Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 671
Filter
1.
Food Res Int ; 186: 114374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729731

ABSTRACT

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Subject(s)
Chlorogenic Acid , Emulsifying Agents , Emulsions , Ergosterol , Particle Size , Water , Ergosterol/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Water/chemistry , Chlorogenic Acid/chemistry , Viscosity , Antioxidants/chemistry , Oils/chemistry , Hydrogen-Ion Concentration
2.
Food Chem ; 452: 139551, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723572

ABSTRACT

This study explored the mechanism of interaction between chlorogenic acid (CA) and protein fibrils (PF) as well as the effects of varying the CA/PF concentration ratio on antibacterial activity. Analysis of various parameters, such as ζ-potential, thioflavin T fluorescence intensity, surface hydrophobicity, and free sulfhydryl groups, revealed that the interaction between PF and CA altered the structure of PF. Fluorescence analysis revealed that hydrogen bonding and hydrophobic interactions were the primary interaction forces causing conformational rearrangement, resulting in a shorter, more flexible, and thicker fibril structure, as observed through transmission electron microscopy. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and X-ray diffraction analyses revealed that the characteristic fibril structure was destroyed when the CA/PF ratio exceeded 0.05. Notably, the CA-PF complexes inhibited the growth of Escherichia coli and Staphylococcus aureus and also exhibited antioxidant activity. Overall, this study expands the application prospects of CA and PF in the food industry.


Subject(s)
Anti-Bacterial Agents , Chlorogenic Acid , Escherichia coli , Soybean Proteins , Staphylococcus aureus , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Soybean Proteins/chemistry , Soybean Proteins/pharmacology , Hydrophobic and Hydrophilic Interactions , Glycine max/chemistry , Glycine max/growth & development
3.
Food Chem ; 453: 139638, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781898

ABSTRACT

As primary polyphenol oxidant products, the occurrence of o-quinone is greatly responsible for quality deterioration in wine, including browning and aroma loss. The high reactivity of o-quinone causes huge difficulty in its determination. Herein, a derivative strategy combined with UHPLC-MS/MS analysis was established with chlorogenic acid quinone (CQAQ) and 4-methylcatechol quinone (4MCQ) as model compounds. Method validation demonstrated its efficiency for two analytes (R2 > 0.99, accuracy 98.71-106.39 %, RSD of precision 0.46-6.11 %, recovery 85.83-99.37 %). This approach was successfully applied to detect CQAQ and 4MCQ, suggesting its applicability in food analysis. CQAQ in coffee was much more than 4MCQ and with the deepening of baking degree, CQAQ decreased and 4MCQ increased. The amounts of CQAQ in various vegetables were markedly different, seemingly consistent with their respective browning degrees in practical production. This study developed an accurate and robust analytical approach for o-quinones, providing technical support for their further investigation in foods.


Subject(s)
Quinones , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Quinones/chemistry , Quinones/analysis , Vegetables/chemistry , Food Analysis , Coffee/chemistry , Chlorogenic Acid/analysis , Chlorogenic Acid/chemistry , Catechols/analysis , Catechols/chemistry
4.
J Agric Food Chem ; 72(21): 12270-12280, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743450

ABSTRACT

Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity. Hence, the effects of covalent (C-I, periodate oxidation method) and noncovalent interactions (NC-I) of 7S with CHA in different concentrations (0.3, 0.5, and 1.0 mM) on lowering 7S allergenicity were investigated in this study. The results demonstrated that C-I led to higher binding efficiency (C-0.3:28.51 ± 2.13%) than NC-I (N-0.3:22.66 ± 1.75%). The C-I decreased the α-helix content (C-1:21.06%), while the NC-I increased the random coil content (N-1:24.39%). The covalent 7S-CHA complexes of different concentrations had lower IgE binding capacity (C-0.3:37.38 ± 0.61; C-0.5:34.89 ± 0.80; C-1:35.69 ± 0.61%) compared with that of natural 7S (100%), while the noncovalent 7S-CHA complexes showed concentration-dependent inhibition of IgE binding capacity (N-0.3:57.89 ± 1.23; N-0.5:46.91 ± 1.57; N-1:40.79 ± 0.22%). Both interactions produced binding to known linear epitopes. This study provides the theoretical basis for the CHA application in soybean products to lower soybean allergenicity.


