Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.834
Filter
1.
PLoS One ; 19(5): e0302514, 2024.
Article in English | MEDLINE | ID: mdl-38718004

ABSTRACT

Expanding spatial presentation from two-dimensional profile transects to three-dimensional ocean mapping is key for a better understanding of ocean processes. Phytoplankton distributions can be highly patchy and the accurate identification of these patches with the context, variability, and uncertainty of measurements on relevant scales is difficult to achieve. Traditional sampling methods, such as plankton nets, water samplers and in-situ vertical sensors, provide a snapshot and often miss the fine-scale horizontal and temporal variability. Here, we show how two autonomous underwater vehicles measured, adapted to, and reported real-time chlorophyll a measurements, giving insights into the spatiotemporal distribution of phytoplankton biomass and patchiness. To gain the maximum available information within their sensing scope, the vehicles moved in an adaptive fashion, looking for the regions of the highest predicted chlorophyll a concentration, the greatest uncertainty, and the least possibility of collision with other underwater vehicles and ships. The vehicles collaborated by exchanging data with each other and operators via satellite, using a common segmentation of the area to maximize information exchange over the limited bandwidth of the satellite. Importantly, the use of multiple autonomous underwater vehicles reporting real-time data combined with targeted sampling can provide better match with sampling towards understanding of plankton patchiness and ocean processes.


Subject(s)
Chlorophyll A , Oceans and Seas , Phytoplankton , Chlorophyll A/analysis , Environmental Monitoring/methods , Chlorophyll/analysis , Biomass , Imaging, Three-Dimensional/methods
2.
Nat Commun ; 15(1): 4535, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806516

ABSTRACT

Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 Å using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery.


Subject(s)
Cryoelectron Microscopy , Cryptophyta , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Cryptophyta/metabolism , Chlorophyll/metabolism , Chlorophyll Binding Proteins/metabolism , Chlorophyll Binding Proteins/chemistry , Protein Multimerization , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Models, Molecular , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry
3.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731424

ABSTRACT

Climate change, which causes periods with relatively high temperatures in winter in Poland, can lead to a shortening or interruption of the cold hardening of crops. Previous research indicates that cold acclimation is of key importance in the process of acquiring cereal tolerance to stress factors. The objective of this work was to verify the hypothesis that both natural temperature fluctuations and the plant genotype influence the content of metabolites as well as proteins, including antioxidant enzymes and photosystem proteins. The research material involved four winter triticale genotypes, differing in their tolerance to stress under controlled conditions. The values of chlorophyll a fluorescence parameters and antioxidant activity were measured in their seedlings. Subsequently, the contribution of selected proteins was verified using specific antibodies. In parallel, the profiling of the contents of chlorophylls, carotenoids, phenolic compounds, and proteins was carried out by Raman spectroscopy. The obtained results indicate that a better PSII performance along with a higher photosystem II proteins content and thioredoxin reductase abundance were accompanied by a higher antioxidant activity in the field-grown triticale seedlings. The Raman studies showed that the cold hardening led to a variation in photosynthetic dyes and an increase in the phenolic to carotenoids ratio in all DH lines.


Subject(s)
Plant Proteins , Seedlings , Spectrum Analysis, Raman , Triticale , Seedlings/metabolism , Seedlings/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Triticale/genetics , Triticale/metabolism , Spectrum Analysis, Raman/methods , Chlorophyll/metabolism , Temperature , Carotenoids/metabolism , Antioxidants/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Seasons , Chlorophyll A/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732056

ABSTRACT

The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.


Subject(s)
Mutation , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Spectroscopy, Fourier Transform Infrared/methods , Synechocystis/genetics , Synechocystis/metabolism , Chlorophyll/metabolism , Electron Transport/genetics , Chlorophyll A/metabolism
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732065

ABSTRACT

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Subject(s)
Carotenoids , Light , Thymus Plant , Trichoderma , Volatile Organic Compounds , Thymus Plant/chemistry , Thymus Plant/metabolism , Trichoderma/metabolism , Trichoderma/growth & development , Carotenoids/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Chlorophyll/metabolism , Terpenes/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Antioxidants/metabolism , Anthocyanins/metabolism , Anthocyanins/analysis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development
6.
Sci Rep ; 14(1): 9975, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693309

