Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
Biomolecules ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540688

ABSTRACT

(1) Background: Radiation-induced thrombocytopenia (RIT) often occurs in cancer patients undergoing radiation therapy, which can result in morbidity and even death. However, a notable deficiency exists in the availability of specific drugs designed for the treatment of RIT. (2) Methods: In our pursuit of new drugs for RIT treatment, we employed three deep learning (DL) algorithms: convolutional neural network (CNN), deep neural network (DNN), and a hybrid neural network that combines the computational characteristics of the two. These algorithms construct computational models that can screen compounds for drug activity by utilizing the distinct physicochemical properties of the molecules. The best model underwent testing using a set of 10 drugs endorsed by the US Food and Drug Administration (FDA) specifically for the treatment of thrombocytopenia. (3) Results: The Hybrid CNN+DNN (HCD) model demonstrated the most effective predictive performance on the test dataset, achieving an accuracy of 98.3% and a precision of 97.0%. Both metrics surpassed the performance of the other models, and the model predicted that seven FDA drugs would exhibit activity. Isochlorogenic acid A, identified through screening the Chinese Pharmacopoeia Natural Product Library, was subsequently subjected to experimental verification. The results indicated a substantial enhancement in the differentiation and maturation of megakaryocytes (MKs), along with a notable increase in platelet production. (4) Conclusions: This underscores the potential therapeutic efficacy of isochlorogenic acid A in addressing RIT.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Deep Learning , Thrombocytopenia , United States , Humans , Neural Networks, Computer , Algorithms
2.
J Agric Food Chem ; 72(12): 6339-6346, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488910

ABSTRACT

There are many complications of type 2 diabetes mellitus. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two complications related to the increased lipid accumulation in the liver. Previous studies have shown that mulberry leaf water extract (MLE) has the effect of lowering lipid levels in peripheral blood, inhibiting the expression of fatty acid synthase (FASN) and increasing the activity of liver antioxidant enzymes superoxide dismutase (SOD) and catalase. Our study aimed to investigate the role of MLE and its main component, neochlorogenic acid (nCGA), in reducing serum lipid profiles, decreasing lipid deposition in the liver, and improving steatohepatitis levels. We evaluated the antioxidant activity including glutathione (GSH), glutathione reductase (GRd), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide dismutase (SOD), and catalase was tested in mice fed with MLE and nCGA. The results showed a serum lipid profile, and fatty liver scores were significantly increased in the HFD group compared to the db/m and db mice groups, while liver antioxidant activity significantly decreased in the HFD group. When fed with HFD + MLE or nCGA, there was a significant improvement in serum lipid profiles, liver fatty deposition conditions, steatohepatitis levels, and liver antioxidant activity compared to the HFD group. Although MLE and nCGA do not directly affect the blood sugar level of db/db mice, they do regulate abnormalities in lipid metabolism. These results demonstrate the potential of MLE/nCGA as a treatment against glucotoxicity-induced diabetic fatty liver disease in animal models.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Diabetes Mellitus, Type 2 , Morus , Non-alcoholic Fatty Liver Disease , Quinic Acid/analogs & derivatives , Mice , Animals , Catalase/metabolism , Morus/metabolism , Antioxidants/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Glutathione/metabolism , Superoxide Dismutase/metabolism , Lipids/pharmacology , Plant Leaves/metabolism , Mice, Inbred C57BL
3.
Biomacromolecules ; 25(2): 729-740, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38263676

ABSTRACT

Intervertebral disk degeneration is a common disease with an unknown etiology. Currently, tissue engineering is considered to be an important method for intervertebral disk repair. Although transplanted stem cells may disrupt the repair process because of apoptosis caused by the oxidative microenvironment. Herein, bone marrow mesenchymal stem cell (BMSC) and Neochlorogenic acid (Ncg) were encapsulated into a GelMA hydrogel as a carrier to protect transplanted stem cells. Ncg effectively inhibited the oxidative stress process and reduced the apoptosis rate. A 5% GelMA hydrogel had a large pore size and porosity that provided an enhanced survival space for cells. An in vivo assessment showed that treatment with GelMA + BMSC + Ncg produced greater repair of degenerated intervertebral disks than that found in other model groups. Thus, this study may help contribute to improving stem cell transplantation for treating intervertebral disk degeneration.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Quinic Acid/analogs & derivatives , Humans , Intervertebral Disc Degeneration/therapy , Hydrogels/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Cells
4.
Chem Pharm Bull (Tokyo) ; 72(1): 93-97, 2024.
Article in English | MEDLINE | ID: mdl-38233137

