference with redox processes, modifying the electrochemical balances in mitochondrial and cell membranes. This discourages its use on an individual basis and without specialized monitoring by health professionals.


Subject(s)
Chlorine Compounds , Disinfectants , Drinking Water , Water Purification , Humans , Chlorine Compounds/chemistry , Oxides/chemistry , Oxidation-Reduction , Disinfectants/pharmacology , Chlorine , Disinfection
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362097

ABSTRACT

Chlorine dioxide is widely used for pulp bleaching because of its high delignification selectivity. However, efficient and clean chlorine dioxide bleaching is limited by the complexity of the lignin structure. Herein, the oxidation reactions of phenolic (vanillyl alcohol) and non-phenolic (veratryl alcohol) lignin model species were modulated using chlorine dioxide. The effects of chlorine dioxide concentration, reaction temperature, and reaction time on the consumption rate of the model species were also investigated. The optimal consumption rate for the phenolic species was obtained at a chlorine dioxide concentration of 30 mmol·L-1, a reaction temperature of 40 °C, and a reaction time of 10 min, resulting in the consumption of 96.3% of vanillyl alcohol. Its consumption remained essentially unchanged compared with that of traditional chlorine dioxide oxidation. However, the consumption rate of veratryl alcohol was significantly reduced from 78.0% to 17.3%. Additionally, the production of chlorobenzene via the chlorine dioxide oxidation of veratryl alcohol was inhibited. The structural changes in lignin before and after different treatments were analyzed. The overall structure of lignin remained stable during the optimization of the chlorine dioxide oxidation treatment. The signal intensities of several phenolic units were reduced. The effects of the selective oxidation of lignin by chlorine dioxide on the pulp properties were analyzed. Pulp viscosity significantly increased owing to the preferential oxidation of phenolic lignin by chlorine dioxide. The pollution load of bleached effluent was considerably reduced at similar pulp brightness levels. This study provides a new approach to chlorine dioxide bleaching. An efficient and clean bleaching process of the pulp was developed.


Subject(s)
Chlorine Compounds , Lignin , Lignin/chemistry , Chlorine Compounds/pharmacology , Chlorine Compounds/chemistry , Phenols/pharmacology , Hypochlorous Acid , Chlorine/chemistry , Paper
7.
Water Res ; 225: 119120, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36126426

ABSTRACT

The triplet states of dissolved organic matter (3DOM*) have been well known to oxidize various organic contaminants, but evidence of their reducing properties are largely scarce. In this work, chlorine dioxide (ClO2) as a single-electron oxidant was used as a probe to evaluate the reduction property of 3DOM*. The reduction of ClO2 to chlorite was observed in the solutions of model photosensitizers (i.e., 4-carboxybenzophenone, benzophenone, acetophenone, 3-methoxyacetophenone, naphthalene, and xanthone) during UV irradiation with the presence of ClO2, though they are resistant to ClO2 oxidation in the dark. The reducing property of the triplet states of photosensitizers was verified and their second-order reaction rate constants with ClO2 were determined to be in the range of 1.45(± 0.03)× 109 - 2.18(± 0.06) × 109 M-1 s-1 at pH 7.0. The quenching tests excluded the role of other reactive species (e.g., HO•, O(3P), Cl•, ClO• and HOCl/OCl-, O2•- and eaq-) in ClO2 reduction to chlorite when using model photosensitizers and DOM isolates. Chlorite formation was 48.1-90.4% and 4812.8-7721.8% higher during UV irradiation with the presence of ClO2 and DOM than those without UV irradiation or without DOM present, respectively. The enhancement was attributed to the enhanced electron donating capacity (chlorite precursors) of DOM upon UV irradiation and also to 3DOM* acting as an electron donor reducing ClO2 to chlorite. This study highlighted the important role of 3DOM* as a reductant.


