Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.915
Filter
1.
Chirality ; 36(6): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839280

ABSTRACT

An N-centered epimeric mixture of chlorophyll-a derivatives methylated at the inner nitrogen atom was separated by reverse-phase high-performance liquid chromatography. Circular dichroism (CD) spectroscopic analyses of the epimerically pure N22-methyl-chlorins revealed that the minor first-eluted and major second-eluted stereoisomers were (22S)- and (22R)-configurations, respectively. Their visible absorption and CD spectra in solution were dependent on the N22-stereochemistry. The epimer-dependent spectral changes were independent of the substituents at the peripheral 3-position of the core chlorin chromophore.


Subject(s)
Chlorophyll A , Chlorophyll , Circular Dichroism , Stereoisomerism , Chlorophyll/chemistry , Methylation , Chlorophyll A/chemistry , Chromatography, High Pressure Liquid/methods , Nitrogen/chemistry
2.
Physiol Plant ; 176(3): e14367, 2024.
Article in English | MEDLINE | ID: mdl-38837234

ABSTRACT

Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.


Subject(s)
Charcoal , Chlorophyll , Mycorrhizae , Panicum , Photosynthesis , Charcoal/pharmacology , Panicum/physiology , Panicum/drug effects , Panicum/growth & development , Photosynthesis/physiology , Chlorophyll/metabolism , Mycorrhizae/physiology , Glomeromycota/physiology , Alkalies , Biomass , Plant Leaves/physiology , Antioxidants/metabolism
3.
Physiol Plant ; 176(3): e14374, 2024.
Article in English | MEDLINE | ID: mdl-38837422

ABSTRACT

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Subject(s)
Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
4.
Physiol Plant ; 176(3): e14369, 2024.
Article in English | MEDLINE | ID: mdl-38828612

ABSTRACT

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Subject(s)
Oryza , Photosynthesis , Plant Proteins , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Chloroplasts/metabolism , Hot Temperature , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Chlorophyll/metabolism , Mutation , Heat-Shock Response/genetics , Loss of Function Mutation , Phenotype , Oxidoreductases Acting on CH-CH Group Donors
5.
Plant Signal Behav ; 19(1): 2359258, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38828703

ABSTRACT

Tea plantations in Karst regions suffer from the serious effects of frequent temporary karst droughts, leading to a decline in tea production and quality in the region. The close relationship between growth and electrical parameters of plants, including physiological capacitance, resistance and impedance, can be used to accurately monitor their plant water status online, quickly, accurately, timely and nondestructively. In this study, three tea tree cultivars of Zhonghuang No.2 (ZH), Wuniuzao (WNZ), and Longjing 43 (LJ) with different levels of drought resistance were selected as experimental materials, and experiments were carried out under controlled conditions according to control (soil water content of 40-45%, D0), (keeping D0 no watering to 5 days, D5), (keeping D0 no watering to 10 days, D10), (the first day after D10 is rehydrated to D0 is regarded as R1) and (the fifth day after D10 rehydration to D0 is regarded as R5), to determine intracellular water metabolism and nutrient translocation characteristics based on intrinsic electrical parameters. The photosynthetic characteristics and chlorophyll fluorescence parameters were also determined to investigate the response of water metabolism to simulated karst drought in the three tea tree cultivars. The results indicated that the water metabolism patterns responded to environmental water changes with a medium water-holding capacity, medium water transport rate, and low water-use efficiency, and the nutrient patterns in those tea tree varieties demonstrated with a high nutrient flux per unit area, low nutrient transfer rate, and high nutrient transport capacity. After rehydration, only the electrical characteristics of WNZ returned to the D0 levels, but the net photosynthetic rate of all varieties returned to or even exceeded the D0 levels. The chlorophyll fluorescence parameters could not be used to characterize the recoverability of metabolism in tea trees. The electrical characteristics quickly reflected the response of the water metabolism in plants to environmental changes, and the fusion of electrical characteristics and photosynthetic characteristics was able to more quickly, accurately, and comprehensively reflect the response of water metabolism to temporary karst drought.