ABSTRACT

Sunflower seed extract, an antioxidant agent registered on the List of Existing Food Additives in Japan, was evaluated using HPLC, and three common constituents were detected. These peaks were identified as monocaffeoylquinic acids (3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, and 5-O-caffeoylquinic acid [chlorogenic acid]). Upon scrutinizing other components, dicaffeoylquinic acids (isochlorogenic acids; 3,4-di-O-caffeoylquinic, 3,5-di-O-caffeoylquinic, and 4,5-di-O-caffeoylquinic acids) were also identified. Structures of two newly isolated compounds were determined to be 3-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic and 4-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic acids. To identify the components that contribute to the antioxidant activity of sunflower seed extract, we fractionated the food additive sample solution and examined the active fractions for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Monocaffeoylquinic and dicaffeoylquinic acids showed high DPPH activity, including their contribution to the antioxidant activity of this food additive. DPPH radical scavenging activity of the new compounds showed almost the same value as that of the positive control, Trolox. Therefore, the contribution of these compounds was also considered.


Subject(s)
Antioxidants , Chlorogenic Acid/analogs & derivatives , Helianthus , Quinic Acid/analogs & derivatives , Antioxidants/pharmacology , Antioxidants/chemistry , Food Additives/analysis , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Indoles
5.
Photosynth Res ; 159(2-3): 153-164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37204684

ABSTRACT

Different light spectra from light-emitting diodes (LEDs) trigger species-specific adaptive responses in plants. We exposed Artemisia argyi (A. argyi) to four LED spectra: white (the control group), monochromatic red light (R), monochromatic blue light (B), or a mixture of R and B light of photon flux density ratio is 3 (RB), with equivalent photoperiod (14 h) and light intensity (160 µmol s-1 m-2). R light accelerated photomorphogenesis but decreased biomass, while B light significantly increased leaf area and short-term exposure (7 days) to B light increased total phenols and flavonoids. HPLC identified chlorogenic acid, 3,5-dicaffeoylquinic acid, gallic acid, jaceosidin, eupatilin, and taxol compounds, with RB and R light significantly accumulating chlorogenic acid, 3,5-dicaffeoylquinic acid, and gallic acid, and B light promoting jaceosidin, eupatilin, and taxol. OJIP measurements showed that B light had the least effect on the effective quantum yield ΦPSII, with higher rETR(II), Fv/Fm, qL and PIabs, followed by RB light. R light led to faster photomorphology but lower biomass than RB and B lights and produced the most inadaptability, as shown by reduced ΦPSII and enlarged ΦNPQ and ΦNO. Overall, short-term B light promoted secondary metabolite production while maintaining effective quantum yield and less energy dissipation.


Subject(s)
Artemisia , Chlorogenic Acid/analogs & derivatives , Artemisia/metabolism , Fluorescence , Gallic Acid , Chlorophyll/metabolism , Paclitaxel
6.
J Sep Sci ; 47(1): e2300678, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994215