Subject(s)
Chlorine Compounds , Water Purification , Xanthones , Photosensitizing Agents , Reducing Agents , Chlorine Compounds/chemistry , Oxides/chemistry , Oxidation-Reduction , Oxidants , Benzophenones , Naphthalenes , Acetophenones , Chlorine/chemistry
8.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144510

ABSTRACT

The current wastewater treatment method shows low efficiency in treating wastewater with high concentrations of chemical mechanical pulp (CMP). Therefore, a chlorine dioxide Pretreatment Anaerobic Treatment (DPAT) was developed and applied to treat the CMP wastewater to obtain higher efficiency, obtaining the following results: The biodegradability of CMP wastewater improved after chlorine dioxide pretreatment. The COD of wastewater treated with chlorine dioxide was reduced from 5634 mg/L to 660 mg/L. The removal rate for chemical oxygen demand (COD) was 88.29%, 29.13% higher than the common anaerobic treatment. The reasons for the high efficiency of the DPAT treatment were that chlorine dioxide pretreatment removed the toxic substances in the original wastewater and thereby promoted the proliferation and growth of the anaerobe. The results show that pretreatment with chlorine dioxide can effectively enhance the biodegradability of high-concentration CMP wastewater. Therefore, DPAT treatment of high-concentration CMP wastewater is beneficial to environmental protection.


Subject(s)
Chlorine Compounds , Eucalyptus , Chlorine Compounds/chemistry , Oxides , Waste Disposal, Fluid/methods , Wastewater
9.
Water Res ; 222: 118886, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35917667

ABSTRACT

Chlorine dioxide (ClO2) is used as an oxidant or disinfectant in (waste)water treatment, whereas sulfite is a prevalent reducing agent to quench the excess ClO2. This study demonstrated that seven micropollutants with structural diversity could be rapidly degraded in the reaction between ClO2 and sulfite under environmentally relevant conditions in synthetic and real drinking water. For example, carbamazepine, which is recalcitrant to standalone ClO2 or sulfite, was degraded by 55%-80% in 10 s in the ClO2/sulfite process at 30-µM ClO2 and 30-µM sulfite concentrations within a pH range of 6.0-11.0. Results from experiments and a kinetic model supported that chlorine monoxide (ClO·) and sulfate radicals (SO4·-) were generated in the ClO2/sulfite process, while hydroxyl radical generation was insignificant. Apart from radicals, dichlorine trioxide (Cl2O3) was generated and largely contributed to micropollutant degradation, supported by experimental results using stopped-flow spectrometry and quantum chemical calculations. The impacts of pH, sulfite dosage, and water matrix components (chloride, bicarbonate, and natural organic matter) on micropollutant abatement in the ClO2/sulfite process were evaluated and discussed. When treating the real potable water, the concentrations of organic (five regulated disinfection byproducts) and inorganic byproducts (chlorite and chlorate) formed in the ClO2/sulfite process were all below the drinking water standards. This study disclosed fundamental knowledge advancements relevant to the reaction mechanisms between ClO2 and sulfite, and highlighed a novel process to abate micropollutants in water and wastewater.


Subject(s)
Chlorine Compounds , Drinking Water , Water Pollutants, Chemical , Water Purification , Chlorine/chemistry , Chlorine Compounds/chemistry , Disinfection , Drinking Water/analysis , Oxidation-Reduction , Oxides/chemistry , Sulfites , Water Pollutants, Chemical/chemistry , Water Purification/methods
10.
Food Microbiol ; 99: 103819, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119104

ABSTRACT

Nuts, including almonds, are occasionally contaminated with Salmonella spp. In this study, we used chlorine dioxide (ClO2) gas to inactivate S. enterica subsp. Enterica serovar Enteritidis on almonds. Almonds inoculated with a single strain of S. Enteritidis (8.95 log cfu/mL) were exposed to ClO2 gas generated from 1.0 or 1.5 mL ClO2 solution in a sealed container at 50 or 60 °C (43% relative humidity) for up to 10 h. The concentration of ClO2 gas peaked at 354-510 and 750-786 ppm within 0.5 h upon deposition of 1.0 and 1.5 mL of aqueous ClO2, respectively, and gradually decreased thereafter. Population of S. Enteritidis on almonds treated at 50 °C decreased to 1.70-2.32 log cfu/sample within 1 h of exposure to ClO2 gas and decreased to below the detection limit (1.7 log cfu/sample) at all ClO2 concentrations after 8 h. At 60 °C, the microbial population fell below the detection limit within 1 h, regardless of the volume of ClO2 solution supplied. Microbial survival on almonds treated with ClO2 gas and stored at 12 or 25 °C was observed for up to 8 weeks and the organism was not recovered from the almonds treated for 10 h and stored at 12 °C for 2-8 weeks. The lightness (L value) and redness (a value) of almonds treated for 10 h were not changed by ClO2 gas treatment, but yellowness (b value) increased. Results showed that Salmonella on almonds was successfully inactivated by ClO2 gas treatment and the microbial survival did not occur during storage.


