Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.460
Filter
1.
Plant Cell Rep ; 43(5): 135, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704787

ABSTRACT

KEY MESSAGE: The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/ultrastructure , Cotyledon/genetics , Cotyledon/metabolism , Cotyledon/growth & development , Proteomics , Chloroplast Proteins/metabolism , Chloroplast Proteins/genetics , Organelle Biogenesis , Chlorophyll/metabolism , CRISPR-Cas Systems
2.
Sci Rep ; 14(1): 11587, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773239

ABSTRACT

Peptide deformylase can catalyse the removal of formyl groups from the N-terminal formyl methionine of the primary polypeptide chain. The peptide deformylase genes of a few herbaceous plants have been studied to some extent, but the peptide deformylase genes of woody plants have not been studied. In this study, we isolated EuPDF1B from Eucommia ulmoides Oliv. The full-length sequence of EuPDF1B is 1176 bp long with a poly-A tail and contains an open reading frame of 831 bp that encodes a protein of 276 amino acids. EuPDF1B was localized to the chloroplast. qRT‒PCR analysis revealed that this gene was expressed in almost all tissues tested but mainly in mature leaves. Moreover, the expression of EuPDF1B was enhanced by ABA, MeJA and GA and inhibited by shading treatment. The expression pattern of EuPDF1B was further confirmed in EuPDF1Bp: GUS transgenic tobacco plants. Among all the transgenic tobacco plants, EuPDF1Bp-3 showed the highest GUS histochemical staining and activity in different tissues. This difference may be related to the presence of enhancer elements in the region from - 891 bp to - 236 bp of the EuPDF1B promoter. In addition, the expression of the chloroplast gene psbA and the net photosynthetic rate, fresh weight and height of tobacco plants overexpressing EuPDF1B were greater than those of the wild-type tobacco plants, suggesting that EuPDF1B may promote the growth of transgenic tobacco plants. This is the first time that PDF and its promoter have been cloned from woody plants, laying a foundation for further analysis of the function of PDF and the regulation of its expression.


Subject(s)
Amidohydrolases , Cloning, Molecular , Eucommiaceae , Gene Expression Regulation, Plant , Nicotiana , Plants, Genetically Modified , Eucommiaceae/genetics , Eucommiaceae/metabolism , Plants, Genetically Modified/genetics , Amidohydrolases/genetics , Amidohydrolases/metabolism , Nicotiana/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phylogeny , Amino Acid Sequence , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism
3.
Plant Cell Rep ; 43(6): 141, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743349

ABSTRACT

KEY MESSAGE: A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.


Subject(s)
Catharanthus , Gene Expression Regulation, Plant , Gene Silencing , Plant Proteins , Secologanin Tryptamine Alkaloids , Transcription Factors , Catharanthus/genetics , Catharanthus/metabolism , Secologanin Tryptamine Alkaloids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Chloroplasts/metabolism
4.
Plant Signal Behav ; 19(1): 2347783, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38699898

ABSTRACT

As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Mutation , Signal Transduction , Singlet Oxygen , Arabidopsis/genetics , Arabidopsis/metabolism , Singlet Oxygen/metabolism , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Signal Transduction/genetics , Mutation/genetics , Photosynthesis/genetics
5.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760671

ABSTRACT

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Subject(s)
Helianthus , Hydrogen Sulfide , Osmoregulation , Photosynthesis , Salt Stress , Seedlings , Helianthus/physiology , Helianthus/drug effects , Helianthus/growth & development , Helianthus/metabolism , Photosynthesis/drug effects , Seedlings/physiology , Seedlings/drug effects , Seedlings/growth & development , Hydrogen Sulfide/metabolism , Chloroplasts/metabolism , Salinity
6.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791594

ABSTRACT

In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.