ABSTRACT

Hippomarathrum scabrum L. is an endemic medicinal plant in Turkey; however, there have been few studies investigating the phytochemistry and biological properties of these plants has not been investigated. The aim of this work is to determine the chemical composition of different extracts (extracts obtained by using supercritical carbon dioxide extraction, accelerated solvent extraction, homogenizer-assisted extraction, microwave-assisted extraction, and ultrasound-assisted extraction from Hippomarathrum scabrum L., and evaluate their biological properties. The analysis revealed that 5-O-caffeoylquinic acid, rutin, and isorhamnetin 3-O-rutinoside were the main bioactive compounds. The extract obtained by accelerated extraction contains the highest concentration of 5-O-Caffeoylquinic acid (7616.74 ± 63.09 mg/kg dry extract) followed by the extract obtained by homogenizer-assisted extraction (6682.53 ± 13.04 mg/kg dry extract). In antioxidant tests, all extracts expressed significant antioxidant activity. Also, cytotoxic and anticancer effects of these plant extracts were detected in the human prostate cancer cell line. Intrinsic apoptotic genes were up-regulated and anti-apoptotic genes were down-regulated in human prostate cancer cells after inhibition concentration dose treatment. The findings are promising, and suggest the use of these plant extracts could be used as natural sources with different biological activities, as well as anticancer agents.


Subject(s)
Antioxidants , Chlorogenic Acid/analogs & derivatives , Prostatic Neoplasms , Quinic Acid/analogs & derivatives , Male , Humans , Antioxidants/analysis , Plant Extracts/chemistry , Plant Components, Aerial/chemistry
7.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203258

ABSTRACT

The newly released 'Snow White' (SW), a white-fleshed loquat (Eriobotrya japonica Lindl.) cultivar, holds promise for commercial production. However, the specifics of the phenolic composition in white-fleshed loquats, along with the antioxidant substances and their regulatory mechanisms, are not yet fully understood. In this study, we examined the dynamic changes in the phenolic compounds, enzyme activities, antioxidant capacity, and gene expression patterns of SW during the key stages of fruit development and ripening. A total of 18 phenolic compounds were identified in SW, with chlorogenic acid, neochlorogenic acid, and coniferyl alcohol being the most predominant. SW demonstrated a stronger antioxidant capacity in the early stages of development, largely due to total phenolics and flavonoids. Neochlorogenic acid may be the most significant antioxidant contributor in loquat. A decline in enzyme activities corresponded with fruit softening. Different genes within a multigene family played distinct roles in the synthesis of phenolics. C4H1, 4CL2, 4CL9, HCT, CCoAOMT5, F5H, COMT1, CAD6, and POD42 were implicated in the regulation of neochlorogenic acid synthesis and accumulation. Consequently, these findings enhance our understanding of phenolic metabolism and offer fresh perspectives on the development of germplasm resources for white-fleshed loquats.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Eriobotrya , Quinic Acid/analogs & derivatives , Eriobotrya/genetics , Antioxidants , Fruit/genetics , Gene Expression
8.
Biomed Pharmacother ; 153: 113549, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076613

ABSTRACT

Microglial activation in the spinal cord contributes to the development of inflammatory pain. Monocyte chemotactic protein 3 (MCP3) can induce microglial activation, resulting in increased pain sensitivity; however, the underlying mechanism remains poorly understood. 3,5-dicaffeoylquinic acid (3,5-DCQA) has shown protective effects against inflammation-related diseases, but the effect of 3,5-DCQA on microglial activation and inflammatory pain is not evaluated. This study aimed to investigate the effects of 3,5-DCQA on microglial activation-induced inflammatory pain. Furthermore, the underlying mechanism inhibited by 3,5-DCQA via MCP3 suppression was studied. To induce microglial activation, LPS was treated in BV2 microglial cells. The LPS-induced microglial activation and pro-inflammatory cytokines production were significantly reduced by 3,5-DCQA treatment in BV2 cells. Moreover, 3,5-DCQA suppressed LPS-induced MCP3 expression, resulting in reduced phosphorylation of JAK2/STAT3. Interestingly, the suppressed JAK2/STAT3 signaling enhanced autophagy induction in BV2 cells. The increased autophagy by 3,5-DCQA and knockout of MCP3 inhibited LPS-induced inflammatory response in BV2 cells. To establish the inflammatory pain, CFA was injected into the right paw of mice. The CFA-induced pain hypersensitivity and foot swelling were attenuated by the oral administration of 3,5-DCQA. Moreover, CFA-induced microglial activation was reduced and the autophagy markers were recovered in the spinal cord of 3,5-DCQA-administered mice. Similar results were observed in cultured primary microglia. Our findings indicate that 3,5-DCQA attenuates inflammation-mediated pain hypersensitivity by enhancing autophagy through inhibition of MCP3-induced JAK2/STAT3 signaling. Therefore, 3,5-DCQA could be a potential therapeutic agent for alleviating inflammatory pain.


