Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.376
Filter
1.
Drug Des Devel Ther ; 18: 1821-1832, 2024.
Article in English | MEDLINE | ID: mdl-38845851

ABSTRACT

Aim: Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods: Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results: The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1ß levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1ß inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion: Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.


Subject(s)
Atherosclerosis , Cholecalciferol , Diet, High-Fat , Gastrointestinal Microbiome , Ginsenosides , Inflammation , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Rats , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Male , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Inflammation/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism
2.
Cell Biochem Funct ; 42(4): e4026, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693631

ABSTRACT

This work investigates the efficiency of cholecalciferol and low dose gamma radiation in modulating cytokine storm through their impact on inflammatory and anti-inflammatory cytokine and protecting against lung and liver injuries. Male Swiss albino mice were exposed to 0.2 Gy gamma radiation/week for four consecutive weeks then injected intraperitoneally (i.p) with a single dose of 8.3 × 106 CFU Escherichia coli/g b.w. then injected i.p. with 1.0 mg/kg cholecalciferol (Vit D3) for 7 days starting 4 h after E. coli injection. The results revealed that Cholecalciferol and low dose gamma radiation caused significant depletion in the severity of E. coli infection (colony forming unit per milliliter), log10 of E. coli, Tumor necrosis factor alpha, Interleukin 6, VEGF, alanine aminotransferase, and aspartate aminotransferase levels and significant elevation in IL-10, IL-4, and HO-1. Immunohistochemical analysis of caspase-3 expression in lung tissue section showed low caspase-3 expression in cholecalciferol and low dose gamma radiation treated group. Histopathological examinations were performed in both lung and liver tissues which also emphasis the biochemical findings. Our results exhibit the importance of cholecalciferol and low dose gamma radiation in improving liver function and providing anti-inflammatory response in diseases causing cytokine storm.


Subject(s)
Cholecalciferol , Escherichia coli Infections , Escherichia coli , Gamma Rays , Animals , Mice , Cholecalciferol/pharmacology , Male , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Liver/pathology , Liver/drug effects , Liver/metabolism , Lung/pathology , Lung/metabolism , Cytokines/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Aspartate Aminotransferases/blood
3.
PLoS One ; 19(5): e0302818, 2024.
Article in English | MEDLINE | ID: mdl-38748756

ABSTRACT

BACKGROUND: The role of vitamin D3 (VitD3) in modulating innate and adaptive immunity has been reported in different disease contexts. Since the start of the coronavirus disease-2019 (COVID-19) pandemic, the role of VitD3 has been highlighted in many correlational and observational studies. However, the exact mechanisms of action are not well identified. One of the mechanisms via which VitD3 modulates innate immunity is by regulating the NLRP3-inflammasome pathway, being a main underlying cause of SARS-CoV-2-induced hyperinflammation. AIMS AND MAIN METHODS: Blood specimens of severe COVID-19 patients with or without VitD3 treatment were collected during their stay in the intensive care unit and patients were followed up for 29 days. qPCR, western blot, and ELISA were done to investigate the mechanism of action of VitD3 on the NLRP3 inflammasome activation. KEY FINDINGS: We here report the ability of VitD3 to downregulate the NLRP3-inflammsome pathway in severe COVID-19 patients. Lower inflammasome pathway activation was observed with significantly lower gene and protein expression of NLRP3, cleaved caspase-1, ASC and IL-1ß among severe COVID-19 patients treated with VitD3. The reduction of the inflammasome pathway was associated with a reduction in disease severity markers and enhancement of type I IFN pathway. SIGNIFICANCE: Our data reveals an important anti-inflammatory effect of VitD3 during SARS-CoV-2 infection. Further investigations are warranted to better characterize the ability of VitD3 to control disease pathogenesis and prevent progression to severe states. This will allow for a more efficient use of a low cost and accessible treatment like VitD3.


Subject(s)
COVID-19 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , COVID-19/immunology , COVID-19/virology , Inflammasomes/metabolism , Male , Female , Middle Aged , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Severity of Illness Index , Aged , Adult , Signal Transduction/drug effects , Interleukin-1beta/metabolism , COVID-19 Drug Treatment , Vitamin D/pharmacology
4.
BMC Vet Res ; 20(1): 221, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38783276

