Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0299780, 2024.
Article in English | MEDLINE | ID: mdl-38758755

ABSTRACT

Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.


Subject(s)
Acclimatization , Carbon Dioxide , Lipidomics , Transcriptome , Carbon Dioxide/metabolism , Acclimatization/genetics , Lipidomics/methods , Microalgae/genetics , Microalgae/metabolism , Microalgae/growth & development , Gene Expression Profiling , Photosynthesis/genetics , Lipid Metabolism/genetics , Chlorophyceae/genetics , Chlorophyceae/metabolism
2.
Plant Physiol Biochem ; 211: 108697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705045

ABSTRACT

Dunaliella salina, a microalga that thrives under high-saline conditions, is notable for its high ß-carotene content and the absence of a polysaccharide cell wall. These unique characteristics render it a prime candidate as a cellular platform for astaxanthin production. In this study, our initial tests in an E. coli revealed that ß-ring-4-dehydrogenase (CBFD) and 4-hydroxy-ß-ring-4-dehydrogenase (HBFD) genes from Adonis aestivalis outperformed ß-carotene hydroxylase (BCH) and ß-carotene ketolase (BKT) from Haematococcus pluvialis counterparts by two-fold in terms of astaxanthin biosynthesis efficiency. Subsequently, we utilized electroporation to integrate either the BKT gene or the CBFD and HBFD genes into the genome of D. salina. In comparison to wild-type D. salina, strains transformed with BKT or CBFD and HBFD exhibited inhibited growth, underwent color changes to shades of red and yellow, and saw a nearly 50% decline in cell density. HPLC analysis confirmed astaxanthin synthesis in engineered D. salina strains, with CBFD + HBFD-D. salina yielding 134.88 ± 9.12 µg/g of dry cell weight (DCW), significantly higher than BKT-D. salina (83.58 ± 2.40 µg/g). This represents the largest amount of astaxanthin extracted from transgenic D. salina, as reported to date. These findings have significant implications, opening up new avenues for the development of specialized D. salina-based microcell factories for efficient astaxanthin production.


Subject(s)
Xanthophylls , Xanthophylls/metabolism , Chlorophyceae/metabolism , Chlorophyceae/genetics , Biosynthetic Pathways/genetics , Chlorophyta/metabolism , Chlorophyta/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Mixed Function Oxygenases , Oxygenases
3.
Plant Physiol Biochem ; 211: 108661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735153

ABSTRACT

Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.


Subject(s)
Chlorophyceae , Chlorophyceae/genetics , Chlorophyceae/metabolism , Adaptation, Physiological , Nitrogen/metabolism , Chlorophyta/metabolism , Chlorophyta/genetics
4.
J Agric Food Chem ; 72(17): 10005-10013, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626461

ABSTRACT

Dunaliella bardawil is a marine unicellular green algal that produces large amounts of ß-carotene and is a model organism for studying the carotenoid synthesis pathway. However, there are still many mysteries about the enzymes of the D. bardawil lycopene synthesis pathway that have not been revealed. Here, we have identified a CruP-like lycopene isomerase, named DbLyISO, and successfully cloned its gene from D. bardawil. DbLyISO showed a high homology with CruPs. We constructed a 3D model of DbLyISO and performed molecular docking with lycopene, as well as molecular dynamics testing, to identify the functional characteristics of DbLyISO. Functional activity of DbLyISO was also performed by overexpressing gene in both E. coli and D. bardawil. Results revealed that DbLyISO acted at the C-5 and C-13 positions of lycopene, catalyzing its cis-trans isomerization to produce a more stable trans structure. These results provide new ideas for the development of a carotenoid series from engineered bacteria, algae, and plants.


Subject(s)
Chlorophyceae , Intramolecular Lyases , Lycopene , cis-trans-Isomerases , Algal Proteins/genetics , Algal Proteins/metabolism , Algal Proteins/chemistry , Amino Acid Sequence , Carotenoids/metabolism , Carotenoids/chemistry , Chlorophyceae/enzymology , Chlorophyceae/genetics , Chlorophyceae/chemistry , Chlorophyceae/metabolism , Chlorophyta/enzymology , Chlorophyta/genetics , Chlorophyta/chemistry , Chlorophyta/metabolism , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , cis-trans-Isomerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Lycopene/metabolism , Lycopene/chemistry , Molecular Docking Simulation , Sequence Alignment
5.
Physiol Plant ; 176(2): e14296, 2024.
Article in English | MEDLINE | ID: mdl-38650503