Subject(s)
Camellia sinensis , Droughts , Photosynthesis , Water , Photosynthesis/physiology , Camellia sinensis/physiology , Camellia sinensis/metabolism , Water/metabolism , Chlorophyll/metabolism
6.
Sci Rep ; 14(1): 12836, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834660

ABSTRACT

This study introduces an evaluation methodology tailored for bioreactors, with the aim of assessing the stress experienced by algae due to harmful contaminants released from antifouling (AF) paints. We present an online monitoring system equipped with an ultra-sensitive sensor that conducts non-invasive measurements of algal culture's optical density and physiological stage through chlorophyll fluorescence signals. By coupling the ultra-sensitive sensor with flash-induced chlorophyll fluorescence, we examined the dynamic fluorescence changes in the green microalga Chlamydomonas reinhardtii when exposed to biocides. Over a 24-h observation period, increasing concentrations of biocides led to a decrease in photosynthetic activity. Notably, a substantial reduction in the maximum quantum yield of primary photochemistry (FV/FM) was observed within the first hour of exposure. Subsequently, we detected a partial recovery in FV/FM; however, this recovery remained 50% lower than that of the controls. Integrating the advanced submersible sensor with fluorescence decay kinetics offered a comprehensive perspective on the dynamic alterations in algal cells under the exposure to biocides released from antifouling coatings. The analysis of fluorescence relaxation kinetics revealed a significant shortening of the fast and middle phases,  along with an increase in the duration of the slow phase, for the coating with the highest levels of biocides. Combining automated culturing and measuring methods, this approach has demonstrated its effectiveness as an ultrasensitive and non-invasive tool for monitoring the physiology of photosynthetic cultures. This is particularly valuable in the context of studying microalgae and their early responses to various environmental conditions, as well as the potential to develop an AF system with minimal harm to the environment.


Subject(s)
Bioreactors , Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Disinfectants/pharmacology , Fluorescence , Photosynthesis/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/analysis
7.
Sci Rep ; 14(1): 12854, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834735

ABSTRACT

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Subject(s)
Ferric Compounds , Gallic Acid , Salt Stress , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/metabolism , Gallic Acid/metabolism , Zinc/metabolism , Photosynthesis/drug effects , Nanoparticles/chemistry , Chlorophyll/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Salinity , Soil/chemistry
8.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824521

ABSTRACT

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Subject(s)
Charcoal , Chlorophyll , Germination , Potassium , Salt Stress , Sodium , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Triticum/physiology , Germination/drug effects , Charcoal/pharmacology , Chlorophyll/metabolism , Potassium/metabolism , Sodium/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Soil/chemistry , Edible Grain/growth & development , Edible Grain/drug effects , Edible Grain/metabolism , Pakistan , Salinity
9.
Physiol Plant ; 176(3): e14329, 2024.
Article in English | MEDLINE | ID: mdl-38695156