ABSTRACT

BACKGROUND: Limited studies are available on vitamin D supplementation in dogs. This study evaluates the effect of a commercial vitamin D3 supplement on serum 25-hydroxy vitamin D as well as selected biochemical and hematological parameters in healthy dogs. Eight intact male adult dogs with a mean body weight of 20 kg from mixed breeds were included in the study. After adaptation period, dogs received vitamin D3 supplement at the dose of 50 IU/kg body weight per day. Blood samples were collected on days 0, 14, 28 and 42 of supplementation. Food was used for analysis of vitamin D3 content. RESULTS: Significant increase in serum level of 25-hydroxy vitamin D3 was detected since day 14 of supplementation. Changes in serum 25-hydroxy vitamin D3 concentration during time showed an upward significance (p < 0.05). Vitamin D3 content of the food was 2900 IU/kg dry matter. Changes in serum phosphorus levels were upward significant. No dog showed calcium or phosphorus levels above the highest reference level. Liver and kidney parameters remained in the reference range during the experiment. A gradual significant increase was observed in hemoglobin and hematocrit which was started from day 14. Vitamin D3 supplementation had no significant effect on neutrophils, monocytes and lymphocytes percent during the study. CONCLUSIONS: Vitamin D3 supplementation at 50 IU/kg BW daily, increases serum levels of 25-hydroxy vitamin D in healthy dogs fed with a diet containing proper amount of this vitamin. It also increases hemoglobin and hematocrit levels in a time dependent manner without inducing adverse effects.


Subject(s)
Cholecalciferol , Dietary Supplements , Vitamin D , Animals , Dogs/blood , Male , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamin D/administration & dosage , Vitamin D/pharmacology , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Hematocrit/veterinary , Hemoglobins/analysis , Phosphorus/blood
5.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791386

ABSTRACT

Metastasis in breast cancer is the major cause of death in females (about 30%). Based on our earlier observation that Vitamin D3 downregulates mTOR, we hypothesized that Vitamin D3 conjugated to gold nanoparticles (VD3-GNPs) reduces breast cancer aggressiveness by downregulating the key cancer controller PI3K/AKT/mTOR. Western blots, migration/invasion assays, and other cell-based, biophysical, and bioinformatics studies are used to study breast cancer cell aggressiveness and nanoparticle characterization. Our VD3-GNP treatment of breast cancer cells (MCF-7 and MDA-MB-231) significantly reduces the aggressiveness (cancer cell migration and invasion rates > 45%) via the simultaneous downregulation of ETV7 and the Hippo pathway. Consistent with our hypothesis, we, indeed, found a downregulation of the PI3K/AKT/mTOR pathway. It is surprising that the extremely low dose of VD3 in the nano formulation (three orders of magnitude lower than in earlier studies) is quite effective in the alteration of cancer invasiveness and cell signaling pathways. Clearly, VD3-GNPs are a viable candidate for non-toxic, low-cost treatment for reducing breast cancer aggressiveness.


Subject(s)
Breast Neoplasms , Cholecalciferol , Gold , Metal Nanoparticles , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Phosphatidylinositol 3-Kinases/metabolism , Metal Nanoparticles/chemistry , Signal Transduction/drug effects , Gold/chemistry , Cholecalciferol/pharmacology , Cell Movement/drug effects , Hippo Signaling Pathway , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , MCF-7 Cells , Transcription Factors/metabolism , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-akt/metabolism
6.
Nutrients ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732518

ABSTRACT

Vitamin D3 (VD3) is a steroid hormone that plays pivotal roles in pathophysiology, and 1,25(OH)2D3 is the most active form of VD3. In the current study, the crucial role of VD3 in maintaining energy homeostasis under short-term fasting conditions was investigated. Our results confirmed that glucose-depriving pathways were inhibited while glucose-producing pathways were strengthened in zebrafish after fasting for 24 or 48 h. Moreover, VD3 anabolism in zebrafish was significantly suppressed in a time-dependent manner under short-fasting conditions. After fasting for 24 or 48 h, zebrafish fed with VD3 displayed a higher gluconeogenesis level and lower glycolysis level in the liver, and the serum glucose was maintained at higher levels, compared to those fed without VD3. Additionally, VD3 augmented the expression of fatty acids (FAs) transporter cd36 and lipogenesis in the liver, while enhancing lipolysis in the dorsal muscle. Similar results were obtained in cyp2r1-/- zebrafish, in which VD3 metabolism is obstructed. Importantly, it was observed that VD3 induced the production of gut GLP-1, which is considered to possess a potent gluconeogenic function in zebrafish. Meanwhile, the gene expression of proprotein convertase subtilisin/kexin type 1 (pcsk1), a GLP-1 processing enzyme, was also induced in the intestine of short-term fasted zebrafish. Notably, gut microbiota and its metabolite acetate were involved in VD3-regulated pcsk1 expression and GLP-1 production under short-term fasting conditions. In summary, our study demonstrated that VD3 regulated GLP-1 production in zebrafish by influencing gut microbiota and its metabolite, contributing to energy homeostasis and ameliorating hypoglycemia under short-term fasting conditions.