Subject(s)
Chloroplasts , Gene Expression Regulation, Plant , Oryza , Plant Immunity , Plant Proteins , Chloroplasts/metabolism , Chloroplasts/genetics , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Oryza/immunology , Leucine-Rich Repeat Proteins , Binding Sites , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , NLR Proteins/metabolism , NLR Proteins/genetics , RNA Editing
7.
Sci Rep ; 14(1): 11820, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783007

ABSTRACT

Aglaonema commutatum is a famous species in the Aglaonema genus, which has important ornamental and economic value. However, its chloroplast genome information and phylogenetic relationships among popular green cultivars of Aglaonema in southern China have not been reported. Herein, chloroplast genomes of one variety of A. commutatum and seven green cultivars of Aglaonema, namely, A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Sapphire', 'Silver Queen', 'Snow White', 'White Gem', and 'White Horse Prince', were sequenced and assembled for comparative analysis and phylogeny. These eight genomes possessed a typical quadripartite structure that consisted of a LSC region (90,799-91,486 bp), an SSC region (20,508-21,137 bp) and a pair of IR regions (26,661-26,750 bp). Each genome contained 112 different genes, comprising 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The gene orders, GC contents, codon usage frequency, and IR/SC boundaries were highly conserved among these eight genomes. Long repeats, SSRs, SNPs and indels were analyzed among these eight genomes. Comparative analysis of 15 Aglaonema chloroplast genomes identified 7 highly variable regions, including trnH-GUG-exon1-psbA, trnS-GCU-trnG-UCC-exon1, trnY-GUA-trnE-UUC, psbC-trnS-UGA, trnF-GAA-ndhJ, ccsA-ndhD, and rps15-ycf1-D2. Reconstruction of the phylogenetic trees based on chloroplast genomes, strongly supported that Aglaonema was a sister to Anchomanes, and that the Aglaonema genus was classified into two sister clades including clade I and clade II, which corresponded to two sections, Aglaonema and Chamaecaulon, respectively. One variety and five cultivars, including A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Silver Queen', 'Snow White', and 'White Horse Prince', were classified into clade I; and the rest of the two cultivars, including 'Sapphire' and 'White Gem', were classified into clade II. Positive selection was observed in 34 protein-coding genes at the level of the amino acid sites among 77 chloroplast genomes of the Araceae family. Based on the highly variable regions and SSRs, 4 DNA markers were developed to differentiate the clade I and clade II in Aglaonema. In conclusion, this study provided chloroplast genomic resources for Aglaonema, which were useful for its classification and phylogeny.


Subject(s)
Genome, Chloroplast , Phylogeny , Genomics/methods , Genetic Markers , Chloroplasts/genetics , Base Composition , Microsatellite Repeats/genetics
8.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790173

ABSTRACT

Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant's environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186-8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus.


Subject(s)
Amaranthaceae , Genome, Chloroplast , Introduced Species , Phylogeny , Genome, Chloroplast/genetics , Amaranthaceae/genetics , Plant Weeds/genetics , Chloroplasts/genetics , High-Throughput Nucleotide Sequencing , Evolution, Molecular
9.
Genes (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790180

ABSTRACT

Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.


Subject(s)
Brassica , Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Brassica/genetics , Microsatellite Repeats/genetics , Base Composition/genetics , Codon Usage , Chloroplasts/genetics , Whole Genome Sequencing/methods
10.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790176

ABSTRACT

Krascheninnikovia ewersmanniana is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on K. ewersmanniana is lacking. To resolve the genetic composition of K. ewersmanniana within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of K. ewersmanniana and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of K. ewersmanniana reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in K. ewersmanniana, with some genes (rps19, ndhF, ycf1) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed Krascheninnikovia ceratoides, Dysphania ambrosioides, Dysphania pumilio, and Dysphania botrys to have a close monophyletic relationship. By sequencing the K. ewersmanniana chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.


Subject(s)
Amaranthaceae , Genome, Chloroplast , Phylogeny , Amaranthaceae/genetics , Codon Usage , Microsatellite Repeats/genetics , Evolution, Molecular , Chloroplasts/genetics , China , Molecular Sequence Annotation
11.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776366

ABSTRACT

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Subject(s)
Chloroplasts , Glutamate-Ammonia Ligase , Hemiptera , Insect Vectors , Oryza , Phytoplasma , Plant Leaves , Animals , Hemiptera/microbiology , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Phytoplasma/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Oryza/microbiology , Oryza/genetics , Insect Vectors/microbiology , Chloroplasts/metabolism , Plant Diseases/microbiology , Chlorophyll/metabolism , Plants, Genetically Modified , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
12.
BMC Genomics ; 25(1): 448, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38802758