ABSTRACT

Although tetraploid wheat has rich genetic variability for cultivar improvement, its physiological mechanisms associated with photosynthetic productivity and resilience under nitrogen (N) deficit stress have not been investigated. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese Spring (CS, hexaploid) as materials and investigated the differences in net photosynthetic rate (Pn), carboxylation capacity, electron transfer capacity, photosynthetic product output, and photosynthetic N allocation under normal N (CK) and low N (LN) through hydroponic experiments. Tetraploid emmer wheat (Kronos) had a stronger photosynthetic capacity than hexaploid wheat (YM25, CS) under low N stress, which mainly associated with the higher degree of PSII opening, electron transfer rate, Rubisco content and activity, ATP/ADP ratio, Rubisco activase (Rca) activity and Rubisco activation state, and more leaves N allocation to the photosynthetic apparatus, especially the proportion of N allocation to carboxylation under low N stress. Moreover, Kronos reduced the feedback inhibition of photosynthesis by sucrose accumulation through higher sucrose phosphate synthetase (SPS) activity and triose phosphate utilization rate (VTPU). Overall, Kronos could allocate more N to the photosynthetic components to improve Rubisco content and activity to maintain photosynthetic capacity under low N stress while enhancing triose phosphate output to reduce feedback inhibition of photosynthesis. This study reveals the physiological mechanisms of emmer wheat that maintain the photosynthetic capacity under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Photosynthesis , Ribulose-Bisphosphate Carboxylase , Triticum , Photosynthesis/physiology , Triticum/physiology , Triticum/genetics , Triticum/metabolism , Nitrogen/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Plant Leaves/physiology , Plant Leaves/metabolism , Adaptation, Physiological , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics
10.
Environ Monit Assess ; 196(6): 501, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698138

ABSTRACT

Brackish waters and estuaries at the lower reaches of rivers accumulate organic matter and nutrients from various sources in the watershed. Sufficient light and shallow water depth stimulate phytoplankton growth, resulting in a more diversified ecosystem with higher trophic levels. For effective watershed management, it is crucial to characterize the water quality of all rivers, including small and medium-sized ones. Our field survey assessed water quality parameters in 26 inflow rivers surrounding Lakes Shinji and Nakaumi, two consolidated brackish lakes in Japan. The parameters included water temperature, salinity, chlorophyll-a, and nutrients. The study used hierarchical clustering. The Silhouette Index was used to assess clustering outcomes and identify any difficulties in dispersion across clusters. The 26 rivers surrounding Lakes Shinji and Nakaumi were classified into six groups based on their water quality characteristics. This classification distinguishes itself from earlier subjective methods that relied on geographical factors. The new approach identifies a need for improved management of river water quality. The results of the cluster analysis provide valuable insights for future management initiatives. It is important to consider these findings alongside established watershed criteria.


Subject(s)
Environmental Monitoring , Lakes , Rivers , Water Quality , Lakes/chemistry , Environmental Monitoring/methods , Rivers/chemistry , Cluster Analysis , Japan , Water Pollutants, Chemical/analysis , Salinity , Chlorophyll A/analysis , Saline Waters , Chlorophyll/analysis , Phytoplankton/classification , Phytoplankton/growth & development
11.
Sci Total Environ ; 935: 173433, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38782288

ABSTRACT

The concentration of chlorophyll-a (Chl-a) in seawater reflects phytoplankton growth and water eutrophication, which are usually assessed for evaluation of primary productivity and carbon source/sink of coral reefs. However, the precise delineation of Chl-a concentration in coral reefs remains a challenge when ocean satellites with low spatial resolution are utilized. In this study, a remote sensing inversion model for Chl-a was developed in fringing reefs (R2 = 0.76, RMSE =0.41 µg/L, MRE = 14 %) and atolls (R2 = 0.79, RMSE =0.02 µg/L, MRE = 8 %), utilizing reflectance data from the sensitive band of the Landsat-8 Operational Land Imagers (OLI) with a spatial resolution of 30 m. The aforementioned model was utilized to invert high-resolution distribution maps of Chl-a concentration in six major coral reef regions of the South China Sea from 2013 to 2022 and subsequently used to analyze the variations in Chl-a concentration and its influencing factors. The results indicate a Chl-a concentration gradient among coral reefs Daya Bay, Weizhou Island, Luhuitou, Xuwen, Huangyan Island, and Xisha Island in that order. The Chl-a concentration in coral reefs exhibited an overall increasing trend, with significant seasonal fluctuations, characterized by higher concentrations during winter and spring and lower concentrations during summer and autumn. The concentration of Chl-a in coral reefs was positively correlated with the average wind speed.


