Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 425
Filter
1.
BMC Oral Health ; 24(1): 648, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824549

ABSTRACT

BACKGROUND: Ensuring the safety of dental unit waterlines (DUWLs) has become a pivotal issue in dental care practices, focusing on the health implications for both patients and healthcare providers. The inherent structure and usage conditions of DUWLs contribute to the risk of biofilm formation and bacterial growth, highlighting the need for effective disinfection solutions.The quest for a disinfection method that is both safe for clinical use and effective against pathogens such as Staphylococcus aureus and Escherichia coli in DUWLs underscores the urgency of this research. MATERIALS: Chlorine dioxide disinfectants at concentrations of 5, 20, and 80 mg/L were used to treat biofilms of S. aureus and E. coli cultured in DUWLs. The disinfection effectiveness was assessed through bacterial counts and culturing. Simultaneously, human skin fibroblast cells were treated with the disinfectant to observe changes in cell morphology and cytotoxicity. Additionally, the study included corrosion tests on various metals (carbon steel, brass, stainless steel, aluminum, etc.). RESULTS: Experimental results showed that chlorine dioxide disinfectants at concentrations of 20 mg/L and 80 mg/L significantly reduced the bacterial count of S. aureus and E. coli, indicating effective disinfection. In terms of cytotoxicity, higher concentrations were more harmful to cellular safety, but even at 80 mg/L, the cytotoxicity of chlorine dioxide remained within controllable limits. Corrosion tests revealed that chlorine dioxide disinfectants had a certain corrosive effect on carbon steel and brass, and the degree of corrosion increased with the concentration of the disinfectant. CONCLUSION: After thorough research, we recommend using chlorine dioxide disinfectant at a concentration of 20 mg/L for significantly reducing bacterial biofilms in dental unit waterlines (DUWLs). This concentration also ensures satisfactory cell safety and metal corrosion resistance.


Subject(s)
Biofilms , Chlorine Compounds , Dental Equipment , Disinfection , Escherichia coli , Oxides , Staphylococcus aureus , Chlorine Compounds/pharmacology , Oxides/pharmacology , Biofilms/drug effects , Escherichia coli/drug effects , Humans , Staphylococcus aureus/drug effects , Disinfection/methods , Dental Equipment/microbiology , Disinfectants/pharmacology , Dental Disinfectants/pharmacology , Fibroblasts/drug effects , Bacterial Load/drug effects , In Vitro Techniques
2.
Water Res ; 259: 121794, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38824796

ABSTRACT

Legionella is an opportunistic waterborne pathogen that causes Legionnaires' disease. It poses a significant public health risk, especially to vulnerable populations in health care facilities. It is ubiquitous in manufactured water systems and is transmitted via inhalation or aspiration of aerosols/water droplets generated from water fixtures (e.g., showers and hand basins). As such, the effective management of premise plumbing systems (building water systems) in health care facilities is essential for reducing the risk of Legionnaires' disease. Chemical disinfection is a commonly used control method and chlorine-based disinfectants, including chlorine, chloramine, and chlorine dioxide, have been used for over a century. However, the effectiveness of these disinfectants in premise plumbing systems is affected by various interconnected factors that can make it challenging to maintain effective disinfection. This systematic literature review identifies all studies that have examined the factors impacting the efficacy and decay of chlorine-based disinfectant within premise plumbing systems. A total of 117 field and laboratory-based studies were identified and included in this review. A total of 20 studies directly compared the effectiveness of the different chlorine-based disinfectants. The findings from these studies ranked the typical effectiveness as follows: chloramine > chlorine dioxide > chlorine. A total of 26 factors were identified across 117 studies as influencing the efficacy and decay of disinfectants in premise plumbing systems. These factors were sorted into categories of operational factors that are changed by the operation of water devices and fixtures (such as stagnation, temperature, water velocity), evolving factors which are changed in-directly (such as disinfectant concentration, Legionella disinfectant resistance, Legionella growth, season, biofilm and microbe, protozoa, nitrification, total organic carbon(TOC), pH, dissolved oxygen(DO), hardness, ammonia, and sediment and pipe deposit) and stable factors that are not often changed(such as disinfectant type, pipe material, pipe size, pipe age, water recirculating, softener, corrosion inhibitor, automatic sensor tap, building floor, and construction activity). A factor-effect map of each of these factors and whether they have a positive or negative association with disinfection efficacy against Legionella in premise plumbing systems is presented. It was also found that evaluating the effectiveness of chlorine disinfection as a water risk management strategy is further complicated by varying disinfection resistance of Legionella species and the form of Legionella (culturable/viable but non culturable, free living/biofilm associated, intracellular replication within amoeba hosts). Future research is needed that utilises sensors and other approaches to measure these key factors (such as pH, temperature, stagnation, water age and disinfection residual) in real time throughout premise plumbing systems. This information will support the development of improved models to predict disinfection within premise plumbing systems. The findings from this study will inform the use of chlorine-based disinfection within premise plumbing systems to reduce the risk of Legionnaires disease.