Subject(s)
Chlorine Compounds/pharmacology , Food Preservation/methods , Food Preservatives/pharmacology , Oxides/pharmacology , Prunus dulcis/microbiology , Salmonella enteritidis/drug effects , Chlorine Compounds/chemistry , Food Preservation/instrumentation , Food Storage , Gases/pharmacology , Microbial Viability/drug effects , Nuts/microbiology , Oxides/chemistry , Salmonella enteritidis/growth & development
11.
PLoS One ; 16(5): e0252079, 2021.
Article in English | MEDLINE | ID: mdl-34038445

ABSTRACT

The present study identified the active radical species in acidic sodium chlorite and investigated the feasibility of quantifying these species with the diethylphenylenediamine (DPD) method. Electron spin resonance (ESR) spectroscopy was used to identify the active species generated in solutions containing sodium chlorite (NaClO2). The ESR signal was directly observed in an acidified sodium chlorite (ASC) aqueous solution at room temperature. This ESR signal was very long-lived, indicating that the radical was thermodynamically stable. The ESR parameters of this signal did not coincide with previously reported values of the chlorine radical (Cl●) or chlorine dioxide radical (O = Cl●-O and O = Cl-O●). We refer to this signal as being from the chloroperoxyl radical (Cl-O-O●). Quantum chemical calculations revealed that the optimal structure of the chloroperoxyl radical is much more thermodynamically stable than that of the chlorine dioxide radical. The UV-visible spectrum of the chloroperoxyl radical showed maximum absorbance at 354 nm. This absorbance had a linear relationship with the chloroperoxyl radical ESR signal intensity. Quantifying the free chlorine concentration by the DPD method also revealed a linear relationship with the maximum absorbance at 354 nm, which in turn showed a linear relationship with the chloroperoxyl radical ESR signal intensity. These linear relationships suggest that the DPD method can quantify chloroperoxyl radicals, which this study considers to be the active species in ASC aqueous solution.


Subject(s)
Chlorides/chemistry , Chlorine Compounds/chemistry , Electron Spin Resonance Spectroscopy , Oxides/chemistry , Spectrophotometry , Thiosulfates/chemistry , Water/chemistry
12.
Methods Appl Fluoresc ; 9(3)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33853048

ABSTRACT

The emerging and development of green chemistry has once again drawn the researchers' attention to eliminating the use and generation of hazardous materials. Here we report the use of a safe and effective fixative, chlorine dioxide (ClO2), instead of traditional hazardous fixatives for the cross-linking of cellular proteins to improve immunofluorescence staining of bacteria. The concentration of ClO2needed for 100% fixation is 50µg ml-1, which is much lower than that of traditional fixatives (1000-10000µg ml-1). The ClO2mediated cross-linking can preserve the integrity of bacterial cells and prevent cell loss through lysis. Meanwhile, lysozyme can permeabilize the bacterial cells, allowing the labelled antibodies to diffuse to their intracellular target molecules. By usingE. coliO157:H7/RP4 as a gram-negative bacteria model, immunofluorescence staining assays for both intracellular protein and surface polysaccharide were carried out to investigate the effect of ClO2fixation on the staining. The results demonstrated that ClO2fixation could prevent the target antigens from cracking off the bacteria without damage on the interaction between the antibodies and antigens (either for polysaccharide or protein). As a safe and effective fixative, ClO2has potential practical applications in immunofluorescence staining and fluorescencein situhybridization for single bacteria/cell analysis.