ABSTRACT

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Subject(s)
Betaine , Choline Dehydrogenase , Salt Tolerance , Betaine/metabolism , Salt Tolerance/genetics , Choline Dehydrogenase/metabolism , Choline Dehydrogenase/genetics , Choline/metabolism , Chlorophyceae/genetics , Chlorophyceae/physiology , Chlorophyceae/enzymology , Chlorophyceae/metabolism , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Molecular Docking Simulation , Sodium Chloride/pharmacology
6.
J Phycol ; 60(2): 275-298, 2024 04.
Article in English | MEDLINE | ID: mdl-38439561

ABSTRACT

Thick-walled rosette-like snow algae were long thought to be a life stage of various other species of snow algae. Rosette-like cells have not been cultured, but by manually isolating cells from 38 field samples in southern British Columbia, we assigned a variety of rosette morphologies to DNA sequence. Phylogenetic analysis of Rubisco large-subunit (rbcL) gene, ribosomal internal transcribed spacer 2 (ITS2) rRNA region, and 18S rRNA gene revealed that the rosette-like cells form a new clade within the phylogroup Chloromonadinia. Based on these data, we designate a new genus, Rosetta, which comprises five novel species: R. castellata, R. floranivea, R. stellaria, R. rubriterra, and R. papavera. In a survey of 762 snow samples from British Columbia, we observed R. floranivea exclusively on snow overlying high-elevation glaciers, whereas R. castellata was observed at lower elevations, near the tree line. The other three species were rarely observed. Spherical red cells enveloped in a thin translucent sac were conspecific with Rosetta, possibly a developmental stage. These results highlight the unexplored diversity among snow algae and emphasize the utility of single-cell isolation to advance the centuries-old problem of disentangling life stages and cryptic species.


Subject(s)
Chlorophyceae , Chlorophyta , Rhodophyta , Phylogeny , Chlorophyta/genetics , Chlorophyceae/genetics , RNA, Ribosomal, 18S/genetics , Rhodophyta/genetics
7.
Funct Plant Biol ; 512024 02.
Article in English | MEDLINE | ID: mdl-38388445

ABSTRACT

Microalgae are photosynthetic organisms and a potential source of sustainable metabolite production. However, different stress conditions might affect the production of various metabolites. In this study, a meta-analysis of RNA-seq experiments in Dunaliella tertiolecta was evaluated to compare metabolite biosynthesis pathways in response to abiotic stress conditions such as high light, nitrogen deficiency and high salinity. Results showed downregulation of light reaction, photorespiration, tetrapyrrole and lipid-related pathways occurred under salt stress. Nitrogen deficiency mostly induced the microalgal responses of light reaction and photorespiration metabolism. Phosphoenol pyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) were commonly upregulated under salt, light and nitrogen stresses. Interestingly, the results indicated that the meta-genes (modules of genes strongly correlated) were located in a hub of stress-specific protein-protein interaction (PPI) network. Module enrichment of meta-genes PPI networks highlighted the cross-talk between photosynthesis, fatty acids, starch and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes was involved in starch biosynthesis. Our results also showed that the pathways of vitamin B6 metabolism, methane metabolism, ribosome biogenesis and folate biosynthesis responded specifically to different stress factors. Since the results of this study revealed the main pathways underlying the abiotic stress, they might be applied in optimised metabolite production by the microalga Dunaliella in future studies. PRISMA check list was also included in the study.


Subject(s)
Chlorophyceae , Chlorophyceae/genetics , Chlorophyceae/metabolism , Stress, Physiological/genetics , Starch/metabolism , RNA-Seq , Nitrogen/metabolism , Tetrapyrroles
8.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-37880981

ABSTRACT

Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.