Subject(s)
Chlorine , Disinfectants , Legionella , Water Purification , Chloramines/pharmacology , Chlorine/pharmacology , Chlorine Compounds/pharmacology , Disinfectants/pharmacology , Disinfection/methods , Legionella/drug effects , Oxides/pharmacology , Water Microbiology , Water Purification/methods , Water Supply
3.
J Hosp Infect ; 149: 22-25, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705474

ABSTRACT

BACKGROUND: The role of the healthcare environment in the transmission of clinical pathogens is well established. EN 17126:2018 was developed to address the need for regulated sporicidal product testing and includes a realistic medical soil to enable validation of products that claim combined cleaning and disinfection efficacy. AIM: To investigate the chemical stability and sporicidal efficacy of oxidizing disinfectant products in the presence of simulated clean and medical dirty conditions. METHODS: Disinfectant stability and sporicidal efficacy were evaluated in like-for-like ratios of soil:product. Disinfectants were exposed to simulated test soils and free chlorine, chlorine dioxide or peracetic acid concentrations were measured using standard colorimetric methods. Efficacy of disinfectants against C. difficile R027 endospores was assessed as per EN 17126:2018. Comparisons of performance between clean and medical dirty conditions were performed using one-way analysis of variance. Correlation analysis was performed using Pearson product-moment correlation. FINDINGS: Performance of chlorine-releasing agents (sodium dichloroisocyanurate, chlorine dioxide and hypochlorous acid) was concentration dependent, with 1000 ppm chlorine showing reduced stability and efficacy in dirty conditions. By contrast, peracetic acid product demonstrated stability and consistently achieved efficacy in dirty conditions. CONCLUSION: These results have implications for clinical practice, as ineffective environmental decontamination may increase the risk of transmission of pathogens that can cause healthcare-associated infections.


Subject(s)
Chlorine Compounds , Disinfectants , Oxides , Peracetic Acid , Spores, Bacterial , Disinfectants/pharmacology , Chlorine Compounds/pharmacology , Oxides/pharmacology , Peracetic Acid/pharmacology , Spores, Bacterial/drug effects , Clostridioides difficile/drug effects , Humans , Disinfection/methods , Triazines/pharmacology , Hypochlorous Acid/pharmacology
4.
J Fish Dis ; 47(8): e13957, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38665053

ABSTRACT

Global ornamental fish transportation ranging from hours to days can produce multiple stress factors impact fish health and cause mortality. Clownfish, particularly Amphiprion ocellaris, are among the most traded saltwater ornamental fish. Vibrio includes several pathogenic strains that affect aquatic animals. Consequently, prophylactic treatment of the water or fish is recommended. In this study, six Vibrio strains including V. alginolyticus, V. parahaemolyticus and V. harveyi isolated from sick A. ocellaris and one V. harveyi strain from a sick East Asian fourfinger threadfin (Eleutheronema rhadinum) were tested for their sensitivity to a popular disinfectant, chlorine dioxide (ClO2). The results showed that 0.25 ppm ClO2 effectively suppressed five of the seven tested Vibrio strains for 24 h; however, 0.1 ppm ClO2 is safer for A. ocellaris. Meanwhile, ClO2 2.5 ppm reduced the bacterial counts to below 3.3 × 105 CFU/mL for 24 hours. The LC50 of ClO2 for A. ocellaris was 0.87 ppm at 10 min and 0.72 ppm at 24 h post treatment. Mild changes in water quality, including dissolved oxygen (DO), temperature and pH, were recorded during the trial. More research is necessary to understand the sensitivity of various aquatic animal pathogens to ClO2 and its toxicity to different aquatic animals.