Subject(s)
Antigens, Plant , Chlorogenic Acid , Glycine max , Immunoglobulin E , Soybean Proteins , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Glycine max/chemistry , Glycine max/immunology , Immunoglobulin E/immunology , Soybean Proteins/chemistry , Soybean Proteins/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Humans , Food Hypersensitivity/immunology , Allergens/chemistry , Allergens/immunology , Protein Binding , Seed Storage Proteins/chemistry , Seed Storage Proteins/immunology
5.
ACS Appl Mater Interfaces ; 16(22): 28209-28221, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778020

ABSTRACT

Diabetic chronic wounds are notoriously difficult to heal as a result of their susceptibility to infection. To address this issue, we constructed an innovated and adaptable solution in the form of injectable chitosan (CS) hydrogel, denoted as CCOD, with enhanced antibacterial and anti-inflammatory properties. This hydrogel is created through a Schiff base reaction that combines chitosan-grafted chlorogenic acid (CS-CGA) and oxidized hyaluronic acid (OHA) with deferoxamine (DFO) as a model drug. The combination of CS and CGA has demonstrated excellent antibacterial and anti-inflammatory properties, while grafting played a pivotal role in making these positive effects stable. These unique features make it possible to customize injectable hydrogel and fit any wound shape, allowing for more effective and personalized treatment of complex bacterial infections. Furthermore, the hydrogel system is not only effective against inflammation and bacterial infections but also possesses antioxidant and angiogenic abilities, making it an ideal solution for the repair of chronic wounds that have been previously thought of as unmanageable.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Chitosan , Chlorogenic Acid , Deferoxamine , Hyaluronic Acid , Hydrogels , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Deferoxamine/chemistry , Deferoxamine/pharmacology , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Mice , Humans , Oxidation-Reduction , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/administration & dosage , Angiogenesis Inducing Agents/therapeutic use , Neovascularization, Physiologic/drug effects , Staphylococcus aureus/drug effects , Angiogenesis
6.
J Agric Food Chem ; 72(20): 11759-11772, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738668

ABSTRACT

This study aimed to investigate alterations in gut microbiota and metabolites mediated by wheat-resistant starch and its repair of gut barrier dysfunction induced by a high-fat diet (HFD). Structural data revealed that chlorogenic acid (CA)/linoleic acid (LA) functioned through noncovalent interactions to form a more ordered structure and fortify antidigestibility in wheat starch (WS)-CA/LA complexes; the resistant starch (RS) contents of WS-CA, WS-LA, and WS-CA-LA complexes were 23.40 ± 1.56%, 21.25 ± 1.87%, and 35.47 ± 2.16%, respectively. Dietary intervention with WS-CA/LA complexes effectively suppressed detrimental alterations in colon tissue morphology induced by HFD and repaired the gut barrier in ZO-1 and MUC-2 levels. WS-CA/LA complexes could augment gut barrier-promoting microbes including Parabacteroides, Bacteroides, and Muribaculum, accompanied by an increase in short-chain fatty acids (SCFAs) and elevated expression of SCFA receptors. Moreover, WS-CA/LA complexes modulated secondary bile acid metabolism by decreasing taurochenodeoxycholic, cholic, and deoxycholic acids, leading to the activation of bile acid receptors. Collectively, this study offered guiding significance in the manufacture of functional diets for a weak gut barrier.


Subject(s)
Chlorogenic Acid , Diet, High-Fat , Gastrointestinal Microbiome , Linoleic Acid , Mice, Inbred C57BL , Starch , Triticum , Chlorogenic Acid/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/chemistry , Diet, High-Fat/adverse effects , Triticum/chemistry , Triticum/metabolism , Gastrointestinal Microbiome/drug effects , Animals , Male , Mice , Starch/metabolism , Starch/chemistry , Linoleic Acid/metabolism , Linoleic Acid/chemistry , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Humans , Fatty Acids, Volatile/metabolism , Resistant Starch/metabolism
7.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673738

ABSTRACT

The high content of bioactive compounds in Aronia melanocarpa fruit offers health benefits. In this study, the anti-atherosclerotic effect of Aronia extracts was assessed. The impact on the level of adhesion molecules and the inflammatory response of human umbilical vein endothelial cells (HUVECs) was shown in relation to the chemical composition and the stage of ripening of the fruits. Samples were collected between May (green, unripe) and October (red, overripe) on two farms in Poland, which differed in climate. The content of chlorogenic acids, anthocyanins, and carbohydrates in the extracts was determined using HPLC-DAD/RI. The surface expression of ICAM-1 and VCAM-1 in HUVECs was determined by flow cytometry. The mRNA levels of VCAM-1, ICAM-1, IL-6, and MCP-1 were assessed using the quantitative real-time PCR method. The farms' geographical location was associated with the quantity of active compounds in berries and their anti-atherosclerotic properties. Confirmed activity for green fruits was linked to their high chlorogenic acid content.