Subject(s)
Chlorophyceae , Chlorophyta , Ice Cover , Snow , RNA, Ribosomal, 18S/genetics , Genes, rRNA , Chlorophyta/genetics , Chlorophyceae/genetics
9.
Am J Bot ; 110(11): e16238, 2023 11.
Article in English | MEDLINE | ID: mdl-37661934

ABSTRACT

PREMISE: Chaetopeltidales is a small, understudied order of the green algal class Chlorophyceae, that is slowly expanding with the occasional discoveries of novel algae. Here we demonstrate that hitherto unrecognized chaetopeltidaleans also exist among previously described but neglected and misclassified species. METHODS: Strain SAG 40.91 of Characium acuminatum, shown by previous preliminary evidence to have affinities with the orders Oedogoniales, Chaetophorales, and Chaetopeltidales (together constituting the OCC clade), was investigated with light and electron microscopy to characterize its morphology and ultrastructure. Sequence assemblies of the organellar and nuclear genomes were obtained and utilized in bioinformatic and phylogenetic analyses to address the phylogenetic position of the alga and its salient genomic features. RESULTS: The characterization of strain SAG 40.91 and a critical literature review led us to reinstate the forgotten genus Hydrocytium A.Braun 1855, with SAG 40.91 representing its type species, Hydrocytium acuminatum. Independent molecular markers converged on placing H. acuminatum as a deeply diverged lineage of the order Chaetopeltidales, formalized as the new family Hydrocytiaceae. Both chloroplast and mitochondrial genomes shared characteristics with other members of Chaetopeltidales and were bloated by repetitive sequences. Notably, the mitochondrial cox2a gene was transferred into the nuclear genome in the H. acuminatum lineage, independently of the same event in Volvocales. The nuclear genome data from H. acuminatum and from another chaetopeltidalean that was reported by others revealed endogenized viral sequences corresponding to novel members of the phylum Nucleocytoviricota. CONCLUSIONS: The resurrected genus Hydrocytium expands the known diversity of chaetopeltidalean algae and provides the first glimpse into their virosphere.


Subject(s)
Chlorophyceae , Chlorophyta , Genome, Mitochondrial , Base Sequence , Chlorophyceae/genetics , Chlorophyta/genetics , Genomics , Phylogeny
10.
J Phycol ; 59(4): 775-784, 2023 08.
Article in English | MEDLINE | ID: mdl-37261838

ABSTRACT

Species identification of Scenedesmus-like microalgae, comprising Desmodesmus, Tetradesmus, and Scenedesmus, has been challenging due to their high morphological and genetic similarity. After developing a DNA signaturing tool for Desmodesmus identification, we built a DNA signaturing database for Tetradesmus. The DNA signaturing tool contained species-specific nucleotide sequences of Tetradesmus species or strain groups with high similarity in ITS2 sequences. To construct DNA signaturing, we collected data on ITS2 sequences, aligned the sequences, organized the data by ITS2 sequence homology, and determined signature sequences according to hemi-compensatory base changes (hCBC)/CBC data from previous studies. Four Tetradesmus species and 11 strain groups had DNA signatures. The signature sequence of the genus Tetradesmus, TTA GAG GCT TAA GCA AGG ACCC, recognized 86% (157/183) of the collected Tetradesmus strains. Phylogenetic analysis of Scenedesmus-like species revealed that the Tetradesmus species were monophyletic and closely related to each other based on branch lengths. Desmodesmus was suggested to split into two subgenera due to their genetic and morphological distinction. Scenedesmus must be analyzed along with other genera of the Scenedesmaceae family to determine their genetic relationships. Importantly, DNA signaturing was integrated into a database for identifying Scenedesmus-like species through BLAST.


Subject(s)
Chlorophyceae , Microalgae , Scenedesmus , Phylogeny , Scenedesmus/genetics , Microalgae/genetics , Chlorophyceae/genetics , DNA
11.
J Phycol ; 59(2): 342-355, 2023 04.
Article in English | MEDLINE | ID: mdl-36680562

ABSTRACT

The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near-identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single-base substitution across the ITS1-5.8S-ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life-cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas-type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of "Group D" snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.


Subject(s)
Chlorophyceae , Chlorophyceae/genetics , Phylogeny , Chloroplasts , Europe , RNA, Ribosomal, 18S/genetics
12.
J Microbiol Biotechnol ; 32(12): 1622-1631, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36384973

ABSTRACT

Carotenoids, which are natural pigments found abundantly in wide-ranging species, have diverse functions and high industrial potential. The carotenoid biosynthesis pathway is very complex and has multiple branches, while the accumulation of certain metabolites often affects other metabolites in this pathway. The DsLCYB gene that encodes lycopene cyclase was selected in this study to evaluate ß-carotene production and the accumulation of ß-carotene in the alga Dunaliella salina. Compared with the wild type, the transgenic algal species overexpressed the DsLCYB gene, resulting in a significant enhancement of the total carotenoid content, with the total amount reaching 8.46 mg/g for an increase of up to 1.26-fold. Interestingly, the production of α-carotene in the transformant was not significantly reduced. This result indicated that the regulation of DsLCYB on the metabolic flux distribution of carotenoid biosynthesis is directional. Moreover, the effects of different light-quality conditions on ß-carotene production in D. salina strains were investigated. The results showed that the carotenoid components of ß-carotene and ß-cryptoxanthin were 1.8-fold and 1.23-fold higher than that in the wild type under red light stress, respectively. This suggests that the accumulation of ß-carotene under red light conditions is potentially more profitable.