Subject(s)
Cholecalciferol , Energy Metabolism , Fasting , Homeostasis , Zebrafish , Animals , Cholecalciferol/metabolism , Cholecalciferol/pharmacology , Liver/metabolism , Gluconeogenesis , Gastrointestinal Microbiome/physiology , Blood Glucose/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/blood
7.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732578

ABSTRACT

This study examined the effects of orange juice (OJ) supplemented with vitamin D3 (2000 IU) and probiotics (Lacticaseibacillus casei Shirota and Lacticaseibacillus rhamnosus GG, 108 cfu/mL) on cardiometabolic risk factors in overweight and obese adults following a Westernized-type diet. Fifty-three high-risk individuals were randomly assigned to one of two groups. Over 8 weeks, one group consumed a vitamin D3 and probiotic-enriched OJ and the other regular OJ (control). Diets remained unchanged and were documented through food diaries. Measures of metabolic and inflammatory markers and blood pressure were measured at the start and end of the study. Post-intervention, the enriched OJ group showed the following significant metabolic improvements (without changes in triglycerides, inflammation, or central blood pressure): reduced fasting insulin, peripheral blood pressure, body weight (-1.4 kg 95% CI: -2.4, -0.4), energy (-270 kcal 95% CI: -553.2, -13.7), macronutrient (dietary fat -238 kcal 95% CI: -11.9, -1.0; carbohydrates -155 kcal 95% CI: -282.4, -27.3; sugars -16.1 g 95% CI: -11.9, -1.0) intake, and better lipid profiles (total cholesterol -10.3 mg/dL 95% CI: -21.4, 0.9; LDL-C -7 mg/dL 95% CI: -13.5, -0.5). The enriched OJ led to weight loss, less energy/macronutrient consumption, improved lipid profiles, and increased insulin sensitivity after 8 weeks in those following a Westernized diet, thus indicating potential benefits for cardiometabolic risk. This study was a part of FunJuice-T2EDK-01922, which was funded by the EU Regional Development Fund and Greek National Resources.


Subject(s)
Blood Pressure , Cardiometabolic Risk Factors , Cholecalciferol , Citrus sinensis , Diet, Western , Fruit and Vegetable Juices , Insulin Resistance , Lipids , Probiotics , Humans , Male , Probiotics/administration & dosage , Female , Middle Aged , Blood Pressure/drug effects , Cholecalciferol/administration & dosage , Cholecalciferol/pharmacology , Lipids/blood , Obesity/blood , Adult , Dietary Supplements , Overweight , Body Weight , Weight Loss , Lacticaseibacillus rhamnosus
8.
Bratisl Lek Listy ; 125(5): 281-288, 2024.
Article in English | MEDLINE | ID: mdl-38624052

ABSTRACT

AIM: We aimed to investigate the possible cardioprotective effects of paricalcitol (PR), its vitamin D receptor agonist, and vitamin D3 (VIT-D3) on an experimental model of doxorubicin (DX) cardiotoxicity by 99mTc-PYP scintigraphy, electrocardiographic (ECG) and biochemical methods. METHOD: Forty-two male Wistar/Albino rats (250‒300 g; aged 10‒12 weeks) were randomly separated into six groups, namely into control (CN), doxorubicin (DX), paricalcitol (PR), vitamin D3 (VIT-D3), paricalcitol + doxorubicin (PR+DX), and vitamin D3 + doxorubicin (VIT-D3+DX) groups. Cardiotoxicity was induced by three doses of DX (18 mg/kg, i.p.) at 24-hour intervals on days 18, 19 and 20. PR (0.5 ug/ kg, i.p) and VIT-D3 (5,000 IU/kg, i.p) were injected for 20 days before and after the application of DX (18 mg/kg, i.p.). On day 21 of the experiment, biochemical parameters [tumor necrosis factor TNF-alpha (TNF-α); interleukin-6 (IL-6), nitric oxide (NO), and cardiac troponin T (cTnT)], as well as ECG and scintigraphic (99mTc-PYP) features were assessed. RESULTS: Compared to CN, DX significantly raised TNF-α, IL-6, and NO in heart tissue, cTnT in serum, 99mTc-PYP uptake in the myocardium, and ECG parameters, specifically QRS complex duration, QT interval duration, and ST-segment amplitude, while also reducing heart rate (p<0.001). Pretreatment with PR and VIT-D3 mitigated these abnormalities produced by DX in the heart (p<0.001). CONCLUSION: Results show that vitamin D receptor agonist paricalcitol and vitamin D protect against DX-induced cardiotoxicity through anti-inflammatory and antioxidant effects (Fig. 4, Ref. 59). Text in PDF www.elis.sk Keywords: paricalcitol, doxorubicin, vitamin D, ECG, 99mTc-PYP scintigraphy, cardiotoxicity, inflammation.