Subject(s)
Atherosclerosis , Fruit , Human Umbilical Vein Endothelial Cells , Photinia , Plant Extracts , Photinia/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Atherosclerosis/drug therapy , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Anthocyanins/pharmacology , Anthocyanins/chemistry , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Interleukin-6/metabolism , Interleukin-6/genetics
8.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602357

ABSTRACT

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Subject(s)
Berberine , Chlorogenic Acid , Osteoporosis , Osteoporosis/drug therapy , Animals , Mice , Berberine/pharmacology , Berberine/therapeutic use , Berberine/chemistry , Berberine/administration & dosage , Berberine/pharmacokinetics , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chlorogenic Acid/administration & dosage , Female , Humans , Osteogenesis/drug effects , Bone and Bones/drug effects , Bone and Bones/pathology , Nanostructures/chemistry , Nanostructures/therapeutic use
9.
J Control Release ; 369: 420-443, 2024 May.
Article in English | MEDLINE | ID: mdl-38575075

ABSTRACT

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities. Due to the Schiff base and Phenylboronate ester bonds, the hydrogel exhibited excellent mechanical properties, strong adhesion, good biodegradability, high biocompatibility, stable rheological properties, and self-healing ability. Moreover, introducing Z-CA as an initiator and nanofiller led to the additional cross-linking of hydrogel through coordination bonds, which further improved the mechanical properties and antioxidant capabilities. Bleeding models of liver and tail amputations demonstrated rapid hemostatic properties of the hydrogel. Besides, the hydrogel regulated macrophage phenotypes via the NF-κB/JAK-STAT pathways, relieved oxidative stress, promoted cell migration and angiogenesis, and accelerated diabetic wound healing. The hydrogel also enabled real-time monitoring of the wound healing stages by colorimetric detection. This multifunctional hydrogel opens new avenues for the treatment and management of full-thickness diabetic wounds.


Subject(s)
Chlorogenic Acid , Hydrogels , Macrophages , Nanocomposites , Wound Healing , Wound Healing/drug effects , Animals , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Hydrogels/chemistry , Nanocomposites/chemistry , Nanocomposites/administration & dosage , RAW 264.7 Cells , Mice , Macrophages/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/administration & dosage , Male , Phenotype , Rats, Sprague-Dawley , Polylysine/chemistry , Hyaluronic Acid/chemistry
10.
Fitoterapia ; 175: 105956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604261

ABSTRACT

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.


Subject(s)
ATP Citrate (pro-S)-Lyase , Eleutherococcus , Eleutherococcus/chemistry , Molecular Structure , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/isolation & purification , Quinic Acid/chemistry , Hydroxybenzoates/pharmacology , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/chemistry , Structure-Activity Relationship
11.
J Mater Chem B ; 12(19): 4717-4723, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38655651

ABSTRACT

Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.


Subject(s)
Chlorogenic Acid , Insecticides , Metal-Organic Frameworks , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Animals , Tenebrio/chemistry , Tenebrio/drug effects , Larva/drug effects
12.
Food Funct ; 15(9): 4741-4762, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629635

ABSTRACT

In the contemporary era, heightened emphasis on health and safety has emerged as a paramount concern among individuals with food. The concepts of "natural" and "green" have progressively asserted dominance in the food consumption market. Consequently, through continuous exploration and development, an escalating array of natural bioactive ingredients is finding application in both nutrition delivery and the broader food industry. Chlorogenic acid (CGA), a polyphenolic compound widely distributed in various plants in nature, has garnered significant attention. Abundant research underscores CGA's robust biological activity, showcasing notable preventive and therapeutic efficacy across diverse diseases. This article commences with a comprehensive overview, summarizing the dietary sources and primary biological activities of CGA. These encompass antioxidant, anti-inflammatory, antibacterial, anti-cancer, and neuroprotective activities. Next, a comprehensive overview of the current research on nutrient delivery systems incorporating CGA is provided. This exploration encompasses nanoparticle, liposome, hydrogel, and emulsion delivery systems. Additionally, the article explores the latest applications of CGA in the food industry. Serving as a cutting-edge theoretical foundation, this paper contributes to the design and development of CGA in the realms of nutrition delivery and the food industry. Finally, the article presents informed speculations and considerations for the future development of CGA.