Subject(s)
Bacterial Proteins/chemistry , Chlorine Compounds/chemistry , Cross-Linking Reagents/chemistry , Fixatives/chemistry , Oxides/chemistry , Escherichia coli O157/chemistry , Fluorescent Antibody Technique , Green Chemistry Technology , Staining and Labeling
13.
Food Environ Virol ; 13(2): 241-247, 2021 06.
Article in English | MEDLINE | ID: mdl-33689143

ABSTRACT

Seeking a means of sanitizing berries, the effectiveness of steady state levels of gaseous chlorine dioxide (ClO2) against hepatitis A virus (HAV) on laboratory-contaminated berries was determined. The generated ClO2 was maintained with 1 or 2 mg/l air inside a 269-l glove box to treat 50 g batches of blueberries, raspberries, and blackberries, and 100 g batches of strawberries that were immersion coated with HAV. Normalized data for ClO2 (ppm-h/g product) is reported as a function of ClO2 concentration, treatment time, and weight of treated product. Treatments of ClO2 ranging from 1.00 to 6.27 ppm-h/g berry were evaluated. When compared to untreated HAV-contaminated berries, log reductions of HAV were > 2.1 for all berry types and conditions tested indicating the gaseous ClO2 was effective. The average log reduction with strawberries, raspberries, blueberries and blackberries treated with 1.00 ppm-h/g, the lowest ClO2 treatment tested, were 2.44, 2.49, 3.23, and 3.45, respectively. The highest treatment of 6.27 ppm-h/g was applied at two different gas concentrations of 1 mg/l and 2 mg/l. Average log reductions for blueberries and strawberries treated with 6.27 ppm-h/g were 4.34 and 4.42, and 4.03 and 3.51, applied at 1 mg/l and 2 mg/l, respectively. For blackberries and raspberries 3.20 and 3.24, and 3.23 and 3.97 log reductions were observed for 6.27 ppm-h/g treatments applied at 1 mg/l and 2 mg/l, respectively. Results indicate that HAV contamination of berries can be substantially reduced by gaseous ClO2 and offer industry a waterless means of sanitizing berries against HAV.


Subject(s)
Blueberry Plants/virology , Chlorine Compounds/pharmacology , Food Preservation/methods , Food Preservatives/pharmacology , Fragaria/virology , Hepatitis A virus/drug effects , Oxides/pharmacology , Rubus/virology , Chlorine Compounds/chemistry , Food Preservation/instrumentation , Food Preservatives/chemistry , Fruit/virology , Gases/chemistry , Gases/pharmacology , Hepatitis A virus/growth & development , Oxides/chemistry
14.
Food Microbiol ; 95: 103707, 2021 May.
Article in English | MEDLINE | ID: mdl-33397625

ABSTRACT

The aim of this study was to investigate the effect of water activity (aw) on inactivation of Listeria monocytogenes using gaseous chlorine dioxide (ClO2 (g)) under room temperature. Surface-inoculated tryptic soy agar (TSA) plates adjusted to 9 different water activity levels ranging from 0.994 to 0.429 were used as samples exposed to ClO2 (g) at 150, 250, and 350 ppm for different durations of treatment time. Results showed that the antimicrobial effect of ClO2 (g) significantly decreases as the aw level and ClO2 (g) concentration decrease. Nonlinear models, such as the modified Chick model and the Weibull model, were used to describe the inactivation kinetics of L. monocytogenes. The results showed that the modified Chick model, which is based on chemical reaction kinetics, was more suitable to describe the inactivation of L. monocytogenes (RMSE < 0.5 log CFU/g) than the Weibull model (RMSE < 1.0 log CFU/g). A multiple regression model was developed for the describing the effect of aw and ClO2 (g) concentration on bacterial inactivation. The results of this study may be used to design ClO2 (g) treatment processes to inactivate L. monocytogenes in low-moisture foods.