Subject(s)
Cardiotoxicity , Ergocalciferols , Receptors, Calcitriol , Rats , Male , Animals , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Receptors, Calcitriol/therapeutic use , Rats, Wistar , Cholecalciferol/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Electrocardiography , Doxorubicin/toxicity , Antioxidants/pharmacology , Radionuclide Imaging , Oxidative Stress
9.
In Vitro Cell Dev Biol Anim ; 60(4): 432-440, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573397

ABSTRACT

It has been reported that the effective inhibition of vascular endothelial growth factor (VEGF) can prevent the progression of ovarian hyperstimulation syndrome (OHSS). The present study aimed to investigate the mechanism underlying the effect of vitamin D3 (VD3) on OHSS in mouse models and granulosa cells. The effects of VD3 administration (16 and 24 IU) on ovarian permeability were determined using Evans blue. In addition, ovarian pathology, corpus luteum count, inflammatory responses, and hormone and VEGFA levels were assessed using pathological sections and ELISA. Molecular docking predicted that pentraxin 3 (PTX3) could be a potential target of VD3, and therefore, the effects of human chorionic gonadotropin (hCG) and VD3 as well as PTX3 overexpression on the production and secretion of VEGFA in granulosa cells were also investigated using western blotting and immunofluorescence. Twenty-four IU VD3 significantly reversed the increase in ovarian weight and permeability in mice with OHSS. Additionally, VD3 diminished congestion and the number of corpus luteum in the ovaries and reduced the secretion levels of inflammatory factors and those of estrogen and progesterone. Notably, VD3 downregulated VEGFA and CD31 in ovarian tissues, while the expression levels of PTX3 varied among different groups. Furthermore, VD3 restored the hCG-induced enhanced VEGFA and PTX3 expression levels in granulosa cells, whereas PTX3 overexpression abrogated the VD3-mediated inhibition of VEGFA production and secretion. The present study demonstrated that VD3 could inhibit the release of VEGFA through PTX3, thus supporting the beneficial effects of VD3 administration on ameliorating OHSS symptoms.


Subject(s)
C-Reactive Protein , Cholecalciferol , Granulosa Cells , Ovarian Hyperstimulation Syndrome , Serum Amyloid P-Component , Vascular Endothelial Growth Factor A , Animals , Female , Humans , Mice , C-Reactive Protein/metabolism , Cholecalciferol/pharmacology , Chorionic Gonadotropin/pharmacology , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Granulosa Cells/pathology , Ovarian Hyperstimulation Syndrome/metabolism , Ovarian Hyperstimulation Syndrome/pathology , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred ICR
10.
Food Funct ; 15(8): 4614-4626, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38590249

ABSTRACT

The role of vitamin D (VD) in non-alcoholic fatty liver disease (NAFLD) remains controversial, possibly due to the differential effects of various forms of VD. In our study, Sod1 gene knockout (SKO) mice were utilized as lean NAFLD models, which were administered 15 000 IU VD3 per kg diet, or intraperitoneally injected with the active VD analog calcipotriol for 12 weeks. We found that VD3 exacerbated hepatic steatosis in SKO mice, with an increase in the levels of Cd36, Fatp2, Dgat2, and CEBPA. However, calcipotriol exerted no significant effect on hepatic steatosis. Calcipotriol inhibited the expression of Il-1a, Il-1b, Il-6, Adgre1, and TNF, with a reduction of NFκB phosphorylation in SKO mice. No effect was observed by either VD3 or calcipotriol on hepatocyte injury and hepatic fibrosis. Co-immunofluorescence stains of CD68, a liver macrophage marker, and VDR showed that calcipotriol reduced CD68 positive cells, and increased the colocalization of VDR with CD68. However, VD3 elevated hepatocyte VDR expression, with no substantial effect on the colocalization of VDR with CD68. Finally, we found that VD3 increased the levels of serum 25(OH)D3 and 24,25(OH)2D3, whereas calcipotriol decreased both. Both VD3 and calcipotriol did not disturb serum calcium and phosphate levels. In summary, our study found that VD3 accentuated hepatic steatosis, while calcipotriol diminished inflammation levels in SKO mice, and the difference might stem from their distinct cellular selectivity in activating VDR. This study provides a reference for the application of VD in the treatment of lean NAFLD.


Subject(s)
Calcitriol , Calcitriol/analogs & derivatives , Cholecalciferol , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Calcitriol/pharmacology , Mice , Cholecalciferol/pharmacology , Male , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Liver/metabolism , Liver/drug effects , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Inflammation/drug therapy , Mice, Inbred C57BL , Humans , Disease Models, Animal
11.
Eur J Pharmacol ; 973: 176605, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38653362

ABSTRACT

The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 µg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-ß (TGF-ß). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-ß). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.