Subject(s)
Chlorogenic Acid , Food Industry , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Humans , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Drug Delivery Systems/methods
13.
Poult Sci ; 103(6): 103649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552567

ABSTRACT

The development of large-scale and intensive breeding models has led to increasingly prominent oxidative stress issues in animal husbandry production. Chlorogenic acid (CGA) is an important extract with a variety of biological activities. It is an effective antioxidant drug and shows different antioxidant capacities due to its different chemical structures. Therefore, it is a new research target to determine the proportion of chlorogenic acid isomers with high antioxidant activity to resist the damage caused by oxidative stress. In this experiment, the antioxidant activities of the chlorogenic acid monomer and its compounds were compared by a series of in vitro antioxidant indexes. Based on the above experiments, it was found that LB and LC have superior antioxidant abilities (P < 0.05). Subsequently, 300 healthy 1-day-old Arbor Acres (AA) male broilers with no significant difference in body weight (about 44 g) were randomly selected and randomly divided into 5 groups with 6 replicates in each group and 10 chickens in each replicate. One group was the control group, 1 group was the model group, and the remaining 3 groups were the experimental groups. At 37 d of age, animals in the control group were injected with normal saline, and animals in the other 4 groups were injected with 1 mL/kg 5% hydrogen peroxide (H2O2) through the chest muscle before the supplementation. The control group (control) and the model group (PC) were fed a standard diet. The remaining 3 groups included the CGA group, LB group (CIB), and LC group (CIC). In these groups, 50 g/t chlorogenic acid, LB compound, or LC compound were added to the basal diet, respectively, and the other feeding conditions remained consistent. The addition of the LB complex to the diet could significantly improve the growth performance and antioxidant performance of broilers (P < 0.05), upregulate the expression of Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related genes in liver and jejunum (P < 0.05), regulate the disordered intestinal flora, and alleviate the damage caused by oxidative stress. These results suggested for the first time that the LB complex exhibited superior effects in vitro and vivo.


Subject(s)
Antioxidants , Chickens , Chlorogenic Acid , Oxidative Stress , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/chemistry , Oxidative Stress/drug effects , Male , Antioxidants/pharmacology , Random Allocation , Animal Feed/analysis , Isomerism , Dietary Supplements/analysis
14.
Int J Biol Macromol ; 262(Pt 2): 130099, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342255

ABSTRACT

The study aimed to assay the allergenicity of shrimp tropomyosin (TM) following covalent conjugation with quercetin (QR) and chlorogenic acid (CA). The structure of the TM-polyphenol covalent conjugates was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), fluorescence, differential scanning calorimetry (DSC), and Fourier Transform infrared spectroscopy (FTIR). Potential allergenicity was evaluated using in vitro and in vivo methods. The results showed that QR and CA induced structural changes in TM through aggregation. RBL-2H3 cell results showed that TM-QR and TM-CA covalent conjugates reduced the release of ß-hexosaminidase and histamine, respectively. In the mice model, TM-QR and TM-CA covalent conjugates reduced the level of IgE, IgG, IgG1, histamine, and mMCP-1 in sera. Furthermore, the allergenicity was reduced by suppressing Th2-related cytokines (IL-4, IL-5, IL-13) and promoting Th1-related cytokines (IFN-γ). These research findings demonstrate that the covalent binding of TM with QR and CA, modifies the allergenic epitopes of shrimp TM, thereby reducing its potential allergenicity. This approach holds practical applications in the production of low-allergenicity food within the food industry.


Subject(s)
Allergens , Tropomyosin , Mice , Animals , Tropomyosin/chemistry , Allergens/chemistry , Chlorogenic Acid/chemistry , Quercetin , Histamine , Immunoglobulin E/metabolism , Cytokines
15.
Curr Pharm Des ; 30(6): 420-439, 2024.
Article in English | MEDLINE | ID: mdl-38299405

ABSTRACT

Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.


Subject(s)
Chlorogenic Acid , Clinical Trials as Topic , Colitis, Ulcerative , Drug Delivery Systems , Humans , Colitis, Ulcerative/drug therapy , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chlorogenic Acid/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use
16.
Sci Rep ; 14(1): 4453, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396007

ABSTRACT

Consumer demand for natural, chemical-free products has grown. Food industry residues, like coffee pulp, rich in caffeine, chlorogenic acid and phenolic compounds, offer potential for pharmaceutical and cosmetic applications due to their antioxidant, anti-inflammatory, and antibacterial properties. Therefore, the objective of this work was to develop a phytocosmetic only with natural products containing coffee pulp extract as active pharmaceutical ingredient with antioxidant, antimicrobial and healing activity. Eight samples from Coffea arabica and Coffea canephora Pierre were analyzed for caffeine, chlorogenic acid, phenolic compounds, tannins, flavonoids, cytotoxicity, antibacterial activity, and healing potential. The Robusta IAC-extract had the greatest prominence with 192.92 µg/mL of chlorogenic acid, 58.98 ± 2.88 mg GAE/g sample in the FRAP test, 79.53 ± 5.61 mg GAE/g sample in the test of total phenolics, was not cytotoxic, and MIC 3 mg/mL against Staphylococcus aureus. This extract was incorporated into a stable formulation and preferred by 88% of volunteers. At last, a scratch assay exhibited the formulation promoted cell migration after 24 h, therefore, increased scratch retraction. In this way, it was possible to develop a phytocosmetic with the coffee pulp that showed desirable antioxidant, antimicrobial and healing properties.