Subject(s)
Chlorine Compounds , Disinfectants , Fish Diseases , Oxides , Vibrio Infections , Vibrio , Chlorine Compounds/pharmacology , Animals , Oxides/pharmacology , Fish Diseases/microbiology , Fish Diseases/prevention & control , Vibrio/drug effects , Disinfectants/pharmacology , Vibrio Infections/veterinary , Vibrio Infections/prevention & control , Perciformes , Anti-Bacterial Agents/pharmacology
5.
Parasitol Res ; 123(4): 192, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652173

ABSTRACT

The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.


Subject(s)
Acanthamoeba , Chlorine Compounds , Disinfectants , Naegleria fowleri , Oxides , Chlorine Compounds/pharmacology , Naegleria fowleri/drug effects , Acanthamoeba/drug effects , Oxides/pharmacology , Disinfectants/pharmacology , Time Factors , Survival Analysis , Amebicides/pharmacology
6.
BMC Oral Health ; 24(1): 491, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664718

ABSTRACT

BACKGROUND: Recent randomized clinical trials suggest that the effect of using cetylpyridinium chloride (CPC) mouthwashes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in COVID-19 patients has been inconsistent. Additionally, no clinical study has investigated the effectiveness of on-demand aqueous chlorine dioxide mouthwash against COVID-19. METHODS: We performed a randomized, placebo-controlled, open-label clinical trial to assess for any effects of using mouthwash on the salivary SARS-CoV-2 viral load among asymptomatic to mildly symptomatic adult COVID-19-positive patients. Patients were randomized to receive either 20 mL of 0.05% CPC, 10 mL of 0.01% on-demand aqueous chlorine dioxide, or 20 mL of placebo mouthwash (purified water) in a 1:1:1 ratio. The primary endpoint was the cycle threshold (Ct) values employed for SARS-CoV-2 salivary viral load estimation. We used linear mixed-effects models to assess for any effect of the mouthwashes on SARS-CoV-2 salivary viral load. RESULTS: Of a total of 96 eligible participants enrolled from November 7, 2022, to January 19, 2023, 90 were accepted for the primary analysis. The use of 0.05% CPC mouthwash was not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.640; 95% confidence interval [CI], -1.425 to 2.706; P = 0.543); 2 h (difference vs. placebo, 1.158; 95% CI, -0.797 to 3.112; P = 0.246); 4 h (difference vs. placebo, 1.283; 95% CI, -0.719 to 3.285; P = 0.209); 10 h (difference vs. placebo, 0.304; 95% CI, -1.777 to 2.385; P = 0.775); or 24 h (difference vs. placebo, 0.782; 95% CI, -1.195 to 2.759; P = 0.438). The use of 0.01% on-demand aqueous chlorine dioxide mouthwash was also not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.905; 95% CI, -1.079 to 2.888; P = 0.371); 2 h (difference vs. placebo, 0.709; 95% CI, -1.275 to 2.693; P = 0.483); 4 h (difference vs. placebo, 0.220; 95% CI, -1.787 to 2.226; P = 0.830); 10 h (difference vs. placebo, 0.198; 95% CI, -1.901 to 2.296; P = 0.854); or 24 h (difference vs. placebo, 0.784; 95% CI, -1.236 to 2.804; P = 0.447). CONCLUSIONS: In asymptomatic to mildly symptomatic adults with COVID-19, compared to placebo, the use of 0.05% CPC and 0.01% on-demand aqueous chlorine dioxide mouthwash did not lead to a significant reduction in SARS-CoV-2 salivary viral load. Future studies of the efficacy of CPC and on-demand aqueous chlorine dioxide mouthwash on the viral viability of SARS-CoV-2 should be conducted using different specimen types and in multiple populations and settings.