Subject(s)
Hippo Signaling Pathway , Kidney Diseases , Kidney , Metabolic Syndrome , Telmisartan , Animals , Telmisartan/pharmacology , Telmisartan/therapeutic use , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metabolic Syndrome/complications , Metabolic Syndrome/pathology , Male , Rats , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , NF-kappa B/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Rats, Wistar , Matrix Metalloproteinase 9/metabolism , PTEN Phosphohydrolase/metabolism , PPAR gamma/metabolism , Oxidative Stress/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Malondialdehyde/metabolism , Interleukin-6/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use
12.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Article in English | MEDLINE | ID: mdl-38599429

ABSTRACT

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Subject(s)
Catechin , Catechin/analogs & derivatives , Cholecalciferol , Glycation End Products, Advanced , Protein Binding , Serum Albumin, Human , Catechin/pharmacology , Catechin/chemistry , Catechin/metabolism , Humans , Glycation End Products, Advanced/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Cholecalciferol/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Thermodynamics , Computer Simulation
13.
Bioprocess Biosyst Eng ; 47(5): 753-766, 2024 May.
Article in English | MEDLINE | ID: mdl-38573334

ABSTRACT

Green synthesis of metal oxides as a treatment for bone diseases is still exploring. Herein, MgO and Fe2O3 NPs were prepared from the extract of Hibiscus sabdariffa L. to study their effect on vit D3, Ca+2, and alkaline phosphatase enzyme ALP associated with osteoporosis. Computational chemistry was utilized to gain insight into the possible interactions. These oxides were characterized by X-ray diffraction, SEM, FTIR, and AFM. Results revealed that green synthesis of MgO and Fe2O3 NPs was successful with abundant. MgO NPs were in vitro applied on osteoporosis patients (n = 35) and showed a significant elevation of vit D3 and Ca+2 (0.0001 > p < 0.001) levels, compared to healthy volunteers (n = 25). Thus, Hibiscus sabdariffa L. is a good candidate to prepare MgO NPs, with a promising enhancing effect on vit D3 and Ca+2 in osteoporosis. In addition, interactions of Fe2O3 and MgO NPs with ALP were determined by molecular docking study.


Subject(s)
Hibiscus , Magnesium Oxide , Osteoporosis , Hibiscus/chemistry , Humans , Osteoporosis/drug therapy , Magnesium Oxide/chemistry , Ferric Compounds/chemistry , Plant Extracts/chemistry , Female , Male , Calcium/chemistry , Molecular Docking Simulation , Metal Nanoparticles/chemistry , Middle Aged , Oxides/chemistry , Alkaline Phosphatase/metabolism , Cholecalciferol/chemistry , Cholecalciferol/pharmacology
14.
Med Oncol ; 41(5): 111, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592504

ABSTRACT

The use of doxorubicin (Dox) in the treatment of breast cancer negatively affects the intestines and other tissues. Many studies have proven that probiotics and vitamin D3 have antitumor and intestinal tissue-protecting properties. To achieve effectiveness and minimize side effects, the current study aims to administer Dox together with probiotics (Lactobacillus acidophilus and Lactobacillus casei) and vitamin D3. Forty-two female BALB/c inbred mice were divided into six groups: Group 1 (Control), Group 2 (Dox), Group 3 (Dox and probiotics), Group 4 (Dox and vitamin D3), Group 5 (Dox, probiotics, and vitamin D3), and Group 6 (probiotics and vitamin D3). The 4T1 mouse carcinoma cell line was injected into the mammary fat pad of each mouse. Gene expression was examined using quantitative real-time PCR. The treated groups (except group 6) showed significantly reduced tumor volume and weight compared to the control group (P < 0.05, P < 0.01). Probiotics/vitamin D3 with Dox reduced chemotherapy toxicity and a combination of supplements had a significant protective effect against Dox (P < 0.05, 0.01, 0.001). The treated groups (except 6) had significantly higher expression of Bax/Caspase 3 genes and lower expression of Bcl-2 genes than the control group (P < 0.05, 0.01). Coadministration of Dox with probiotics and vitamin D3 showed promising results in reducing tumor size, protecting intestinal tissue and influencing gene expression, suggesting a strategy to enhance the effectiveness of breast cancer treatment while reducing side effects.