Subject(s)
Chlorogenic Acid , Lipopolysaccharides , Microglia , Animals , Autophagy/drug effects , Chemokine CCL7/drug effects , Chemokine CCL7/metabolism , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Inflammation/metabolism , Janus Kinase 2/drug effects , Janus Kinase 2/metabolism , Lipopolysaccharides/pharmacology , Mice , Pain/drug therapy , Pain/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism
9.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144525

ABSTRACT

Lonicerae japonicae flos (LJF, Lonicera japonica Thunb.) is adopted as a core herb for preventing and treating influenza. However, the anti-influenza virus components of LJF and the impact of quality-affecting factors on the anti-influenza activity of LJF have not been systematically investigated. In this study, a strategy integrating anti-influenza virus activity, ultrahigh-performance liquid chromatography fingerprint and chemical pattern recognition was proposed for the efficacy and quality evaluation of LJF. As a result, six bioactive compounds were screened out and identified as neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 4,5-Di-O-caffeoylquinic acid, sweroside and secoxyloganin. Based on the bioactive compounds, chemical pattern recognition models of LJF were established by a linear discriminant analysis (LDA). The results of the LDA models and anti-influenza virus activity demonstrated that cultivation pattern significantly affected the anti-influenza effect of LJF and that the neuraminidase inhibition rate of wild LJF was significantly higher than that of cultivated LJF. Moreover, the quality of LJF samples with different processing methods and geographical origins showed no obvious difference. Overall, the proposed strategy in the current study revealed the anti-influenza virus components of LJF and provided a feasible method for thequality evaluation of LJF, which has great importance for assuring the clinical effect against influenza of LJF.


Subject(s)
Drugs, Chinese Herbal , Lonicera , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Lonicera/chemistry , Neuraminidase , Quinic Acid/analogs & derivatives
10.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4755-4764, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164883

ABSTRACT

The present study investigated the pharmacodynamic material basis of Laportea bulbifera in the treatment of rheumatoid arthritis. Firstly, human rheumatoid arthritis fibroblast-like synoviocyte line MH7A was cultured in vitro and treated with tumor necrosis factor alpha(TNF-α, 50 ng·mL~(-1)). The proliferation and the levels of inflammatory cytokines such as prostaglandin E2(PGE2), interleukin-1ß(IL-1ß), and interleukin-6(IL-6) of the MH7A cells exposed to the serum containing L. bulbifera were determined to evaluate the anti-rheumatoid arthritis effects of the serum. Furthermore, the ultra-performance liquid chromatography tandem mass spectrometry fingerprints of the L. bulbifera crude extract, the drug-containing serum, and the drug-free serum were compared to identify the compounds newly generated in the serum after oral administration of the extract. According to the peak areas of common peaks and the results of anti-rheumatoid arthritis effect test, the active components were identified. The serum containing L. bulbifera significantly inhibited the proliferation of the MH7A cells activated by TNF-α and the expression of PGE2, IL-6, and IL-1ß. Thirty newly generated compounds were detected in the drug-containing serum. Among them, neochlorogenic acid, cryptochlorogenic acid, chlorogenic acid, rutin, isoquercitrin, luteoloside, kaempferol-3-O-rutinoside, and quercitrin were also present in the crude extract. Twelve characteristic peaks(3, 7, 8, 14, 18, 19, 21, 23, 24, m6, m7, and m15) were significantly correlated with the pharmaceutical effect. According to the correlations, neochlorogenic acid, cryptochlorogenic acid, and chlorogenic acid had great contributions to the anti-rheumatoid arthritis activity. This study preliminarily clarified the potential pharmacodynamic substances of L. bulbifera in the treatment of rheumatoid arthritis, which laid a theoretical and experimental foundation for further development and application of the medicinal plant.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Urticaceae , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Chlorogenic Acid/analogs & derivatives , Cytokines/metabolism , Dinoprostone , Humans , Interleukin-1beta/genetics , Interleukin-6 , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Quinic Acid/analogs & derivatives , Rutin , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Urticaceae/chemistry
11.
Nutrients ; 14(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893859