Subject(s)
Chlorophyceae , beta Carotene , Carotenoids/metabolism , Chlorophyceae/genetics , Chlorophyceae/metabolism , Plants/metabolism , Light
13.
Genes (Basel) ; 13(8)2022 08 04.
Article in English | MEDLINE | ID: mdl-36011300

ABSTRACT

Considering the phylogenetic differences in the taxonomic framework of the Chaetophorales as determined by the use of nuclear molecular markers or chloroplast genes, the current study was the first to use phylotranscriptomic analyses comparing the transcriptomes of 12 Chaetophorales algal species. The results showed that a total of 240,133 gene families and 143 single-copy orthogroups were identified. Based on the single-copy orthogroups, supergene analysis and the coalescent-based approach were adopted to perform phylotranscriptomic analysis of the Chaetophorales. The phylogenetic relationships of most species were consistent with those of phylogenetic analyses based on the chloroplast genome data rather than nuclear molecular markers. The Schizomeriaceae and the Aphanochaetaceae clustered into a well-resolved basal clade in the Chaetophorales by either strategy. Evolutionary analyses of divergence time and substitution rate also revealed that the closest relationships existed between the Schizomeriaceae and Aphanochaetaceae. All species in the Chaetophorales exhibited a large number of expanded and contracted gene families, in particular the common ancestor of the Schizomeriaceae and Aphanochaetaceae. The only terrestrial alga, Fritschiella tuberosa, had the greatest number of expanded gene families, which were associated with increased fatty acid biosynthesis. Phylotranscriptomic and evolutionary analyses all robustly identified the unique taxonomic relationship of Chaetophorales consistent with chloroplast genome data, proving the advantages of high-throughput data in phylogeny.


Subject(s)
Chlorophyceae , Chlorophyta , Base Sequence , Chlorophyceae/genetics , Chlorophyta/genetics , DNA, Chloroplast/genetics , Evolution, Molecular , Phylogeny
14.
Int J Mol Sci ; 23(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35328543

ABSTRACT

Haematococcus pluvialis has high economic value because of its high astaxanthin-producing ability. The mutation breeding of Haematococcus pluvialis is an important method to improve the yield of astaxanthin. Fluoridone, an inhibitor of phytoene dehydrogenase, can be used as a screening reagent for mutation breeding of Haematococcus pluvialis. This study describes the effect of fluridone on the biomass, chlorophyll, and astaxanthin content of Haematococcus pluvialis at different growth stages. Five fluridone concentrations (0.00 mg/L, 0.25 mg/L, 0.50 mg/L, 1.00 mg/L, and 2.00 mg/L) were set to treat Haematococcus pluvialis. It was found that fluridone significantly inhibited the growth and accumulation of astaxanthin in the red dormant stage. In addition, transcriptome sequencing was used to analyze the expression of genes related to four metabolic pathways in photosynthesis, carotenoid synthesis, fatty acid metabolism, and cellular antioxidant in algae after fluridone treatment. The results showed that six genes related to photosynthesis were downregulated. FPPS, lcyB genes related to carotenoid synthesis are downregulated, but carotenoid ß-cyclic hydroxylase gene (LUT5), which plays a role in the conversion of carotenoid to abscisic acid (ABA), was upregulated, while the expression of phytoene dehydrogenase gene did not change. Two genes related to cell antioxidant capacity were upregulated. In the fatty acid metabolism pathway, the acetyl-CoA carboxylase gene (ACACA) was downregulated in the green stage, but upregulated in the red stage, and the stearoyl-CoA desaturase gene (SAD) was upregulated. According to the transcriptome results, fluridone can affect the astaxanthin accumulation and growth of Haematococcus pluvialis by regulating the synthesis of carotenoids, chlorophyll, fatty acids, and so on. It is expected to be used as a screening agent for the breeding of Haematococcus pluvialis. This research also provides an experimental basis for research on the mechanism of astaxanthin metabolism in Haematococcus pluvialis.