Subject(s)
Chlorine Compounds/pharmacology , Disinfectants/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Oxides/pharmacology , Water/analysis , Chlorine Compounds/chemistry , Colony Count, Microbial , Disinfectants/chemistry , Gases/pharmacology , Kinetics , Listeria monocytogenes/chemistry , Oxides/chemistry , Water/metabolism
15.
Food Microbiol ; 92: 103576, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950160

ABSTRACT

Gaseous treatments with ClO2 and O3 on low-moisture foods (LMFs) have been reported for their efficient bacterial reduction without affecting the external quality of food. However, these studies were conducted on a small scale, which limits their application to LMF industries. We aimed to evaluate the effectiveness of gaseous antimicrobial intervention with ClO2 or O3 to reduce foodborne pathogens (Shiga toxin-producing Escherichia coli, serovars of Salmonella enterica, and Listeria monocytogenes) inoculated on almonds and peppercorns maintained under various conditions. Almonds were treated for over 4 or 6 h. Peppercorns were treated for over 2.5 or 4 h. Gaseous O3 treatment was used for 6 h on almonds and 2 or 4 h on peppercorns. Additionally, the effects of relative humidity (RH) during the treatment of peppercorns and post-treatment heating on almonds were evaluated. Heating at 65 °C post-ClO2 treatment yielded the highest bacterial log reduction of 4.6 CFU/g on almonds, while 80% RH resulted in 3.7-log bacterial reduction on peppercorns. Gaseous O3 resulted in maximum log reductions of 1.3 and 2.5 CFU/g on almonds and peppercorns, respectively. No visual damage was observed. In conclusion, ClO2 was more efficient than O3 and the treatment can be incorporated into industrial practices.


Subject(s)
Chlorine Compounds/pharmacology , Food Preservation/methods , Food Preservatives/pharmacology , Oxides/pharmacology , Ozone/pharmacology , Piper nigrum/microbiology , Prunus dulcis/microbiology , Chlorine Compounds/chemistry , Food Microbiology , Food Preservation/instrumentation , Food Preservatives/chemistry , Gases/chemistry , Gases/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Oxides/chemistry , Ozone/chemistry , Salmonella enterica/drug effects , Salmonella enterica/growth & development , Seeds/microbiology
16.
J Environ Sci Health B ; 55(12): 1069-1079, 2020.
Article in English | MEDLINE | ID: mdl-32880524

ABSTRACT

Bentazone degradation efficiency and mineralization in water solutions using chlorine dioxide treatment were evaluated. Double distilled water and a river water sample spiked with bentazone were studied and compared after chlorine dioxide treatment. Degradation efficiency was determined using high-performance liquid chromatography (HPLC). Daphnia magna toxicity testing and total organic carbon (TOC) analysis were used to ascertain the toxicity of the degraded solutions and mineralization degree. Bentazone degradation products were identified using gas chromatography with a triple quadrupole mass detector (GC-MS-MS). A simple mechanistic scheme for oxidative degradation of bentazone was proposed based on the degradation products that were identified. Decrease in D. magna mortality, high degradation efficiency and partial bentazone mineralization were achieved by waters containing bentazone degradation products, which indicate the formation of less toxic compounds than the parent bentazone and effective removal of bentazone from the waters. Bentazone degraded into four main degradation products. Humic acid from Sava River water influenced bentazone degradation, resulting in a lower degradation efficiency in this matrix (about 10% lower than in distilled water). Chlorine dioxide treatment of water to degrade bentazone is efficient and offers a novel approach in the development of new technology for removal of this herbicide from contaminated water.


Subject(s)
Benzothiadiazines/chemistry , Herbicides/chemistry , Water Pollutants, Chemical/chemistry , Animals , Benzothiadiazines/toxicity , Carbon/analysis , Chlorine Compounds/chemistry , Chromatography, High Pressure Liquid , Daphnia/drug effects , Gas Chromatography-Mass Spectrometry , Herbicides/toxicity , Humic Substances , Oxidation-Reduction , Oxides/chemistry , Rivers , Toxicity Tests , Water Pollutants, Chemical/toxicity , Water Purification/methods
17.
Food Chem ; 328: 127121, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32474241