Subject(s)
Lacticaseibacillus casei , Neoplasms , Probiotics , Female , Animals , Mice , Lactobacillus acidophilus , Doxorubicin/pharmacology , Probiotics/pharmacology , Disease Models, Animal , Cholecalciferol/pharmacology , Mice, Inbred BALB C
15.
Rev. Ciênc. Plur ; 10 (1) 2024;10(1): 31817, 2024 abr. 30. ilus
Article in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1553544

ABSTRACT

Introdução: A deficiência de vitamina D durante a gestação e a lactação pode repercutir negativamente no desenvolvimento fetal e infantil, devido seu papel fundamental nos sistemas imunológico, cardíaco, ósseo, muscular e neural. Objetivo: Realizar uma revisão de literatura para integrar estudos que evidenciam a deficiência de vitamina D em gestantes e lactantes, e os fatores de risco associados a essa carência. Metodologia: Foi realizado um levantamento bibliográfico entre agosto e outubro de 2021, com atualização entre outubro e novembro de 2022 através de pesquisas às bases Pubmed e Scielo, bem como às listas de referências dos artigos selecionados. Foram empregados os descritores consumo alimentar, vitamina D, deficiência de vitamina D, gestantes e lactantes, usando-se o operador booleano AND para a associação entre eles. Como critérios de inclusão foram adotados o tipo de estudo (epidemiológicos, ensaios clínicos e revisões integrativa e sistemática), o idioma (espanhol, inglês e português) e o período de publicação (2010 a 2022). Resultados: Evidenciou-se que existem vários fatores de riscos para a inadequação do status de vitamina D em gestantes e lactantes como a baixa exposição da pele à luz solar e fatores relacionados (uso excessivo de protetor solar, menor tempo de atividades ao ar livre, clima, religião e hábitos culturais, maior escolaridade);a pigmentação mais escura da pele; o baixo consumo alimentar de vitamina D e variáveis associadas; a menor idade materna; o primeiro trimestre gestacional; a primiparidade e o excesso de tecido adiposo. Conclusões: Em gestantes e lactantes, a carência de vitamina D associa-se a distintos fatores, com destaque principalmente para a baixa exposição à luz solar, a pigmentação mais escura da pele e o excesso de tecido adiposo, sendo de extrema importância que sejam abordados com cautela, visando ações voltadas a variáveis modificáveis, de modo a auxiliar na redução da hipovitaminose D nestes grupos (AU).


Introduction: Vitamin D deficiency during pregnancy and breastfeeding can have a negative impact on fetal and infant development due to its fundamental role in the immune, cardiac, bone, muscular and neural systems. Objective: To conduct a literature review to integrate studies which show the Vitamin D deficiency in pregnant andlactating women, and the risk factors associated with this deficiency. Methodology: A bibliographic survey was carried out between August and October 2021, with an update between October and November 2022 through searches in the Pubmed and Scielo databases, as well as the reference lists of the selected articles. The descriptors food consumption, vitamin D, vitamin D deficiency, pregnant and lactating women were used, using the Boolean operator AND for the association between them. The type of study (epidemiological, clinical trials and integrative and systematic reviews), language (Spanish, English and Portuguese) and publication period (2010 to 2022) was adopted as inclusion criteria.Results:It was shown that there are several risk factors for inadequate vitamin D status in pregnant and lactating women, such as low skin exposure to sunlight and related factors (excessive use of sunscreen, less time spent outdoors, climate, religion and cultural habits, higher education); darker skin pigmentation; low dietary intake of vitamin D and associated variables; the lowest maternal age; the first gestational trimester; primiparity and excess adipose tissue.Conclusions: Vitamin D deficiency in pregnant and lactating women is associated with different factors, witha main emphasis on low exposure to sunlight, darker skin pigmentation and excess adipose tissue. Furthermore, it is extremely important that these factors are approached with caution, implementing actions aimed at modifiable variables in order to help reduce hypovitaminosis D in these groups (AU).


Introducción: La deficiencia de vitamina D durante el embarazo y la lactancia puede tener un impacto negativo en el desarrollo fetal e infantil, por su papel fundamental en los sistemas inmunológico, cardíaco, óseo, muscular y neural. Objetivo: Realizar una revisión bibliográfica para integrar estudios que evidencien la deficiencia de vitamina D en mujeres embarazadas y lactantes, y los factores de riesgo asociados. Metodología:Se realizó un levantamiento bibliográfico entre agosto y octubre de 2021, con actualizaciones entre octubre y noviembre de 2022 mediante búsquedas en las bases de datos Pubmed y Scielo, así como en las listas de referencias de los artículos seleccionados. Se utilizaron los descriptores consumo de alimentos, vitamina D, deficiencia de vitamina D, gestantes y lactantes, utilizándose el operador booleano AND para la asociación entre ellos. Se adoptaron como criterios de inclusión el tipo de estudio (epidemiológicos, clínicos, revisiones integradoras y sistemáticas), idioma (español, inglés y portugués) y período de publicación (2010 a 2022).Resultados: Existen varios factores de riesgo para un estado inadecuado de vitamina D en mujeres embarazadas y lactantes, como la baja exposición de la piel a la luz solar y factores relacionados (uso excesivo de protector solar, menor tiempo al aire libre, clima, religión y hábitos culturales, educación más alta); pigmentación de la piel más oscura; baja ingesta dietética de vitamina D y variables asociadas; la edad materna más baja; el primer trimestre gestacional; Primiparidad y exceso de tejido adiposo. Conclusiones:En mujeres embarazadas y lactantes, el déficit de vitamina D se asocia a diferentes factores, especialmente la baja exposición solar, la pigmentación de la piel más oscura y el exceso de tejido adiposo, y es de suma importancia abordarlos con precaución, apuntando a acciones dirigidas a variables modificables, con el fin de ayudar a reducir la hipovitaminosis D en estos grupos (AU).