ABSTRACT

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Subject(s)
Chlorophyll A , Ecosystem , Phytoplankton , Seasons , Phytoplankton/growth & development , Phytoplankton/physiology , Mediterranean Sea , Chlorophyll A/analysis , Chlorophyll A/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Biomass , Environmental Monitoring/methods , Remote Sensing Technology
7.
Harmful Algae ; 134: 102623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705613

ABSTRACT

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Subject(s)
Antioxidants , Marine Toxins , Microcystins , Microcystis , Photosynthesis , Microcystins/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll A/metabolism
8.
Toxins (Basel) ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38787058

ABSTRACT

Cyanobacterial harmful algal blooms (cyanoHABs) occur in fresh water globally. These can degrade water quality and produce toxins, resulting in ecological and economic damages. Thus, short-term management methods (i.e., algaecides) are necessary to rapidly mitigate the negative impacts of cyanoHABs. In this study, we assess the efficacy of a hydrogen peroxide-based algaecide (PAK® 27) on a Microcystis dominated bloom which occurred within the Pahokee Marina on Lake Okeechobee, Florida, USA. We observed a significant reduction in chlorophyll a (96.81%), phycocyanin (93.17%), and Microcystis cell counts (99.92%), and a substantial reduction in microcystins (86.7%) 48 h after treatment (HAT). Additionally, there was a significant shift in bacterial community structure 48 HAT, which coincided with an increase in the relative abundance of photosynthetic protists. These results indicate that hydrogen peroxide-based algaecides are an effective treatment method for cyanoHAB control and highlight their effects on non-target microorganisms (i.e., bacteria and protists).


Subject(s)
Harmful Algal Bloom , Hydrogen Peroxide , Lakes , Florida , Hydrogen Peroxide/pharmacology , Lakes/microbiology , Microcystis/drug effects , Microcystis/growth & development , Cyanobacteria/drug effects , Microbiota/drug effects , Microcystins , Phycocyanin/pharmacology , Chlorophyll A/metabolism
9.
BMC Plant Biol ; 24(1): 449, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783181

ABSTRACT

Drosera intermedia grows in acidic bogs in parts of valleys that are flooded in winter, and that often dry out in summer. It is also described as the sundew of the most heavily hydrated habitats in peatlands, and it is often found in water and even underwater. This sundew is the only one that can tolerate long periods of submersion, and more importantly produces a typical submerged form that can live in such conditions for many years. Submerged habitats are occupied by D. intermedia relatively frequently. The aim of the study was to determine the environmental conditions and architecture of individuals in the submerged form of D. intermedia. The features of the morphological and anatomical structure and chlorophyll a fluorescence of this form that were measured were compared with analogous ones in individuals that occurred in emerged and peatland habitats. The submerged form occurred to a depth of 20 cm. Compared to the other forms, its habitat had the highest pH (4.71-4.92; Me = 4.71), the highest temperature and substrate hydration, and above all, the lowest photosynthetically active radiation (PAR; 20.4-59.4%). This form differed from the other forms in almost all of the features of the plant's architecture. It is particularly noteworthy that it had the largest main axis height among all of the forms, which exceeded 18 cm. The number of living leaves in a rosette was notable (18.1 ± 8.1), while the number of dead leaves was very low (6.9 ± 3.8). The most significant differences were in the shape of its submerged leaves, in which the length of the leaf blade was the lowest of all of the forms (0.493 ± 0.15 mm; p < 0.001) and usually the widest. The stem cross-sectional area was noticeably smaller in the submerged form than in the other forms, the xylem was less developed and collaterally closed vascular bundles occurred. Our analysis of the parameters of chlorophyll fluorescence in vivo revealed that the maximum quantum yield of the primary photochemistry of photosystem II is the highest for the submerged form (Me = 0.681), the same as the maximum quantum yield of the electron transport (Me φE0 = 0.183). The efficiency of energy use per one active reaction center of photosystem II (RC) was the lowest in the submerged form (Me = 2.978), same as the fraction of energy trapped by one active RC (Me = 1.976) and the non-photochemical energy dissipation (DI0/RC; Me = 0.916). The ET0/RC parameter, associated with the efficiency of the energy utilization for electron transport by one RC, in the submerged plant reached the highest value (Me = 0.489). The submerged form of D. intermedia clearly differed from the emerged and peatland forms in its plant architecture. The submerged plants had a thinner leaf blade and less developed xylem than the other forms, however, their stems were much longer. The relatively high photosynthetic efficiency of the submerged forms suggests that most of the trapped energy is utilized to drive photosynthesis with a minimum energy loss, which may be a mechanism to compensate for the relatively small size of the leaf blade.