ABSTRACT

Mulberry leaf (Morus alba L.) has been used as a health food and in traditional medicine to treat several metabolic diseases, including diabetes, hypertension, and hyperlipidemia. However, the mechanism by which mulberry leaf and its functional components mediate atherosclerosis remains unclear. This study aimed to determine the effect of mulberry leaf extract (MLE) and its major component, neochlorogenic acid (nCGA), on the proliferation and migration of rat aortic vascular smooth muscle cells (VSMCs, A7r5 cell line) under diabetic cultured conditions (oleic acid and high glucose, OH). Our findings showed that MLE and nCGA significantly inhibited cell proliferation and migration in A7r5 cells as determined by a scratch wound assay and a Transwell assay. Furthermore, we observed MLE and nCGA inhibited cell proliferation and migration, such as reducing the phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), focal adhesion kinase (FAK), and small GTPase proteins using Western blot analysis. In conclusion, we confirmed the anti-atherosclerotic effects of MLE and nCGA in reducing vascular smooth muscle cell (VSMC) migration and proliferation under diabetic cultured conditions via inhibition of FAK/small GTPase proteins, PI3K/Akt, and Ras-related signaling.


Subject(s)
Atherosclerosis , Monomeric GTP-Binding Proteins , Morus , Animals , Atherosclerosis/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Chlorogenic Acid/analogs & derivatives , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Monomeric GTP-Binding Proteins/metabolism , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Quinic Acid/analogs & derivatives , Rats , Signal Transduction
12.
Food Funct ; 13(11): 6195-6204, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35583033

ABSTRACT

Microbiota is known to play a pivotal role in generating bioavailable and bioactive low-molecular-weight metabolites from dietary polyphenols. 5-O-caffeoylquinic acid (5-CQA), one of the main polyphenols found in human diet, was submitted to a resting cell biotransformation study using three gut bacteria species Lactobacillus reuteri, Bacteroides fragilis and Bifidobacterium longum. These bacteria were selected according to their belonging to the main phyla found in human gut microbiota. Our study highlighted the ability of only one of the strains studied, L. reuteri, to bioconverse 5-CQA into various metabolites due to the expression of the cinnamoyl esterase enzyme as the first step. Interestingly, one known natural compound, esculetin, was described for the first time as a 5-CQA-derived metabolite after conversion by a gut bacterium, the other metabolites had already been reported. This evidence highlighted an interesting oxidative pathway occurring in vivo by intestinal microbiota leading to esculetin. This molecule was also identified after electrochemical and enzymatic oxidations of caffeic acid. The oxidation capacity of L. reuteri led to less diverse metabolites in comparison to those obtained either electrochemically and enzymatically where dimers and trimers were reported. Thus, esculetin may have interesting and benefical biological effects on gut microbiota, which should be further evaluated. Novel synbiotics could be formulated from the association of L. reuteri with 5-CQA.


Subject(s)
Limosilactobacillus reuteri , Polyphenols , Bacteria/metabolism , Biotransformation , Chlorogenic Acid/analogs & derivatives , Humans , Limosilactobacillus reuteri/metabolism , Oxidative Stress , Polyphenols/pharmacology , Quinic Acid/analogs & derivatives
13.
J Virol ; 96(7): e0054221, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35319229

ABSTRACT

While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Enterovirus A, Human , Enterovirus Infections , Ilex , Plants, Medicinal , Antiviral Agents/therapeutic use , Cell Line, Tumor , Chlorogenic Acid/therapeutic use , Enterovirus A, Human/genetics , Enterovirus Infections/drug therapy , Heparitin Sulfate/metabolism , Humans , Ilex/chemistry , Molecular Docking Simulation , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry
14.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056759