ABSTRACT

MeFtsZ2-1 is a key gene for plant plastid division, but the mechanism by which MeFtsZ2-1 affects pigment accumulation in cassava (Manihot esculenta Crantz) through plastids remains unclear. We found that MeFtsZ2-1 overexpression in cassava (OE) exhibited darker colors of leaves, with increased levels of anthocyanins and carotenoids. Further observation via Transmission Electron Microscopy (TEM) revealed no apparent defects in chloroplast structure but an increase in the number of plastoglobule in OE leaves. RNA-seq results showed 1582 differentially expressed genes (DEGs) in leaves of OE. KEGG pathway analysis indicated that these DEGs were enriched in pathways related to flavonoid, anthocyanin, and carotenoid biosynthesis. This study reveals the role of MeFtsZ2-1 in cassava pigment accumulation from a physiological and transcriptomic perspective, providing a theoretical basis for improving cassava quality.


Subject(s)
Manihot , Plant Leaves , Plant Proteins , Manihot/genetics , Manihot/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling , Transcriptome , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Carotenoids/metabolism , Chloroplasts/metabolism , Chloroplasts/genetics , Plastids/metabolism , Plastids/genetics
13.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791558

ABSTRACT

To explore the possible novel microRNA (miRNA) regulatory pathways in Zhengmai 1860, a newly cultivated drought-tolerant wheat (Triticum aestivum L.) cultivar, miRNA transcriptome sequencing of the flag leaves of Zhengmai 1860, drought-sensitive variety Zhoumai 18, and drought-resistant variety Bainong 207 was performed during the grain filling stage. We also observed changes in the chloroplast ultrastructure, phytohormone levels, and antioxidant- and photosynthesis-related physiological indicators in three wheat varieties. The results showed that the flag leaves of the drought-tolerant variety Zhengmai 1860 had higher chlorophyll contents and net photosynthetic rates than those of Zhoumai 18 under drought stress during the grain filling stage; in addition, the chloroplast structure was more complete. However, there was no significant difference between Zhengmai 1860 and Bainong 207. MiRNA transcriptome analysis revealed that the differential expression of the miRNAs and mRNAs exhibited variable specificity. The KEGG pathway enrichment results indicated that most of the genes were enriched in the MAPK signaling pathway, plant hormone signal transduction, photosynthetic antennae protein, and amino acid and carbohydrate metabolism. In the drought-tolerant cultivar Zhengmai 1860, tae-miR408 was targeted to regulate the allene oxide synthase (AOS) gene, inhibit its expression, reduce the AOS content, and decrease the synthesis of jasmonic acid (JA) and abscisic acid (ABA). The results of this study suggest that Zhengmai 1860 could improve the photosynthetic performance of flag leaves by inhibiting the expression of genes involved in the JA pathway through miRNAs under drought conditions. Moreover, multiple miRNAs may target chlorophyll, antioxidant enzymes, phytohormone signal transduction, and other related pathways; thus, it is possible to provide a more theoretical basis for wheat molecular breeding.


Subject(s)
Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , MicroRNAs , Photosynthesis , Stress, Physiological , Triticum , MicroRNAs/genetics , MicroRNAs/metabolism , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Photosynthesis/genetics , Transcriptome , Plant Growth Regulators/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Edible Grain/growth & development , Chloroplasts/metabolism , Chloroplasts/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development
14.
Hereditas ; 161(1): 18, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760874