Subject(s)
Chlorophyll , Photosynthesis , Photosynthesis/physiology , Chlorophyll/metabolism , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Ecosystem , Chlorophyll A/metabolism , Temperature , Hydrogen-Ion Concentration , Water/metabolism
10.
Nat Commun ; 15(1): 4437, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789432

ABSTRACT

Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.


Subject(s)
Carotenoids , Chlamydomonas reinhardtii , Energy Transfer , Chlamydomonas reinhardtii/metabolism , Carotenoids/metabolism , Carotenoids/chemistry , Thylakoids/metabolism , Photosynthesis , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/genetics , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Light , Kinetics , Chlorophyll/metabolism , Chlamydomonas/metabolism
11.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739806

ABSTRACT

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Subject(s)
Chlorophyll A , Climate Change , Phytoplankton , Seasons , Chlorophyll A/metabolism , Chlorophyll A/analysis , Phytoplankton/physiology , Phytoplankton/growth & development , Estuaries , Ecosystem , Plankton/physiology , Plankton/growth & development , Biomass , Chlorophyll/metabolism
12.
J Plant Physiol ; 297: 154261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705078

ABSTRACT

Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.


Subject(s)
Chlorophyll A , Chlorophyll , Genotype , Nitrogen , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/physiology , Nitrogen/metabolism , Nitrogen/deficiency , Chlorophyll/metabolism , Chlorophyll A/metabolism , Photosynthesis
13.
Environ Monit Assess ; 196(6): 501, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698138

ABSTRACT

Brackish waters and estuaries at the lower reaches of rivers accumulate organic matter and nutrients from various sources in the watershed. Sufficient light and shallow water depth stimulate phytoplankton growth, resulting in a more diversified ecosystem with higher trophic levels. For effective watershed management, it is crucial to characterize the water quality of all rivers, including small and medium-sized ones. Our field survey assessed water quality parameters in 26 inflow rivers surrounding Lakes Shinji and Nakaumi, two consolidated brackish lakes in Japan. The parameters included water temperature, salinity, chlorophyll-a, and nutrients. The study used hierarchical clustering. The Silhouette Index was used to assess clustering outcomes and identify any difficulties in dispersion across clusters. The 26 rivers surrounding Lakes Shinji and Nakaumi were classified into six groups based on their water quality characteristics. This classification distinguishes itself from earlier subjective methods that relied on geographical factors. The new approach identifies a need for improved management of river water quality. The results of the cluster analysis provide valuable insights for future management initiatives. It is important to consider these findings alongside established watershed criteria.


Subject(s)
Environmental Monitoring , Lakes , Rivers , Water Quality , Lakes/chemistry , Environmental Monitoring/methods , Rivers/chemistry , Cluster Analysis , Japan , Water Pollutants, Chemical/analysis , Salinity , Chlorophyll A/analysis , Saline Waters , Chlorophyll/analysis , Phytoplankton/classification , Phytoplankton/growth & development
14.
BMC Plant Biol ; 24(1): 288, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627611

ABSTRACT

One of the major problems endangering plant growth and productivity worldwide is salt stress. This study aimed to assess the effects of potassium silicate (K2O3Si) on the physical, biochemical, and morphological characteristics of chicory (Cichorium intybus L.) under various levels of salinity stress. The plants were treated with K2O3Si at concentrations of 0, 1, 2, and 3 mM and cultivated under different salt stress conditions (0, 80, 160, and 240 mM NaCl). The findings revealed that salt stress led to decreased root and shoot dry weights, Fv/Fm ratio, chlorophyll a, b, and total chlorophyll, as well as inulin contents. However, foliar exposure to K2O3Si at all salinity levels resulted in improvements in the measured traits. As salinity levels increased, there was a corresponding increase in the accumulation of sodium ions (Na+) and a sharp reduction in potassium ions (K +) in the shoot. Nonetheless, treatment with K2O3Si caused a decrease in Na + accumulation and an improvement in K+ content under all salinity levels. Carotenoid content increased under 80 mM salinity stress, but decreased with higher salinity levels. Application of K2O3Si at all levels resulted in increased carotenoid content under salinity stress conditions. The content of MDA increased significantly with increasing salinity stress, particularly at 240 mM. However, foliar spraying with K2O3Si significantly decreased MDA content at all salinity levels. Salinity stress up to 160 mM increased the total phenol, flavonoid, and anthocyanin contents, while 240 mM NaCl decreased the biosynthesis of phytochemicals. Additionally, the use of K2O3Si increased the content of total phenol, flavonoid, and anthocyanin at all salt levels. Foliar application of K2O3Si increased the tolerance of chicory plants to salinity stress by reducing MDA and increasing phenolic compounds and potassium content. These results suggest that exogenous K2O3Si can be a practical strategy to improve the growth and yield of chicory plants exposed to saline environments.