Subject(s)
Humans , Female , Pregnancy , Adolescent , Adult , Middle Aged , Vitamin D Deficiency , Risk Factors , Cholecalciferol/pharmacology , Deficiency Diseases , Maternal Nutrition , Pregnant Women , Breastfeeding Women , Infant
16.
Mol Biol Rep ; 51(1): 456, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536498

ABSTRACT

BACKGROUND: To better understand the molecular mechanism responsible for the therapeutic potential of vitamin D, we conducted an analysis of the liver transcriptomes of adult female rats. METHODS: Adult female rats (n = 18) were divided into three groups, receiving different doses of vitamin D: group I, 0; group II, 1000 U/kg; and group III, 5000 U/kg. Growth, body weight, the weight of main organs, blood haematological and biochemical parameters were evaluated. Gene expression in the liver were analyzed using RNA-seq and qPCR techniques. RESULTS: We observed a lower platelet count (p < 0,008) and a significantly greater (p < 0.02) number of WBCs in rats supplemented with 1000 U/kg than in rats from group III (5000 U/kg). Moreover, we noted a trend (p < 0.06) in total cholesterol concentration, suggesting a linear decrease with increasing doses of vitamin D. RNA-seq analysis did not reveal any differentially expressed genes with FDR < 0.05. However, GSEA revealed significant activation of a number of processes and pathways, including: "metallothionein, and TspO/MBR family", and "negative regulation of tumor necrosis factor production". qPCR analysis revealed significant upregulation of the Mt1, Mt2 and Orm1 genes in animals receiving high doses of vitamin D (p < 0.025, p < 0.025, and p < 0009, respectively). Moreover, Srebp2 and Insig2 were significantly lower in both experimental groups than in the control group (p < 0.003 and p < 0.036, respectively). CONCLUSIONS: Our results support the anti-inflammatory, anitioxidant and anticholesterologenic potential of vitamin D but suggest that high doses of vitamin D are needed to obtain significant results in this regard.


Subject(s)
Cholecalciferol , Vitamin D , Rats , Female , Animals , Cholecalciferol/pharmacology , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins/pharmacology , Dietary Supplements , Liver/metabolism , Gene Expression , Orosomucoid/pharmacology
17.
Front Immunol ; 15: 1347835, 2024.
Article in English | MEDLINE | ID: mdl-38495883

ABSTRACT

Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells in vitro. Weak regulatory effects were detected on murine T cells. By trend, the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 suppressed IFN, GM-CSF and IL-10 cytokine secretion in T cells of C57BL/6 but not BALB/c mice, respectively. Using different vitamin D3-fortified diets, we found a tissue-specific enrichment of mainly CD11b+ myeloid cells but not T cells in both mouse strains e.g. in spleen and Peyer's Patches. Mucin Reg3γ and Batf expression, as well as important proteins for gut homeostasis, were significantly suppressed in the small intestine of C57BL76 but not BALB/c mice fed with a high-vitamin D3 containing diet. Differences between both mouse stains were not completely explained by differences in vitamin D3 receptor expression which was strongly expressed in epithelial cells of both strains. Finally, we analyzed gut microbiome and again an impact of vitamin D3 was detected in C57BL76 but not BALB/c. Our data suggest strain-specific differences in vitamin D3 responsiveness under steady state conditions which may have important implications when choosing a murine disease model to study vitamin D3 effects.


Subject(s)
Cholecalciferol , Intestine, Small , Mice , Animals , Cholecalciferol/pharmacology , Mice, Inbred C57BL , Epithelial Cells , Diet
18.
Clin Immunol ; 262: 110183, 2024 May.
Article in English | MEDLINE | ID: mdl-38479439

ABSTRACT

Vitamin D deficiency is a risk factor for developing multiple sclerosis. The PrevANZ trial was conducted to determine if vitamin D3 supplementation can prevent recurrent disease activity in people with a first demyelinating event. As a sub-study of this trial, we investigated the effect of supplementation on peripheral immune cell gene expression. Participants were randomized to 1000, 5000 or 10,000 international units daily of vitamin D3 or placebo. Peripheral blood was collected at baseline and 12 weeks and sent for ribonucleic acid sequencing. Datasets from 55 participants were included. Gene expression was modulated by high dose supplementation. Antigen presentation and viral response pathways were upregulated. Oxidative phosphorylation and immune signaling pathways, including tumor necrosis factor-alpha and interleukin-17 signaling, were downregulated. Overall, vitamin D3 supplementation for 12 weeks modulated the peripheral immune cell transcriptome with induction of anti-inflammatory gene expression profiles. Our results support a dose-dependent effect of vitamin D3 supplementation on immune gene expression.