Subject(s)
COVID-19 , Cetylpyridinium , Mouthwashes , Saliva , Viral Load , Humans , Mouthwashes/therapeutic use , Viral Load/drug effects , Saliva/virology , Male , Female , Adult , Cetylpyridinium/therapeutic use , Middle Aged , SARS-CoV-2 , Chlorine Compounds/therapeutic use , Chlorine Compounds/pharmacology , Oxides/therapeutic use , Aged
7.
Sci Rep ; 13(1): 22866, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38129523

ABSTRACT

Chlorine dioxide is a powerful disinfectant with strong antibacterial properties. We conducted a study at different sites of the Lebanese American University Medical Center-Rizk Hospital to determine the efficacy of the ECOM air mask in decreasing the particle load. Air cultures were obtained from three different locations, namely the patients' elevator, visitors' elevator and mobile clinic and the number of colonies grown on each type of agar was determined. We also measured particle counts at the three sites both at baseline and after placement of the ECOM air mask. After 7 days of ECOM air mask use, the numbers of colonies grown on all types of media was decreased by 20-100% versus the baseline values. The counts of particles of different diameters (0.3, 0.5 and 5 µm) were decreased at all three sampled sites. This study highlighted the efficacy of the ECOM air mask. The utility of the gaseous form of ClO2 as an antiseptic in the hospital setting appears promising.


Subject(s)
Chlorine Compounds , Disinfectants , Humans , Disinfectants/pharmacology , Gases , Chlorine Compounds/pharmacology , Oxides/pharmacology , Hospitals , Chlorine/pharmacology
8.
BMC Oral Health ; 23(1): 930, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012605

ABSTRACT

OBJECTIVES: The study aimed to compare the antibacterial effect of a novel disinfectant, hyper-pure chlorine dioxide (hClO2) to sodium hypochlorite (NaOCl) in various depths of dentin tubules. MATERIALS AND METHODS: The distal root of the extracted lower molars was infected artificially with Enterococcus faecalis. The control group was rinsed with saline, and the test groups were irrigated with either 5% NaOCl or 0.12% hClO2. The longitudinally split teeth were stained by viability stain. The coronal third of the root was scanned with a confocal laser scanning microscope. The fluorescent intensities were measured, and the percentage of dead bacteria was calculated at depths up to 950 µm along the dentin tubules. The effect of penetration depth, irrigants, and their interaction on antimicrobial efficacy was determined by the linear mixed model. RESULTS: The percentage of dead bacteria was higher both in the NaOCl (45.1 ± 2.3%, p < 0.01) and in the hClO2 (44.6 ± 3.8%, p < 0.01) irrigant groups compared to saline (23 ± 4.5%); however, there was no difference between them. The percentage of killed bacteria was not correlated with the depths in any group (p = 0.633). CONCLUSIONS: Our results suggest that the functional penetration depth of NaOCl is at least 2-3 times more than published to date. There is no difference in disinfection effectiveness along the dentin tubules between NaOCl and hClO2 until at least the measured 950 µm. However, both were only able to eradicate the intratubular bacteria partially. CLINICAL RELEVANCE: Hyper-pure ClO2 could be used as an alternative or final adjuvant irrigant in endodontic treatment.


Subject(s)
Anti-Infective Agents , Chlorine Compounds , Humans , Sodium Hypochlorite/pharmacology , Dentin , Anti-Infective Agents/pharmacology , Chlorine Compounds/pharmacology , Bacteria , Enterococcus faecalis , Root Canal Irrigants/pharmacology , Dental Pulp Cavity/microbiology , Biofilms
9.
J Vet Med Sci ; 85(9): 950-955, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37482423

ABSTRACT

The efficacy of ClO2 gas, as surface disinfectant at around 1,000 ppb against avian orthoavulaviruses type 1 (AOAV-1), infectious bronchitis virus (IBV), Escherichia coli (EC), and Salmonella Enteritidis (SE) was evaluated at the required level (≥99.9% reduction) on various surfaces. Exposing the surfaces to ClO2 gas for 1 hr reduced AOAV-1, except for rayon sheets which required 3 hr. However, 1 hr of exposure did not effectively reduced IBV titer. In the case of EC, glass plates and plastic carriers needed 1 hr of exposure, while rayon sheets required 2 hr. SE on rayon sheets required 1 hr exposure, but on the other tested surfaces showed inadequate reduction. Overall, ClO2 gas is an effective disinfectant for poultry farms.