Subject(s)
Cichorium intybus , Chlorophyll A , Potassium , Anthocyanins , Sodium Chloride , Salt Stress , Antioxidants , Ions , Silicates , Phytochemicals , Carotenoids , Phenols , Salinity , Stress, Physiological
15.
Water Res ; 256: 121547, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583334

ABSTRACT

This study analyses over a decade (2009-2022) of monitoring data to understand the impact of hydrological characteristics on water quality and phytoplankton dynamics in Prospect Reservoir, a critical water supply for Greater Sydney, Australia, known for its excellent water quality. Water quality and phytoplankton dynamics were related to hydrodynamics, linked to flow management and the water quality of inflows. Phytoplankton biovolume increased after a prolonged drawdown and subsequent refill event, mainly driven by dinoflagellates, and corresponded to increases in total phosphorus and water temperature. The hydrological period following the 2019/2020 summer bushfires (post-bushfire) that impacted connected reservoirs, was marked by increased flow activity and nutrient loading, leading to significant shifts in the phytoplankton community. Functional group classification and ordination analysis indicated a transition from taxa typically dominant in oligotrophic conditions to meso­eutrophic. This transition correlated with elevated nutrient levels and chlorophyll-a (Chl-a), and reduced Secchi depth and dissolved oxygen, providing evidence of eutrophication. Q index indicated good water quality post-bushfire, contrasting with a eutrophic status assessment using Chl-a. Our findings highlight the importance of analysing long-term datasets encompassing varied hydroclimatological conditions for a deeper understanding of reservoir behaviour. A comprehensive approach to water quality assessment is recommended, combining functional group classification, Q index and Chl-a measurements for effective reservoir health assessment. This research provides novel insights into the effects of disturbances such as bushfires, on water quality and phytoplankton dynamics in an underrepresented geographic region, offering valuable knowledge for managing water resources amidst growing climate variability.


Subject(s)
Hydrodynamics , Phytoplankton , Water Quality , Phytoplankton/physiology , Water Supply , Australia , Chlorophyll A , Eutrophication , Environmental Monitoring
16.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673998

ABSTRACT

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Subject(s)
Gene Expression Regulation, Plant , Pinus , Plant Proteins , Turpentine , Abscisic Acid/metabolism , Acetates/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Biosynthetic Pathways , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll/biosynthesis , Chlorophyll A/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Pinus/genetics , Pinus/metabolism , Pinus/parasitology , Pinus/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Terpenes/metabolism , Turpentine/chemistry , Turpentine/metabolism
17.
Bioresour Technol ; 400: 130651, 2024 May.
Article in English | MEDLINE | ID: mdl-38570100

ABSTRACT

Excessive proliferation of algae in water depletes dissolved oxygen, resulting in the demise of aquatic life and environmental damage. This study delves into the effectiveness of the dielectric barrier discharge (DBD) plasma activated peracetic acid (PAA) system in deactivating Chlorella. Within 15 min, the algae removal effectiveness reached 89 % under ideal trial conditions. DBD plasma activation of PAA augmented the concentration of reactive species such as ·OH, 1O2, and organic radicals (RO·) in the solution, which are involved in the process of cell inactivation. Reactive oxygen species (ROS) within Chlorella cells continued to rise as a result of treatment-induced damage to the morphological structure and cell membrane of the organism. DNA and chlorophyll-a (Chl-a), were oxidized and destroyed by these invasive active compounds. This study presents an efficient advanced oxidation method to destroy algal cells and adds an alternative strategy for algal control in areas where eutrophication occurs.