Subject(s)
Antioxidants , Coffea , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Caffeine/pharmacology , Caffeine/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phenols/pharmacology , Anti-Bacterial Agents/pharmacology , Coffea/chemistry
17.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338480

ABSTRACT

To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.


Subject(s)
Eucommiaceae , Flavonoids , Flavonoids/chemistry , Solvents/chemistry , Chlorogenic Acid/chemistry , Eucommiaceae/chemistry , Deep Eutectic Solvents , Plant Extracts/chemistry , Water , Iridoids
18.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 439-450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37975278

ABSTRACT

Chlorogenic acid (CGA), also known as 3-caffeioylquinic acid or coffee tannin, is a water-soluble polyphenol phenylacrylate compound produced through the shikimate pathway by plants during aerobic respiration. CGA widely exists in higher dicotyledons, ferns and many Chinese medicinal materials, and enjoys the reputation of 'plant gold'. Here, we summarized the source, chemical structure, biological activity functions of CGA and its research progress in pigs, aiming to provide a more comprehensive understanding and theoretical basis for the prospect of CGA replacing antibiotics as a pig feed additive.


Subject(s)
Chlorogenic Acid , Coffee , Animals , Swine , Chlorogenic Acid/chemistry , Coffee/chemistry , Antioxidants
19.
Int J Biol Macromol ; 254(Pt 2): 127839, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931860

ABSTRACT

In this study, chlorogenic acid-chitosan (CA-CS) copolymers were prepared with varying Chitosan (CS): chlorogenic acid (CA)ratios and characterized for their water solubility, antioxidant capacity, and emulsions stability. Results showed that CA-CS samples exhibited up to 90.5 % increase in DPPH scavenging efficiency and 20 % increase in hydroxyl radical scavenging efficiency compared to CS alone. CA-CS copolymers used to stabilize oil in water (O/W) emulsions, which were evaluated for their potential in encapsulating and protecting ß-carotene. Microscopic observations revealed homogeneous spherical droplets in stable emulsions, suggesting effective interfacial structures. The selected CA-CS-stabilized O/W emulsions demonstrated encapsulation efficiencies of 74.8 % and 75.26 % for ß-carotene. The CA-CS stabilized O/W emulsions provided the most effective protection against ß-carotene degradation under UV exposure, retaining over 80 % of ß-carotene content after 12 h of testing. These findings indicate that CA-CS-based O/W emulsions show promise as carriers and protectors for bioactive compounds, due to their improved antioxidant capacity, emulsions stability, and protection against degradation.


Subject(s)
Chitosan , Chlorogenic Acid , Chlorogenic Acid/chemistry , Emulsions/chemistry , beta Carotene/chemistry , Chitosan/chemistry , Antioxidants/pharmacology , Water/chemistry
20.
Food Chem ; 439: 138169, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38128425

ABSTRACT

The deterioration of fruit could reduce the shelf life, decreased marketability and substantial economic value. Thus, a safe, simple, economical and environmentally friendly preservation technology for fruit is of great significance. Here, the postharvest preservation technology was investigated with zinc-doped carbon quantum dots and chlorogenic acid (Zn-CQDs/CGA) composite. Zn-CQDs/CGA composite were synthesized, which exhibits superior antioxidant and antibacterial activities. The binding mechanism of the Zn-CQDs/CGA composite was investigated, which revealed that the bindings of two components were mainly driven by hydrogen bonding and van der Waals forces to create a novel composite. The Zn-CQDs/CGA composite was applied to longan preservation and was found to significantly reduce the incidence of mildew spot, browning of fruit endocarp and pulp, as well as the degree of degradation of quality indexes. These results suggest that the Zn-CQDs/CGA composite has the potential for inhibiting browning and preserving the quality of longan during storage.


Subject(s)
Antioxidants , Quantum Dots , Antioxidants/pharmacology , Zinc , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Carbon/chemistry , Anti-Bacterial Agents/pharmacology , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...