Subject(s)
Cholecalciferol , Vitamin D Deficiency , Humans , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Transcriptome , Dietary Supplements , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/genetics , Risk Factors , Vitamin D/therapeutic use , Double-Blind Method
19.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542390

ABSTRACT

In arterial hypertension, the dysregulation of several metabolic pathways is closely associated with chronic immune imbalance and inflammation progression. With time, these disturbances lead to the development of progressive disease and end-organ involvement. However, the influence of cholecalciferol on metabolic pathways as a possible mechanism of its immunomodulatory activity in obesity-related hypertension is not known. In a phase 2, randomized, single-center, 24-week trial, we evaluated, as a secondary outcome, the serum metabolome of 36 age- and gender-matched adults with obesity-related hypertension and vitamin D deficiency, before and after supplementation with cholecalciferol therapy along with routine medication. The defined endpoint was the assessment of circulating metabolites using a nuclear magnetic resonance-based metabolomics approach. Univariate and multivariate analyses were used to evaluate the systemic metabolic alterations caused by cholecalciferol. In comparison with normotensive controls, hypertensive patients presented overall decreased expression of several amino acids (p < 0.05), including amino acids with ketogenic and glucogenic properties as well as aromatic amino acids. Following cholecalciferol supplementation, increases were observed in glutamine (p < 0.001) and histidine levels (p < 0.05), with several other amino acids remaining unaffected. Glucose (p < 0.05) and acetate (p < 0.05) decreased after 24 weeks in the group taking the supplement, and changes in the saturation of fatty acids (p < 0.05) were also observed, suggesting a role of liposoluble vitamin D in lipid metabolism. Long-term cholecalciferol supplementation in chronically obese and overweight hypertensives induced changes in the blood serum metabolome, which reflected systemic metabolism and may have fostered a new microenvironment for cell proliferation and biology. Of note, the increased availability of glutamine may be relevant for the proliferation of different T-cell subsets.


Subject(s)
Hypertension , Vitamin D Deficiency , Adult , Humans , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Glutamine/therapeutic use , Glucose/therapeutic use , Vitamin D/therapeutic use , Obesity/complications , Obesity/drug therapy , Dietary Supplements , Vitamin D Deficiency/complications , Hypertension/complications , Hypertension/drug therapy , Amino Acids/metabolism , Double-Blind Method
20.
J Contemp Dent Pract ; 25(2): 114-117, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38514407

ABSTRACT

AIM: The study aims is to evaluate the antibacterial effect of vitamin D3 against the red complex bacteria, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia in chronic periodontitis patients. MATERIALS AND METHODS: The study comprised 98 participants with chronic periodontitis. All clinical parameters including plaque index (PI), gingival bleeding index (GBI), probing pocket depth (PPD), clinical attachment level (CAL), and a microbiological assay of P. gingivalis, T. denticola, T. forsythia were assessed at the baseline. All study participants who underwent scaling and root planning were divided into two groups, A and B, each with 49 patients and only group B patients were advised to take vitamin D supplementation of 60,000 IU granules, once daily for 2 months. All the patients of both the groups were recalled at the end of 2nd month and all the clinical and microbiological parameters were reassessed. RESULTS: After two months, there was a reduction in all the clinical markers in both groups, but the group B patients showed more improvement following non-surgical treatment vitamin D intake. There was also a statistical reduction in P. gingivalis, T. denticola, and T. forsythia following administration of vitamin D in group B patients compared to group A. CONCLUSION: These discoveries proposed that vitamin D has a superb antimicrobial impact against red complex periodontal microbes and might be considered a promising compound in the counteraction of periodontal disease. CLINICAL SIGNIFICANCE: Vitamin D is considered to possess anti-inflammatory and antimicrobial activity, which may help to delay the progression of periodontitis. So, vitamin D3 can be used as a potential supplement that could be employed to stop the advancement of periodontal disease. How to cite this article: Govindharajulu R, Syed NK, Sukumaran B, et al. Assessment of the Antibacterial Effect of Vitamin D3 against Red Complex Periodontal Pathogens: A Microbiological Assay. J Contemp Dent Pract 2024;25(2):114-117.


Subject(s)
Chronic Periodontitis , Humans , Chronic Periodontitis/drug therapy , Chronic Periodontitis/microbiology , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Periodontal Pocket , Porphyromonas gingivalis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Periodontal Attachment Loss/therapy , Aggregatibacter actinomycetemcomitans
SELECTION OF CITATIONS
SEARCH DETAIL
...