Subject(s)
Chlorella , Peracetic Acid , Plasma Gases , Reactive Oxygen Species , Chlorella/metabolism , Chlorella/drug effects , Peracetic Acid/pharmacology , Plasma Gases/pharmacology , Reactive Oxygen Species/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism
18.
J Environ Manage ; 358: 120756, 2024 May.
Article in English | MEDLINE | ID: mdl-38599080

ABSTRACT

Water quality indicators (WQIs), such as chlorophyll-a (Chl-a) and dissolved oxygen (DO), are crucial for understanding and assessing the health of aquatic ecosystems. Precise prediction of these indicators is fundamental for the efficient administration of rivers, lakes, and reservoirs. This research utilized two unique DL algorithms-namely, convolutional neural network (CNNs) and gated recurrent units (GRUs)-alongside their amalgamation, CNN-GRU, to precisely gauge the concentration of these indicators within a reservoir. Moreover, to optimize the outcomes of the developed hybrid model, we considered the impact of a decomposition technique, specifically the wavelet transform (WT). In addition to these efforts, we created two distinct machine learning (ML) algorithms-namely, random forest (RF) and support vector regression (SVR)-to demonstrate the superior performance of deep learning algorithms over individual ML ones. We initially gathered WQIs from diverse locations and varying depths within the reservoir using an AAQ-RINKO device in the study area to achieve this. It is important to highlight that, despite utilizing diverse data-driven models in water quality estimation, a significant gap persists in the existing literature regarding implementing a comprehensive hybrid algorithm. This algorithm integrates the wavelet transform, convolutional neural network (CNN), and gated recurrent unit (GRU) methodologies to estimate WQIs accurately within a spatiotemporal framework. Subsequently, the effectiveness of the models that were developed was assessed utilizing various statistical metrics, encompassing the correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe efficiency (NSE) throughout both the training and testing phases. The findings demonstrated that the WT-CNN-GRU model exhibited better performance in comparison with the other algorithms by 13% (SVR), 13% (RF), 9% (CNN), and 8% (GRU) when R-squared and DO were considered as evaluation indices and WQIs, respectively.


Subject(s)
Algorithms , Neural Networks, Computer , Water Quality , Machine Learning , Environmental Monitoring/methods , Lakes , Chlorophyll A/analysis , Wavelet Analysis
19.
Chemosphere ; 356: 141937, 2024 May.
Article in English | MEDLINE | ID: mdl-38599327

ABSTRACT

Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 µM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.


Subject(s)
Antioxidants , Carbon , Chlorophyll A , Chromium , Lactuca , Oxidation-Reduction , Photosynthesis , Chromium/toxicity , Antioxidants/metabolism , Lactuca/drug effects , Lactuca/metabolism , Carbon/metabolism , Photosynthesis/drug effects , Fluorescence , Chlorophyll A/metabolism , Quantum Dots/toxicity , Quantum Dots/chemistry , Kinetics , Chlorophyll/metabolism , Reactive Oxygen Species/metabolism
20.
Funct Plant Biol ; 512024 04.
Article in English | MEDLINE | ID: mdl-38621018

ABSTRACT

Autumn senescence is characterised by spatial and temporal heterogeneity. We show that senescing birch (Betula spp.) leaves had lower PSII activity (probed by the F V /F M chlorophyll a fluorescence parameter) in late autumn than in early autumn. We confirmed that PSII repair slows down with decreasing temperature, while rates of photodamage and recovery, measured under laboratory conditions at 20°C, were similar in these leaves. We propose that low temperatures during late autumn hinder repair and lead to accumulation of non-functional PSII units in senescing leaves. Fluorescence imaging of birch revealed that chlorophyll preferentially disappeared from inter-veinal leaf areas. These areas showed no recovery capacity and low non-photochemical quenching while green veinal areas of senescing leaves resembled green leaves. However, green and yellow leaf areas showed similar values of photochemical quenching. Analyses of thylakoids isolated from maple (Acer platanoides ) leaves showed that red, senescing leaves contained high amounts of carotenoids and α-tocopherol, and our calculations suggest that α-tocopherol was synthesised during autumn. Thylakoids isolated from red maple leaves produced little singlet oxygen, probably due to the high antioxidant content. However, the rate of PSII photodamage did not decrease. The data show that the heterogeneity of senescing leaves must be taken into account to fully understand autumn senescence.


Subject(s)
Trees , alpha-Tocopherol , Chlorophyll A/analysis , alpha-Tocopherol/analysis , Chlorophyll , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...