Subject(s)
Chlorine Compounds , Disinfectants , Animals , Chlorine , Oxides/pharmacology , Chlorine Compounds/pharmacology , Disinfectants/pharmacology , Salmonella enteritidis
10.
J Appl Microbiol ; 134(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37403321

ABSTRACT

Chlorine dioxide (ClO2) is a disinfectant gas with strong antifungal, antibacterial, and antiviral activities. Applied on hard, non-porous surfaces as an aqueous solution or gas, the ClO2 exerts antimicrobial activity through its interaction and destabilization of cell membrane proteins, as well as through DNA/RNA oxidation, triggering cell death. As for viruses, the ClO2 promotes protein denaturalization mechanisms, preventing the union between the human cells and the viral envelope. Currently, ClO2 has been pointed out as a potential anti-SARS-CoV-2 clinical treatment for use in humans with the ability to oxidize the cysteine residues in the spike protein of SARS-CoV-2, inhibiting the subsequent binding with the Angiotensin-converting enzyme type 2 receptor, located in the alveolar cells. Orally administered ClO2 reaches the gut tract and exacerbates the symptoms of COVID-19, generating a dysbiosis with gut inflammation and diarrhea as side effects, and once absorbed, produces toxic effects including methemoglobinemia and hemoglobinuria, which can trigger respiratory diseases. These effects are dose-dependent and may not be entirely consistent between individuals since the gut microbiota composition is highly heterogeneous. However, to support the use of ClO2 as an anti-SARS-CoV-2 agent, further studies focused on its effectiveness and safety both in healthy and immunocompromised individuals, are needed.


Subject(s)
COVID-19 , Chlorine Compounds , Disinfectants , Gastrointestinal Microbiome , Humans , SARS-CoV-2 , Oxides/pharmacology , Oxides/chemistry , Disinfectants/pharmacology , Chlorine Compounds/pharmacology , Chlorine
11.
Sci Total Environ ; 896: 165282, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37406691

ABSTRACT

Polyvinyl chloride (PVC) pipes are widely used as drinking water distribution pipes in rural areas of China. However, whether phthalate acid esters (PAEs) released from PVC pipes will affect tap water quality is still unknown. The influence of released PAEs on the water quality was analysed in this study, especially after ClO2 disinfection. The results indicated that ClO2 disinfection could control the growth of total coliforms and heterotrophic bacteria (HPC). However, when the ClO2 residual decreased to below 0.10 mg/L, HPC and opportunistic pathogens, including Mycobacterium avium and Pseudomonas aeruginosa, increased significantly. In addition, after ClO2 disinfection, PAEs concentrations increased from 10.6-22.2 µg/L to 21.2-58.8 µg/L in different sampling cites. Linear discriminant analysis (LDA) effect size (LEfSe) and statistical analysis of metagenomic profiles (Stamp) showed that ClO2 disinfection induced the enrichment of Pseudomonas, Bradyrhizobium, and Mycobacterium and functions related to human diseases, such as pathogenic Escherichia coli infection, shigellosis, Staphylococcus aureus infection, and Vibrio cholerae infection. The released PAEs not only promoted the growth of these ClO2-resistant bacterial genera but also enhanced their functions related to human diseases. Moreover, these PAEs also induced the enrichment of other bacterial genera, such as Blastomonas, Dechloromonas, and Kocuria, and their functions, such as chronic myeloid leukaemia, African trypanosomiasis, leishmaniasis, hepatitis C and human T-cell leukaemia virus 1 infection. The released PAEs enhanced the microbial risk of the drinking water. These results are meaningful for guaranteeing water quality in rural areas of China.


Subject(s)
Chlorine Compounds , Disinfectants , Drinking Water , Humans , Disinfectants/pharmacology , Polyvinyl Chloride , Chlorine Compounds/pharmacology , Disinfection/methods , Bacteria , Esters , Chlorine/pharmacology
12.
Health Secur ; 21(4): 303-309, 2023.
Article in English | MEDLINE | ID: mdl-37289796