ABSTRACT

Chlorine dioxide (ClO2) gas was utilized for detoxifying aflatoxin B1 (AFB1) in corn for the first time. Four degradation compounds were identified by LC-MS as C17H13O8, C17H15O10, C16H15O10, and C15H11O8. Structurally, the biological activity of ClO2-treated AFB1 was removed due to the disappearance of C8-C9 double bond in the furan ring and the modification of cyclopentanone and methoxy after ClO2 treatment. The cell viability assay on human embryo hepatocytes confirmed little toxicity of the degradation products. The degradation efficiency of AFB1 on corn peaked near 90.0% under the optimized conditions and reached 79.6% for low initial contamination of AFB1 at 5-20 µg/kg. Accordingly, ClO2 has the potential to be developed into an effective, efficient, and economic approach to detoxify AFB1 in grains.


Subject(s)
Aflatoxin B1/chemistry , Chlorine Compounds/chemistry , Chlorine/chemistry , Oxides/chemistry , Zea mays/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry
18.
Environ Monit Assess ; 192(7): 422, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32519186

ABSTRACT

Chlorine dioxide has been reported as very efficiently removing pesticides and other organic compounds from water matrixes. Due to pesticide toxicity and potential toxicity of their degradation products, it is important to monitor these compounds as environmental pollutants in ground and surface waters. Evaluating the effects of chlorine dioxide treatment is necessary, and toxicity studies are used to ascertain the severity of effects of intermediates due to incomplete degradation of the parent compounds. In this paper, for the first time, chlorine dioxide is applied and evaluated for the removal of chloroacetamide herbicides (pethoxamid and metazachlor) from waters (deionized water and Sava River water). The degradation degree of herbicides was measured by high-performance liquid chromatography, the main degradation products were identified using gas chromatography with a triple quadrupole mass detector, and the degree of mineralization was monitored by total organic carbon analysis. Four and two degradation products were identified after pethoxamid and metazachlor degradation, respectively. Total organic carbon analysis showed mineralization occurred, but it was incomplete. The mineralization and the characteristics of the degradation products obtained were tested using Daphnia magna and showed lower toxicity than the parent herbicides. The advantage of the applied treatment was a very high degradation percentage for pethoxamid removal from deionized water and Sava River water (100% and 97%, respectively), with higher mineralization efficiency (65%) than metazachlor. Slightly lower degradation efficiency in the Sava River water was due to chlorine dioxide oxidizing the herbicides and dissolved organic matter simultaneously.


Subject(s)
Acetamides , Chlorine Compounds , Oxides , Water Pollutants, Chemical , Water Purification , Acetamides/analysis , Acetamides/chemistry , Acetamides/metabolism , Acetamides/toxicity , Animals , Chlorine Compounds/chemistry , Daphnia/drug effects , Ecotoxicology , Oxides/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Water Purification/methods
20.
J Med Virol ; 92(8): 1298-1302, 2020 08.
Article in English | MEDLINE | ID: mdl-31919857

ABSTRACT

Sexual transmission is the most common pathway for the spread of Human papillomavirus (HPV). However, the potential for iatrogenic HPV infections is also real. Even though cleared by the Food and Drug Administration and recommended by the World Federation for Ultrasound in Medicine and Biology, several disinfectants including glutaraldehyde and o-phthalaldehyde have shown a lack of efficacy for inactivating HPV. Other methods such as ultraviolet C and concentrated hydrogen peroxide have been shown highly effective at inactivating infectious HPV. In this study, two chlorine dioxide systems are also shown to be highly efficacious at inactivating HPV. An important difference in these present studies is that as opposed to testing in suspension or using a carrier, we dried the infectious virus directly onto endocavitary ultrasound probes and nasendoscopes, therefore, validating a more realistic system to demonstrate disinfectant efficacy.


Subject(s)
Alphapapillomavirus/drug effects , Chlorine Compounds/pharmacology , Disinfectants/pharmacology , Disinfection/methods , Equipment Contamination , Equipment and Supplies/virology , Oxides/pharmacology , Chlorine Compounds/chemistry , Endoscopy/instrumentation , HaCaT Cells , Humans , Oxides/chemistry , Papillomavirus Infections/prevention & control , Papillomavirus Infections/transmission , Ultrasonography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...