Subject(s)
Chlorophyll A , Coral Reefs , Environmental Monitoring , Satellite Imagery , China , Chlorophyll A/analysis , Seawater/chemistry , Chlorophyll/analysis , Remote Sensing Technology , Phytoplankton , Eutrophication
12.
J Phys Chem Lett ; 15(22): 5838-5847, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38788163

ABSTRACT

The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.


Subject(s)
Diatoms , Energy Transfer , Light-Harvesting Protein Complexes , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Diatoms/chemistry , Diatoms/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Spectrometry, Fluorescence , Chlorophyll/chemistry
13.
New Phytol ; 243(1): 111-131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708434

ABSTRACT

Leaf traits are essential for understanding many physiological and ecological processes. Partial least squares regression (PLSR) models with leaf spectroscopy are widely applied for trait estimation, but their transferability across space, time, and plant functional types (PFTs) remains unclear. We compiled a novel dataset of paired leaf traits and spectra, with 47 393 records for > 700 species and eight PFTs at 101 globally distributed locations across multiple seasons. Using this dataset, we conducted an unprecedented comprehensive analysis to assess the transferability of PLSR models in estimating leaf traits. While PLSR models demonstrate commendable performance in predicting chlorophyll content, carotenoid, leaf water, and leaf mass per area prediction within their training data space, their efficacy diminishes when extrapolating to new contexts. Specifically, extrapolating to locations, seasons, and PFTs beyond the training data leads to reduced R2 (0.12-0.49, 0.15-0.42, and 0.25-0.56) and increased NRMSE (3.58-18.24%, 6.27-11.55%, and 7.0-33.12%) compared with nonspatial random cross-validation. The results underscore the importance of incorporating greater spectral diversity in model training to boost its transferability. These findings highlight potential errors in estimating leaf traits across large spatial domains, diverse PFTs, and time due to biased validation schemes, and provide guidance for future field sampling strategies and remote sensing applications.


Subject(s)
Plant Leaves , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Least-Squares Analysis , Quantitative Trait, Heritable , Chlorophyll/metabolism , Seasons , Models, Biological , Water , Carotenoids/metabolism
14.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776366

ABSTRACT

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Subject(s)
Chloroplasts , Glutamate-Ammonia Ligase , Hemiptera , Insect Vectors , Oryza , Phytoplasma , Plant Leaves , Animals , Hemiptera/microbiology , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Phytoplasma/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Oryza/microbiology , Oryza/genetics , Insect Vectors/microbiology , Chloroplasts/metabolism , Plant Diseases/microbiology , Chlorophyll/metabolism , Plants, Genetically Modified , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
15.
J Agric Food Chem ; 72(22): 12859-12870, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780458

ABSTRACT

Bamboo is one of the most important nontimber forestry products in the world. Light is not only the most critical source of energy for plant photosynthesis but also involved in regulating the biological processes of plants. However, there are few reports on how blue/red light affects Moso bamboo. This study investigated the growth status and physiological responses of Moso bamboo (Phyllostachys edulis) to blue/red light treatments. The growth status of the bamboo plants was evaluated, revealing that both blue- and red-light treatments promoted plant height and overall growth. Gas exchange parameters, chlorophyll fluorescence, and enzyme activity were measured to assess the photosystem response of Moso bamboo to light treatments. Additionally, the blue light treatment led to a higher chlorophyll content and enzyme activities compared to the red light treatment. A tandem mass tag quantitative proteomics approach identified significant changes in protein abundance under different light conditions with specific response proteins associated with distinct pathways, such as photosynthesis and starch metabolism. Overall, this study provides valuable insights into the physiological and proteomic responses of Moso bamboo to blue/red light treatments, highlighting their potential impact on growth and development.