ABSTRACT

The pursuit of disinfecting porous materials or fomites to inactivate viral agents has special challenges. To address these challenges, a highly portable chlorine dioxide (ClO2) gas generation system was used to ascertain the ability of a gaseous preparation to inactivate a viral agent, the MS2 bacteriophage, when associated with potentially porous fomites of cloth, paper towel, and wood. The MS2 bacteriophage is increasingly used as a model to identify means of inactivating infectious viral agents of significance to humans. Studies showed that MS2 bacteriophage can be applied to and subsequently recovered from potential porous fomites such as cloth, paper towel, and wood. Paired with viral plaque assays, this provided a means for assessing the ability of gaseous ClO2 to inactivate bacteriophage associated with the porous materials. Notable results include 100% inactivation of 6 log bacteriophage after overnight exposure to 20 parts per million(ppm) ClO2. Reducing exposure time to 90 minutes and gas ppm to lower concentrations proved to remain effective in bacteriophage elimination in association with porous materials. Stepwise reduction in gas concentration from 76 ppm to 5 ppm consistently resulted in greater than 99.99% to 100% reduction of recoverable bacteriophage. This model suggests the potential of ClO2 gas deployment systems for use in the inactivation of viral agents associated with porous potential fomites. The ClO2 gas could prove especially helpful in disinfecting enclosed areas containing viral contaminated surfaces, rather than manually spraying and wiping them.


Subject(s)
Bacteriophages , Chlorine Compounds , Disinfectants , Humans , Disinfection , Chlorine , Disinfectants/pharmacology , Fomites , Porosity , Oxides/pharmacology , Chlorine Compounds/pharmacology
13.
J Water Health ; 21(5): 537-546, 2023 May.
Article in English | MEDLINE | ID: mdl-37254903

ABSTRACT

Disinfectants, especially air disinfectants, are necessary to prevent the potential spread of pathogens (bacteria and viruses) in the pandemic era and minimize the spread of pathogens. Some of the commercial disinfectant products that are often used generally contain chlorine dioxide (ClO2) gas. This study tested the effectiveness of two different commercial disinfectants, a liquid stick disinfectant and a powder disinfection card, to carry out the disinfection of pathogenic bacteria in the environment. These two disinfectants were used as a medium for releasing chlorine dioxide gas which has a much stronger bactericidal effect. In the form of liquid stick, ClO2 is more effective in the disinfection process rather than in the form of powder. The effectiveness of the liquid disinfectant in inhibiting the growth of pathogenic bacteria is influenced by the temperature and the area of the open space covered. Considering that the release from both disinfectants used is very small (0.002 ppmv/h), it takes a small area to ensure that the disinfection process runs effectively.


Subject(s)
Chlorine Compounds , Disinfectants , Disinfectants/pharmacology , Chlorine/pharmacology , Powders , Oxides/pharmacology , Chlorine Compounds/pharmacology , Disinfection , Bacteria
14.
J Agric Food Chem ; 71(13): 5345-5357, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36946919

ABSTRACT

The effects of gaseous chlorine dioxide (ClO2) treatment, applied to inactivate Salmonella, on lipid oxidation, volatile compounds, and chlorate levels of dehulled almonds were evaluated during a 3 month accelerated storage at 39 °C. At treatment levels that yielded a 2.91 log reduction of Salmonella, ClO2 promoted lipid oxidation as indicated by increased peroxide values, total acid number, conjugated dienes, and thiobarbituric acid-reactive substances. Furthermore, several chlorine-containing volatile compounds including trichloromethane, 1-chloro-2-propanol, 1,1,1-trichloro-2-propanol, and 1,3-dichloro-2-propanol were identified in ClO2-treated samples. However, all the volatile chlorine-containing compounds decreased during the 3 months of storage. Chlorate (26.4 ± 5.1 µg/g) was found on the ClO2-treated samples. The amounts of non-ethanol alcohols, aldehydes, and carboxylic acids increased following ClO2 treatments. Some volatiles such as 2,3-butanediol that were present in non-treated samples became non-detectable during post-ClO2 treatment storage. Overall, our results demonstrated that gaseous ClO2 treatment promoted lipid oxidation, generation of volatiles of lipid origin, and several chlorine-containing compounds.