ABSTRACT

Considering the current trend in the global coffee market, which involves an increased demand for decaffeinated coffee, the aim of the present study was to formulate coffee blends with reduced caffeine content, but with pronounced antioxidant and attractive sensory properties. For this purpose, green and roasted Arabica and Robusta coffee beans of different origins were subjected to the screening analysis of their chemical and bioactive composition using standard AOAC, spectrophotometric and chromatographic methods. From roasted coffee beans, espresso, Turkish and filter coffees were prepared, and their sensory evaluation was performed using a 10-point hedonic scale. The results showed that Arabica coffee beans were richer in sucrose and oil, while Robusta beans were characterized by higher content of all determined bioactive parameters. Among all studied samples, the highest content of 3-O-caffeoylquinic acid (14.09 mg g-1 dmb), 4-O-caffeoylquinic acid (8.23 mg g-1 dmb) and 5-O-caffeoylquinic acid (4.65 mg g-1 dmb), as well as caffeine (22.38 mg g-1 dmb), was detected in roasted Robusta beans from the Minas Gerais region of Brazil, which were therefore used to formulate coffee blends with reduced caffeine content. Robusta brews were found to be more astringent and recognized as more sensorily attractive, while Arabica decaffeinated brews were evaluated as more bitter. The obtained results point out that coffee brews may represent a significant source of phenolic compounds, mainly caffeoylquinic acids, with potent antioxidant properties, even if they have reduced caffeine content.


Subject(s)
Antioxidants/analysis , Coffee/chemistry , Caffeine/analysis , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/analysis , Female , Food Technology , Humans , Male , Odorants , Phenols/analysis , Quinic Acid/analogs & derivatives , Quinic Acid/analysis , Taste
15.
J Agric Food Chem ; 70(5): 1494-1506, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35089021

ABSTRACT

Allelopathy is considered an environmentally friendly and resource-conserving approach to weed control because allelochemicals degrade easily and cause less pollution than traditional chemical herbicides. In this study, the allelopathic active constituents of Artemisia argyi were elucidated by activity-guided isolation and ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). First, a crude extract prepared in water was fractionated using macroporous resin D101 to obtain three fractions (Fr.A-C). Combined with the allelopathic activity assay on Setaria viridis and Portulaca oleracea, Fr.C was determined to be the most active fraction. We identified 14 compounds in the active fraction (Fr.C) using UPLC-QTOF-MS, including 13 phenolic compounds. Accordingly, phenolic components have been suggested as the main allelochemicals in A. argyi. Thereafter, Fr.C was further isolated by octadecylsilyl (ODS) chromatography to obtain eight subfractions (Fr.C-1-Fr.C-8). Finally, isochlorogenic acid A (ICGAA) was purified from Fr.C-3 by semipreparative liquid chromatography, which was detected in the growth environment of A. argyi. Furthermore, we evaluated the allelopathic effects of ICGAA on six weeds from different families and genera for the first time. The results showed that ICGAA is a novel allelochemical with broad herbicidal activity. In addition, we analyzed the inhibitory effect and molecular mechanism of ICGAA on the growth of S. viridis seedlings. Optical microscopy and transmission electron microscopy (TEM) revealed the degradation of membrane structures and organelles after ICGAA treatment. Transcriptome and real-time polymerase chain reaction (RT-qPCR) analysis showed that ICGAA inhibited the growth of weeds mainly by inhibiting the diterpenoid biosynthesis pathway (especially gibberellins, GAs). The decrease of gibberellin (GA) contents after ICGAA treatment also confirmed these results. In brief, this study provides new material sources and theoretical support for developing biological herbicides for agroecosystems.