Subject(s)
Chlorophyll , Light , Photosynthesis , Plant Proteins , Poaceae , Proteomics , Photosynthesis/radiation effects , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Poaceae/metabolism , Poaceae/radiation effects , Poaceae/chemistry , Poaceae/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/chemistry , Plant Leaves/growth & development , Red Light
16.
Plant Cell Rep ; 43(6): 153, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806727

ABSTRACT

KEY MESSAGE: MePMTR1 is involved in plant development and production as well as photosynthesis in plant. Melatonin is widely involved in plant growth and development as well as stress responses. Compared with the extending studies of melatonin in stress responses, the direct link between melatonin and plant development in the whole stages remains unclear. With the identification of phytomelatonin receptor PMTR1 in plants, melatonin signalling is becoming much clearer. However, the function of MePMTR1 in tropical crop cassava remains elusive. In this study, we found that overexpression of MePMTR1 showed larger biomass than wild type (WT), including higher number and area of leaves, weight, and accompanying with higher photosynthetic efficiency. Consistently, exogenous melatonin accelerated photosynthetic rate in Arabidopsis. In addition, MePMTR1-overexpressed plants exhibited more resistance to dark-induced senescence compared with WT, demonstrated by higher chlorophyll, lower hydrogen peroxide and superoxide content. In summary, this study illustrated that melatonin and its receptor regulate growth, development and senescence in plants, highlighting the potential application of melatonin and its receptor in improving crop yield and photosynthesis.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Manihot , Melatonin , Photosynthesis , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Melatonin/metabolism , Manihot/genetics , Manihot/growth & development , Manihot/metabolism , Receptors, Melatonin/metabolism , Receptors, Melatonin/genetics , Light , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Chlorophyll/metabolism , Darkness , Hydrogen Peroxide/metabolism
17.
Mar Pollut Bull ; 203: 116411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733890

ABSTRACT

This study delves into how two ecotypes of diatom affect the Pyropia haitanensis, a valuable and commercial red macroalga. We co-cultivated P. haitanensis with a planktonic diatom Skeletonema costatum and benthic diatom Navicula climacospheniae. The results showed that benthic diatom significantly hindered P. haitanensis growth, while planktonic ones had no major impact. The macroalga restrained planktonic diatom growth but did not affect benthic diatom. Photosynthetic pigments of macroalga, except chlorophyll, were higher, indicating stress when exposed to diatoms. Microscopic images revealed dense benthic diatom attachment, potentially stressing thalli due to limited light and EPS secretion. Total carbohydrate slightly decreased in both diatom treatments, while total protein significantly decreased with increasing benthic diatom densities. In summary, benthic diatom notably influenced P. haitanensis growth, pigments, and total protein levels. This study sheds light on the interaction between microalgal ecotypes and commercial macroalga P. haitanensis, which is crucial for its economic significance.


Subject(s)
Diatoms , Rhodophyta , Diatoms/growth & development , Rhodophyta/growth & development , Rhodophyta/physiology , Seaweed , Chlorophyll/metabolism , Plankton , Photosynthesis/drug effects
18.
J Environ Manage ; 360: 121023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733837

ABSTRACT

Solar-induced chlorophyll fluorescence (SIF) has been used since its discovery to characterize vegetation photosynthesis and is an effective tool for monitoring vegetation dynamics. Its response to meteorological drought enhances our comprehension of the ecological consequences and adaptive mechanisms of plants facing water scarcity, informing more efficient resource management and efforts in mitigating climate change. This study investigates the spatial and temporal patterns of SIF and examines how vegetation SIF in the Yellow River Basin (YRB) responds to meteorological drought. The findings reveal a gradual southeast-to-northwest decline in SIF across the Yellow River Basin, with an overall increase-from 0.1083 W m-2µm-1sr-1 in 2001 to 0.1468 W m-2µm-1sr-1 in 2019. Approximately 96% of the YRB manifests an upward SIF trend, with 75% of these areas reaching statistical significance. The Standardized Precipitation Evapotranspiration Index (SPEI) at a time scale of 4 months (The SPEI-4), based on the Liang-Kleeman information flow method, is identified as the most suitable drought index, adeptly characterizing the causal relationship influencing SIF variations. As drought intensified, the SPEI-4 index markedly deviated from the baseline, resulting in a decrease in SIF values to their lowest value; subsequently, as drought lessened, it gravitated towards the baseline, and SIF values began to gradually increase, eventually recovering to near their annual maximum. The key finding is that the variability of SIF with SPEI is relatively pronounced in the early growing season, with forests demonstrating superior resilience compared to grasslands and croplands. The responsiveness of vegetation SIF to SPEI can facilitate the establishment of effective drought early warning systems and promote the rational planning of water resources, thereby mitigating the impacts of climate change.