Subject(s)
Chlorine Compounds , Disinfectants , Prunus dulcis , Gases , Chlorine/pharmacology , Colony Count, Microbial , Chlorates , Food Microbiology , Disinfectants/pharmacology , Oxides/pharmacology , Chlorine Compounds/pharmacology , Salmonella , Lipids
15.
Food Res Int ; 162(Pt B): 112135, 2022 12.
Article in English | MEDLINE | ID: mdl-36461359

ABSTRACT

The physiological status of Salmonella after its ultrasonication was investigated to reveal the potential mechanism through which ultrasound enhances the lethality of chlorine dioxide against Salmonella. Applying either the probe ultrasound (US) or water bath ultrasound (WUS) disrupted the cellular structure of Salmonella bacteria, increased the permeability of their bacterial outer membrane (US: 9.00 %, WUS: 11.96 %), and caused intracellular reactive oxygen species to accumulate (US: 13.95 %, WUS: 4.34 %,), which resulted in a reduction of ATP (US: 15.22 %, WUS: 14.15 %) and ATPase activity (US: 3.13 %, WUS: 26.06 %). This series of adverse effects eventually led to the disruption of the metabolic process in Salmonella cells, by mainly altering the metabolism of lipids, small molecules, and energy. Therefore, ultrasound enhances the lethality of chlorine dioxide primarily by disrupting the cellular structure, intracellular material, and energy homeostasis of Salmonella. This finding will promote the development and application of ultrasonic-assisted sterilization technology in food industries.


Subject(s)
Chlorine Compounds , Salmonella typhimurium , Chlorine Compounds/pharmacology , Metabolome , Energy Metabolism
16.
Biosci Trends ; 16(6): 447-450, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36504072

ABSTRACT

Chlorine dioxide (ClO2) is a high-level disinfectant that is safe and widely used for sterilization. Due to the limitations on preparing a stable solution, direct use of ClO2 in the human body is limited. Nasal irrigation is an alternative therapy used to treat respiratory infectious diseases. This study briefly summarizes the available evidence regarding the safety/efficacy of directly using ClO2 on the human body as well as the approach of nasal irrigation to treat COVID-19. Based on the available information, as well as a preliminary experiment that comprehensively evaluated the efficacy and safety of ClO2, 25-50 ppm was deemed to be an appropriate concentration of ClO2 for nasal irrigation to treat COVID-19. This finding requires further verification. Nasal irrigation with ClO2 can be considered as a potential alternative therapy to treat respiratory infectious diseases, and COVID-19 in particular.


Subject(s)
COVID-19 , Chlorine Compounds , Communicable Diseases , Humans , Oxides/therapeutic use , Chlorine Compounds/pharmacology , Chlorine Compounds/therapeutic use , Nasal Lavage
17.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362097

ABSTRACT

Chlorine dioxide is widely used for pulp bleaching because of its high delignification selectivity. However, efficient and clean chlorine dioxide bleaching is limited by the complexity of the lignin structure. Herein, the oxidation reactions of phenolic (vanillyl alcohol) and non-phenolic (veratryl alcohol) lignin model species were modulated using chlorine dioxide. The effects of chlorine dioxide concentration, reaction temperature, and reaction time on the consumption rate of the model species were also investigated. The optimal consumption rate for the phenolic species was obtained at a chlorine dioxide concentration of 30 mmol·L-1, a reaction temperature of 40 °C, and a reaction time of 10 min, resulting in the consumption of 96.3% of vanillyl alcohol. Its consumption remained essentially unchanged compared with that of traditional chlorine dioxide oxidation. However, the consumption rate of veratryl alcohol was significantly reduced from 78.0% to 17.3%. Additionally, the production of chlorobenzene via the chlorine dioxide oxidation of veratryl alcohol was inhibited. The structural changes in lignin before and after different treatments were analyzed. The overall structure of lignin remained stable during the optimization of the chlorine dioxide oxidation treatment. The signal intensities of several phenolic units were reduced. The effects of the selective oxidation of lignin by chlorine dioxide on the pulp properties were analyzed. Pulp viscosity significantly increased owing to the preferential oxidation of phenolic lignin by chlorine dioxide. The pollution load of bleached effluent was considerably reduced at similar pulp brightness levels. This study provides a new approach to chlorine dioxide bleaching. An efficient and clean bleaching process of the pulp was developed.