Subject(s)
Chlorophyceae , Chlorophyta , Antioxidants/pharmacology , Carotenoids/metabolism , Chlorophyceae/genetics , Chlorophyll/metabolism , Chlorophyta/genetics , Chlorophyta/metabolism , Fatty Acids/metabolism , Plant Breeding , Pyridones , Transcriptome
15.
Protist ; 173(2): 125858, 2022 04.
Article in English | MEDLINE | ID: mdl-35220204

ABSTRACT

Unicellular green biflagellates of the order Volvocales (Chlorophyceae, Chlorophyta) are common inhabitants of various types of habitats, and can also form peculiar interspecific relationships. Most of their morphological diversity has historically been assigned to the two prominent genera Chlamydomonas and Chloromonas. Ongoing reclassification of these algae, aided by molecular phylogenetics, has resulted in numerous newly proposed genera, but there are certainly brand-new taxa awaiting recognition. In this study, based on morphological and ultrastructural observations together with sequence data of the nuclear 18S and ITS2 rDNA and the plastid rbcL gene, we describe Adglutina synurophila gen. et sp. nov., a volvocalean biflagellate isolated from colonies of the golden-brown alga Synura petersenii (Chrysophyceae). Phylogenetic analyses placed Adglutina in the phylogroup Moewusinia as a sister lineage to the acidophilic "Chlamydomonas" species. It is characterised by having oval to broadly ellipsoidal cells with a low keel-shaped papilla and a cup-shaped chloroplast lacking a pyrenoid, but possessing a lateral eyespot of a variable position. The unique set of features, together with its Synura-loving nature, anchor Adglutina as a well distinguishable phylogenetic lineage within the Moewusinia. The novel alga has a widespread distribution; it has been found in three European countries to date.


Subject(s)
Chlamydomonas , Chlorophyceae , Chlorophyta , Microalgae , Stramenopiles , Chlamydomonas/genetics , Chlorophyceae/genetics , DNA, Ribosomal/genetics , Phylogeny , Stramenopiles/genetics
16.
Sci Rep ; 11(1): 23134, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848777

ABSTRACT

Microalgae are possible sources of antiviral substances, e.g. against cyprinid herpesvirus 3 (CyHV-3). Although this virus leads to high mortalities in aquacultures, there is no treatment available yet. Hence, ethanolic extracts produced with accelerated solvent extraction from six microalgal species (Arthrospira platensis, Chlamydomonas reinhardtii, Chlorella kessleri, Haematococcus pluvialis, Nostoc punctiforme and Scenedesmus obliquus) were examined in this study. An inhibition of the in vitro replication of CyHV-3 could be confirmed for all six species, with the greatest effect for the C. reinhardtii and H. pluvialis crude extracts. At still non-cytotoxic concentrations, viral DNA replication was reduced by over 3 orders of magnitude each compared to the untreated replication controls, while the virus titers were even below the limit of detection (reduction of 4 orders of magnitude). When pre-incubating both cells and virus with C. reinhardtii and H. pluvialis extracts before inoculation, the reduction of viral DNA was even stronger (> 4 orders of magnitude) and no infectious viral particles were detected. Thus, the results of this study indicate that microalgae and cyanobacteria are a promising source of natural bioactive substances against CyHV-3. However, further studies regarding the isolation and identification of the active components of the extracts are needed.


Subject(s)
Carps/virology , Chlamydomonas reinhardtii , Chlorella , Herpesviridae , Microalgae/metabolism , Nostoc , Scenedesmus , Spirulina , Virus Diseases/therapy , Animals , Aquaculture , Biomass , Biotechnology , Chlorophyceae/genetics , Chlorophyta , Complex Mixtures , Cyanobacteria/genetics , DNA Replication , DNA, Viral , Ethanol , In Vitro Techniques , Inhibitory Concentration 50 , Virus Replication , Water Microbiology
17.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768970

ABSTRACT

The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.