ABSTRACT

BACKGROUND: Kiwifruit (Actinidiaceae family) is an economically important fruit tree in China and New Zealand. It is a typical dioecious plant that has undergone frequent natural hybridization, along with chromosomal ploidy diversity within the genus Actinidia, resulting in higher genetic differences and horticultural diversity between interspecific and intraspecific traits. This diversity provides a rich genetic base for breeding. China is not only the original center of speciation for the Actinidia genus but also its distribution center, housing the most domesticated species: A. chinensis var. chinensis, A. chinensis var. deliciosa, A. arguta, and A. polygama. However, there have been relatively few studies on the application of DNA markers and the genetic basis of kiwifruit plants. By combining information from chloroplast-specific SNPs and nuclear SCoT (nSCoT) markers, we can uncover complementary aspects of genetic variation, population structure, and evolutionary relationships. In this study, one chloroplast DNA (cpDNA) marker pair was selected out of nine cpDNA candidate pairs. Twenty nSCoT markers were selected and used to assess the population structure and chloroplast-specific DNA haplotype diversity in 55 kiwifruit plants (Actinidia), including 20 samples of A. chinensis var. chinensis, 22 samples of A. chinensis var. deliciosa, 11 samples of A. arguta, and two samples of A. polygama, based on morphological observations collected from China. RESULTS: The average genetic distance among the 55 samples was 0.26 with chloroplast-specific SNP markers and 0.57 with nSCoT markers. The Mantel test revealed a very small correlation (r = 0.21). The 55 samples were categorized into different sub-populations using Bayesian analysis, the Unweighted Pair Group Method with the Arithmetic Mean (UPGMA), and the Principal Component Analysis (PCA) method, respectively. Based on the analysis of 205 variable sites, a total of 15 chloroplast-specific DNA haplotypes were observed, contributing to a higher level of polymorphism with an Hd of 0.78. Most of the chloroplast-specific DNA haplotype diversity was distributed among populations, but significant diversity was also observed within populations. H1 was shared by 24 samples, including 12 of A. chinensis var. chinensis and 12 of A. chinensis var. deliciosa, indicating that H1 is an ancient and dominant haplotype among the 55 chloroplast-specific sequences. H2 may not have evolved further.The remaining haplotypes were rare and unique, with some appearing to be exclusive to a particular variety and often detected in single individuals. For example, the H15 haplotype was found exclusively in A. polygama. CONCLUSION: The population genetic variation explained by chloroplast-specific SNP markers has greater power than that explained by nSCoTs, with chloroplast-specific DNA haplotypes being the most efficient. Gene flow appears to be more evident between A. chinensis var. chinensis and A. chinensis var. deliciosa, as they share chloroplast-specific DNA haplotypes, In contrast, A.arguta and A. polygama possess their own characteristic haplotypes, derived from the haplotype of A. chinensis var. chinensis. Compared with A. chinensis, the A.arguta and A. polygama showed better grouping. It also seems crucial to screen out, for each type of molecular marker, especially haplotypes, the core markers of the Actinidia genus.


Subject(s)
Actinidia , Chloroplasts , DNA, Chloroplast , Haplotypes , Phylogeny , Polymorphism, Single Nucleotide , Actinidia/genetics , DNA, Chloroplast/genetics , Genetic Markers , Chloroplasts/genetics , China , Genetics, Population , Genetic Variation
15.
Genes (Basel) ; 15(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674341

ABSTRACT

Manglietia Blume, belonging to the Magnoliaceae family and mainly distributed in tropical and subtropical regions of Asia, has great scientific and economic value. In this study, we employed next-generation sequencing followed by de novo assembly to investigate the adaptive evolution of Manglietia using plastid genetic information. We newly sequenced the complete or nearly complete plastomes of four Manglietia species (Manglietia aromatica, Manglietia calcarea, Manglietia kwangtungensis, and Manglietia glauca) and conducted comparative analysis with seventeen published plastomes to examine the evolutionary pattern within this genus. The plastomes of these five newly sequenced Manglietia species range from 157,093 bp (M. calcarea2) to 160,493 bp (M. kwangtungensis), all exhibiting circular structures when mapped. Nucleotide diversity was observed across the plastomes, leading us to identify 13 mutational hotspot regions, comprising eight intergenic spacer regions and five gene regions. Our phylogenetic analyses based on 77 protein-coding genes generated phylogenetic relationships with high support and resolution for Manglietia. This genus can be divided into three clades, and the previously proposed infrageneric classifications are not supported by our studies. Furthermore, the close affinity between M. aromatica and M. calcarea is supported by the present work, and further studies are necessary to conclude the taxonomic treatment for the latter. These results provide resources for the comparative plastome, breeding, and plastid genetic engineering of Magnoliaceae and flowering plants.