Subject(s)
Chlorine Compounds , Lignin , Lignin/chemistry , Chlorine Compounds/pharmacology , Chlorine Compounds/chemistry , Phenols/pharmacology , Hypochlorous Acid , Chlorine/chemistry , Paper
18.
Int J Food Microbiol ; 379: 109848, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-35926401

ABSTRACT

In recent years, a variety of conventional and novel food sanitation technologies have been developed, among which some may adversely affect the organoleptic properties and the nutrients of foods. The increasing demand for fresh-like foods has promoted efforts for developing innovative technologies. The detrimental effects of some technologies on the sensorial and nutritional values of foods could be overcome by using the hurdle technology that has become a promising approach. The interest in using chlorine dioxide for food sanitation has increased due to its many advantages over chlorine such as its powerful antimicrobial activity and less formation of harmful disinfection by-products. However, using chlorine dioxide to achieve a complete pathogen elimination from foods is still hard. In this context, chlorine dioxide has been combined with other technologies to enhance microbial food safety. This review, therefore, aims to present the application of chlorine dioxide-based hurdle technology through sequential or simultaneous treatments to control foodborne pathogens. The antimicrobial effects of chlorine dioxide combined with thermal and non-thermal physical, chemical, and biological technologies on various foodborne pathogens in a wide range of food commodities are critically reviewed.


Subject(s)
Anti-Infective Agents , Chlorine Compounds , Anti-Infective Agents/pharmacology , Chlorine/pharmacology , Chlorine Compounds/pharmacology , Food Contamination/prevention & control , Food Microbiology , Food Safety , Oxides/pharmacology , Technology
19.
J Appl Microbiol ; 133(6): 3413-3423, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35973686

ABSTRACT

AIM: To assess removal versus kill efficacies of antimicrobial treatments against thick biofilms with statistical confidence. METHODS AND RESULTS: A photo-activated chlorine dioxide treatment (Photo ClO2 ) was tested in two independent experiments against thick (>100 µm) Pseudomonas aeruginosa biofilms. Kill efficacy was assessed by viable plate counts. Removal efficacy was assessed by 3D confocal scanning laser microscope imaging (CSLM). Biovolumes were calculated using an image analysis approach that models the penetration limitation of the laser into thick biofilms using Beer's Law. Error bars are provided that account for the spatial correlation of the biofilm's surface. The responsiveness of the biovolumes and plate counts to the increasing contact time of Photo ClO2 were quite different, with a massive 7 log reduction in viable cells (95% confidence interval [CI]: 6.2, 7.9) but a more moderate 73% reduction in biovolume (95% CI: [60%, 100%]). Results are leveraged to quantitatively assess candidate CSLM experimental designs of thick biofilms. CONCLUSIONS: Photo ClO2 kills biofilm bacteria but only partially removes the biofilm from the surface. To maximize statistical confidence in assessing removal, imaging experiments should use fewer pixels in each z-slice, and more importantly, at least two independent experiments even if there is only a single field of view in each experiment. SIGNIFICANCE AND IMPACT OF STUDY: There is limited penetration depth when collecting 3D confocal images of thick biofilms. Removal can be assessed by optimally fitting Beer's Law to all of the intensities in a 3D image and by accounting for the spatial correlation of the biofilm's surface. For thick biofilms, other image analysis approaches are biased or do not provide error bars. We generate unbiased estimates of removal and assess candidate CSLM experimental designs of thick biofilms with different pixilations, numbers of fields of view and number of experiments using the included design tool.


Subject(s)
Chlorine Compounds , Chlorine Compounds/pharmacology , Oxides/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology , Microscopy, Confocal
20.
Bioresour Technol ; 360: 127621, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35842067

ABSTRACT

In fact, effectively removing lignin from pulp fibers facilitates the conversion and utilization of cellulose. In this study, the residual lignin in eucalyptus pulp was separated using a high concentration of chlorine dioxide. The effects of chlorine dioxide dosage, temperature, and time on lignin removal were investigated. The optimal conditions are chlorine dioxide dosage 5.0%, reaction temperature 40 °C, and reaction time 30 min. The lignin removal yield is 88.21%. The removal yields of cellulose and hemicellulose are 2.28 and 17.00%, respectively. The treated eucalyptus pulp has higher fiber crystallinity and thermal stability. The carbon content on the fiber surface is significantly reduced. The results show that lignin is removed by efficient oxidation, and the degradation of carbohydrates is inhibited using high concentrations of chlorine dioxide at low temperatures and short reaction times. This provides theoretical support for high value conversion of cellulose.


Subject(s)
Chlorine Compounds , Eucalyptus , Carbohydrates , Cellulose/metabolism , Chlorine Compounds/metabolism , Chlorine Compounds/pharmacology , Eucalyptus/metabolism , Lignin/metabolism , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...