Subject(s)
Allelopathy , Artemisia , Chlorogenic Acid/analogs & derivatives , Chromatography, Liquid , Mass Spectrometry , Plant Weeds
16.
Pharmacol Res ; 176: 106077, 2022 02.
Article in English | MEDLINE | ID: mdl-35026404

ABSTRACT

Heart failure (HF), the main cause of death in patients with many cardiovascular diseases, has been reported to be closely related to the complicated pathogenesis of autophagy, apoptosis, and inflammation. Notably, Si-Miao-Yong-An decoction (SMYAD) is a traditional Chinese medicine (TCM) used to treat cardiovascular disease; however, the main active components and their relevant mechanisms remain to be discovered. Based on our previous ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) results, we identified angoriside C (AC) and 3,5-dicaffeoylquinic acid (3,5-DiCQA) as the main active components of SMYAD. In vivo results showed that AC and 3,5-DiCQA effectively improved cardiac function, reduced the fibrotic area, and alleviated isoproterenol (ISO)-induced myocarditis in rats. Moreover, AC and 3,5-DiCQA inhibited ISO-induced autophagic cell death by inhibiting the PDE5A/AKT/mTOR/ULK1 pathway and inhibited ISO-induced apoptosis by inhibiting the TLR4/NOX4/BAX pathway. In addition, the autophagy inhibitor 3-MA was shown to reduce ISO-induced apoptosis, indicating that ISO-induced autophagic cell death leads to excess apoptosis. Taken together, the main active components AC and 3,5-DiCQA of SMYAD inhibit the excessive autophagic cell death and apoptosis induced by ISO by inhibiting the PDE5A-AKT and TLR4-NOX4 pathways, thereby reducing myocardial inflammation and improving heart function to alleviate and treat a rat ISO-induced heart failure model and cell heart failure models. More importantly, the main active components of SMYAD will provide new insights into a promising strategy that will promote the discovery of more main active components of SMYAD for therapeutic purposes in the future.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Coumaric Acids/therapeutic use , Drugs, Chinese Herbal , Heart Failure/drug therapy , Trisaccharides/therapeutic use , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Cell Survival/drug effects , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Coumaric Acids/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Disease Models, Animal , Heart Failure/chemically induced , Heart Failure/metabolism , Heart Failure/pathology , Isoproterenol , Male , Myoblasts/drug effects , Myocardium/metabolism , Myocardium/pathology , NADPH Oxidase 4/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Trisaccharides/pharmacology
17.
Biomed Chromatogr ; 36(2): e5276, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34741336

ABSTRACT

3,4-Dicaffeoylquinic acid (3,4-DiCQA) is a dicaffeoylquinic acid that possesses antioxidant, anti-inflammatory, antibacterial, antiviral, anticancer, hypoglycemic, hypotensive, and hepatoprotective activities. This study developed a rapid and reliable method using ultra-high performance liquid chromatography equipped with linear ion trap-Orbitrap MS to identify the metabolites of 3,4-DiCQA in rat plasma, urine, feces, and tissues. The metabolic profile of 3,4-DiCQA was determined after an oral administration of 200 mg/kg to rats. A strategy of full scan-parent ions list acquisition coupled to diagnostic product ion analysis for screening and identification of target metabolites was used. A total of 67 metabolites, combined with accurate mass measurement, diagnostic ions, neutral losses, and reference standards, were observed and characterized for the first time. The results indicated that hydrolysis, methylation, hydrogenation, hydration, dehydroxylation, dehydrogenation, sulfate conjugation, and glucuronide conjugation were the major metabolic reactions of 3,4-DiCQA in vivo.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Animals , Biomarkers/analysis , Biomarkers/chemistry , Biomarkers/metabolism , Chlorogenic Acid/analysis , Chlorogenic Acid/chemistry , Chlorogenic Acid/metabolism , Male , Rats , Rats, Sprague-Dawley
18.
Food Chem ; 372: 131117, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34600198

ABSTRACT

During apple juice and cider-making processes, phenolic compounds undergo enzymatic oxidation. 5-O-caffeoylquinic acid (CQA) is one of the major hydroxycinnamic acid derivatives and it is the preferential substrate for polyphenol oxidase (PPO) in apple juices. Consequently, CQA dehydrodimers (MW 706 Da) are among the main products resulting from CQA oxidation. CQA dehydrodimers were previously synthesized in a biomimetic apple juice model solution. Following their purification and characterization using UV-Visible spectra and mass spectrometry, the structures of seven CQA dehydrodimers were elucidated using 1H and 13C one- and two-dimensional NMR spectroscopy. Six of them exhibited dihydrobenzofuran, benzodioxane, or dihydronaphtalene skeletons, which are caffeicin-like structures. Interestingly, a new dehydrodicaffeoyldiquinic acid molecule was also characterised for which two novel structures showing a symmetric dicatechol skeleton were also proposed.