Subject(s)
Evolution, Molecular , Genome, Chloroplast , Magnoliaceae , Phylogeny , Genome, Chloroplast/genetics , Magnoliaceae/genetics , High-Throughput Nucleotide Sequencing , Chloroplasts/genetics
16.
Genes (Basel) ; 15(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38674391

ABSTRACT

Korean wasabi occurs naturally on the young oceanic, volcanic Ulleung Island off the east coast of the Korean Peninsula. Although the Ulleung Island wasabi is reported as Eutrema japonicum and has been suggested to be morphologically identical to cultivars in Korea, very little is known about its taxonomic identity and relationship with other cultivars. In this study, we sequenced the complete chloroplast DNA sequences of three naturally occurring Ulleung Island wasabi plants and six cultivars ('Daewang', 'Daruma', 'Micado', 'Orochi', 'Green Thumb', and 'Shogun') from continental Korea and determined the taxonomic identity of Korean wasabi on Ulleung Island. The size and organization of the complete chloroplast genomes of the nine accessions were nearly identical to those of previously reported wasabi cultivars. In addition, phylogenetic analysis based on the complete plastomes suggested that Ulleung Island wasabi most likely comprises various wasabi cultivars with three chlorotypes ('Shogun', 'Green Thumb', and a unique Chusan type). Based on the complete plastomes, we identified eight chlorotypes for the major wasabi cultivars and the Ulleung Island wasabi. Two major groups (1-'Mazuma' and 'Daruma', and 2-'Fujidaruma'/'Shimane No. 3'/Ulleung Island wasabi/five cultivars in Korea) were also identified based on mother line genealogical history. Furthermore, different types of variations (mutations, insertions/deletions (indels), mononucleotide repeats, and inversions) in plastomes were identified to distinguish different cultivar lines and five highly divergent hotspots. The nine newly obtained complete plastomes are valuable organelle genomic resources for species identification and infraspecific phylogeographic studies on wild and cultivated wasabi.


Subject(s)
Phylogeny , Republic of Korea , Genome, Chloroplast/genetics , Islands , DNA, Chloroplast/genetics , Chloroplasts/genetics
17.
Ecotoxicol Environ Saf ; 276: 116307, 2024 May.
Article in English | MEDLINE | ID: mdl-38593497

ABSTRACT

In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.


Subject(s)
Hydrogen Sulfide , Plants , Signal Transduction , Thiocyanates , Hydrogen Sulfide/metabolism , Thiocyanates/metabolism , Plants/metabolism , Gasotransmitters/metabolism , Chloroplasts/metabolism , Inactivation, Metabolic
18.
Bioresour Technol ; 401: 130757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688392

ABSTRACT

The photosynthetic autotrophic production of microalgae is limited by the effective supply of carbon and light energy, and the production efficiency is lower than the theoretical value. Represented by methanol, C1 compounds have been industrially produced by artificial photosynthesis with a solar energy efficiency over 10%, but the complexity of artificial products is weak. Here, based on a construction of chloroplast factory, green microalgae Chlamydomonas reinhardtii CC137c was modified for the bioconversion of formate for biomass production. By screening the optimal combination of chloroplast transport peptides, the cabII-1 cTP1 fusion formate dehydrogenase showed significant enhancement on the conversion of formate with a better performance in the maintenance of light reaction activity. This work provided a new way to obtain bioproducts from solar energy and CO2 with potentially higher-than-nature efficiency by the artificial-natural hybrid photosynthesis.


Subject(s)
Chlamydomonas reinhardtii , Chloroplasts , Formates , Chloroplasts/metabolism , Formates/metabolism , Chlamydomonas reinhardtii/metabolism , Photosynthesis , Formate Dehydrogenases/metabolism , Biomass
19.
Plant Physiol Biochem ; 210: 108650, 2024 May.
Article in English | MEDLINE | ID: mdl-38653095

ABSTRACT

Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.


Subject(s)
Plant Leaves , Plant Senescence , Signal Transduction , Stress, Physiological , Sugars , Plant Leaves/metabolism , Plant Leaves/physiology , Sugars/metabolism , Carbohydrate Metabolism , Photosynthesis , Chloroplasts/metabolism
20.
New Phytol ; 242(6): 2817-2831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587065

ABSTRACT

RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.


Subject(s)
Hepatophyta , Phylogeny , RNA Editing , RNA Editing/genetics , Hepatophyta/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Genes, Plant , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL
...