Subject(s)
Algal Proteins/metabolism , Chlorophyceae/enzymology , Cysteine Proteases/metabolism , Microalgae/growth & development , Microalgae/physiology , Algal Proteins/chemistry , Algal Proteins/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/physiology , Chlorophyceae/genetics , Chlorophyll/biosynthesis , Cysteine Proteases/chemistry , Cysteine Proteases/genetics , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Microalgae/genetics , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salt Tolerance/genetics , Salt Tolerance/physiology , Stress, Physiological/genetics , Stress, Physiological/physiology , Transformation, Genetic
18.
Sci Rep ; 11(1): 22231, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34811380

ABSTRACT

Germ-soma differentiation evolved independently in many eukaryotic lineages and contributed to complex multicellular organizations. However, the molecular genetic bases of such convergent evolution remain unresolved. Two multicellular volvocine green algae, Volvox and Astrephomene, exhibit convergent evolution of germ-soma differentiation. The complete genome sequence is now available for Volvox, while genome information is scarce for Astrephomene. Here, we generated the de novo whole genome sequence of Astrephomene gubernaculifera and conducted RNA-seq analysis of isolated somatic and reproductive cells. In Volvox, tandem duplication and neofunctionalization of the ancestral transcription factor gene (RLS1/rlsD) might have led to the evolution of regA, the master regulator for Volvox germ-soma differentiation. However, our genome data demonstrated that Astrephomene has not undergone tandem duplication of the RLS1/rlsD homolog or acquisition of a regA-like gene. Our RNA-seq analysis revealed the downregulation of photosynthetic and anabolic gene expression in Astrephomene somatic cells, as in Volvox. Among genes with high expression in somatic cells of Astrephomene, we identified three genes encoding putative transcription factors, which may regulate somatic cell differentiation. Thus, the convergent evolution of germ-soma differentiation in the volvocine algae may have occurred by the acquisition of different regulatory circuits that generate a similar division of labor.


Subject(s)
Biological Evolution , Cell Differentiation/genetics , Chlorophyceae/genetics , Chlorophyta/genetics , Algal Proteins/genetics , Algal Proteins/metabolism , Germ Cells , Volvox/genetics , Whole Genome Sequencing
19.
Sci Rep ; 11(1): 19818, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615938

ABSTRACT

A novel freshwater strain of Coelastrella multistriata MZ-Ch23 was discovered in Tula region, Russia. The identification is based on morphological features, phylogenetic analysis of SSU rDNA gene and ITS1-5.8S rDNA-ITS2 region and predicted secondary structure of the ITS2. Phylogenetic analysis places the novel strain in the "core" Coelastrella clade within the Chlorophyceae. This is the first record of Coelastrella multistriata in the algal flora of Russia. Cultivation experiments were carried out to evaluate growth dynamics of the newly identified strain and the impact of nitrogen and/or phosphorus depletion on the fatty acid profiles and lipid productivity. On the fully supplemented Bold's basal medium and under phosphorus-depleted conditions as well, the fatty acid profiles were dominated by α-linolenic acid (29.4-38.1% of total fatty acids). Depletion of either nitrogen or both nitrogen and phosphorus was associated with increased content of oleic acid (32.9-33.7%) and linoleic acid (11.9%). Prolongation of the growth to two months (instead of 25 days) resulted in increased content and diversity of very long-chain fatty acids including saturated species. The total very long-chain fatty acid content of 9.99% achieved in these experiments was 1.9-12.3-fold higher than in stress experiments. The highest variation was observed for oleic acid (3.4-33.7%). The novel strain showed the ability to accumulate lipids in amounts up to 639.8 mg L-1 under nitrogen and phosphorus starvation, which exceeds the previously obtained values for most Coelastrella strains. Thus, the newly identified MZ-Ch23 strain can be considered as a potential producer of omega-3 fatty acids on fully supplemented Bold's basal medium or as a source of biomass with high content of saturated and monounsaturated fatty acids after nitrogen and phosphorus starvation.


Subject(s)
Chlorophyceae/metabolism , Lipid Metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Chlorophyceae/classification , Chlorophyceae/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fresh Water , Nucleic Acid Conformation , Phylogeny , Water Microbiology
20.
Commun Biol ; 4(1): 754, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140625

ABSTRACT

The charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.


Subject(s)
Cell Wall/chemistry , Chlorophyceae/metabolism , Embryophyta/metabolism , Glucans/metabolism , Xylans/metabolism , Zygnematales/metabolism , Biological Evolution , Chlorophyceae/genetics , Genome, Plant/genetics , Glycosylation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Zygnematales/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...