Subject(s)
Malus , Chlorogenic Acid/analogs & derivatives , Magnetic Resonance Spectroscopy , Quinic Acid/analogs & derivatives
19.
Int J Mol Sci ; 22(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884968

ABSTRACT

Neochlorogenic acid (5-Caffeoylquinic acid; 5-CQA), a major phenolic compound isolated from mulberry leaves, possesses anti-oxidative and anti-inflammatory effects. Although it modulates lipid metabolism, the molecular mechanism is unknown. Using an in-vitro model of nonalcoholic fatty liver disease (NAFLD) in which oleic acid (OA) induced lipid accumulation in HepG2 cells, we evaluated the alleviation effect of 5-CQA. We observed that 5-CQA improved OA-induced intracellular lipid accumulation by downregulating sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN) expression, which regulates the fatty acid synthesis, as well as SREBP2 and HMG-CoA reductases (HMG-CoR) expressions, which regulate cholesterol synthesis. Treatment with 5-CQA also increased the expression of fatty acid ß-oxidation enzymes. Remarkably, 5-CQA attenuated OA-induced miR-34a expression. A transfection assay with an miR-34a mimic or miR-34a inhibitor revealed that miR-34a suppressed Moreover, Sirtuin 1 (SIRT1) expression and inactivated 5' adenosine monophosphate-activated protein kinase (AMPK). Our results suggest that 5-CQA alleviates lipid accumulation by downregulating miR-34a, leading to activation of the SIRT1/AMPK pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Chlorogenic Acid/analogs & derivatives , Inflammation/prevention & control , Lipogenesis/drug effects , Liver/drug effects , MicroRNAs/genetics , Quinic Acid/analogs & derivatives , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/genetics , Cell Proliferation , Cells, Cultured , Chlorogenic Acid/pharmacology , Diet, High-Fat , Humans , Inflammation/etiology , Inflammation/pathology , Lipid Metabolism , Liver/metabolism , Liver/pathology , Quinic Acid/pharmacology , Sirtuin 1/genetics
20.
Food Funct ; 12(22): 11387-11398, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34672304

ABSTRACT

Cancer is a major threat to human health worldwide, yet the clinical therapies remain unsatisfactory. In this study, we found that a Tetrastigma hemsleyanum leaves flavone (TLF) intervention could achieve tumor inhibition. Besides, neochlorogenic acid (NA), which had the highest absorbance peak in the HPLC profile of TLF, showed superior anti-proliferation ability over TLF, and could effectively trigger apoptosis, restrain migration, and facilitate cytoskeleton collapse, suggesting its key role in TLF's anticancer property. Molecular docking analysis suggested that NA was capable of binding with mitochondrial Ca2+ uniporter (MCU), and further experiments confirmed that NA upregulated the MCU level to permit excess calcium ion influx, leading to mitochondrial calcium imbalance, dysfunction, structure alteration, and ROS elevation. Moreover, tumor-bearing mice were applied to further confirm the excellent tumor inhibition ability of NA under Ca2+-abundant conditions. Therefore, this study uncovered that NA could effectively trigger robust MCU-mediated calcium overload cancer therapy, which could be utilized in novel strategies for future cancer treatment.


Subject(s)
Antineoplastic Agents , Calcium Channels , Calcium , Chlorogenic Acid/analogs & derivatives , Quinic Acid/analogs & derivatives , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Calcium/chemistry , Calcium/metabolism , Calcium Channels/chemistry , Calcium Channels/metabolism , Cell Survival/drug effects , Chlorogenic Acid/chemistry , Chlorogenic Acid/metabolism , Flavones/metabolism , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Neoplasms, Experimental , Plant Leaves/chemistry , Quinic Acid/chemistry , Quinic Acid/metabolism , Vitaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...