Subject(s)
Chlorophyll , Climate Change , Droughts , Rivers , Fluorescence , Sunlight , Photosynthesis
19.
J Environ Manage ; 360: 121185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788407

ABSTRACT

Chlorophyll fluorescence is the long-wave light released by the residual energy absorbed by vegetation after photosynthesis and dissipation, which can directly and non-destructively reflect the photosynthetic state of plants from the perspective of the mechanism of photosynthetic process. Moso bamboo has a substantial carbon sequestration ability, and leaf-expansion stage is an important phenological period for carbon sequestration. Gross primary production (GPP) is a key parameter reflecting vegetation carbon sequestration process. However, the ability of chlorophyll fluorescence in moso bamboo to explain GPP changes is unclear. The research area of this study is located in the bamboo forest near the flux station of Anji County, Zhejiang Province, where an observation tower is built to monitor the carbon flux and meteorological change of bamboo forest. The chlorophyll fluorescence physiological parameters (Fp) and fluorescence yield (Fy) indices were measured and calculated for the leaves of newborn moso bamboo (I Du bamboo) and the old leaves of 4- to 5-year-old moso bamboo (Ⅲ Du bamboo) during the leaf-expansion stage. The chlorophyll fluorescence in response to the environment and its effect on carbon flux were analyzed. The results showed that: Fv/Fm, Y(II) and α of Ⅰ Du bamboo gradually increased, while Ⅲ Du bamboo gradually decreased, and FYint and FY687/FY738 of Ⅰ Du bamboo were higher than those of Ⅲ Du bamboo; moso bamboo was sensitive to changes in air temperature(Ta), relative humidity(RH), water vapor pressure(E), soil temperature(ST) and soil water content (SWC), the Fy indices of the upper, middle and lower layers were significantly correlated with Ta, E and ST; single or multiple vegetation indices were able to estimate the fluorescence yield indices well (all with R2 greater than 0.77); chlorophyll fluorescence (Fp and Fy indices) of Ⅰ Du bamboo and Ⅲ Du bamboo could explain 74.4% and 72.7% of the GPP variation, respectively; chlorophyll fluorescence and normalized differential vegetation index of the canopy (NDVIc) could estimate GPP well using random forest (Ⅰ Du bamboo: r = 0.929, RMSE = 0.069 g C·m-2; Ⅲ Du bamboo: r = 0.899, RMSE = 0.134 g C·m-2). The results of this study show that chlorophyll fluorescence can provide a basis for judging the response of moso bamboo to environmental changes and can well explain GPP. This study has important scientific significance for evaluating the potential mechanisms of growth, stress feedback and photosynthetic carbon sequestration of bamboo.


Subject(s)
Chlorophyll , Photosynthesis , Plant Leaves , Chlorophyll/metabolism , Plant Leaves/metabolism , Fluorescence , Poaceae/metabolism , Poaceae/growth & development , Carbon Sequestration , Carbon/metabolism
20.
BMC Plant Biol ; 24(1): 477, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816803

ABSTRACT

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.


Subject(s)
Germination , Salicylic Acid , Tocopherols , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Tocopherols/metabolism , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Antioxidants/metabolism , Stress, Physiological , Sustainable Development , Chlorophyll/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...